
Link Analysis

Yannis Kotidis
http://pages.cs.aueb.gr/~kotidis/

Acknowledgments

• Material adapted from the textbook “Mining Massive
Datasets” available at
http://infolab.stanford.edu/~ullman/mmds.html

Roadmap

• Need for link analysis
• PageRank: intuition and formulation
• Computation of PageRank

– Power Iteration Method
– Web Surfer model
– Markov Chain model
– Google’s algorithm

• Topic-specific PageRank
• Circle of Trust (Twitter)
• HITS: hubs and authorities
• Spamming

– Creating spam, spam-farms
– Fighting spam, TrustRank
– Spam estimation: Spam-mass

• Using pageRank as a measure of “importance”

Social Graphs

http://www.socialmediaexaminer.com/what-your-business-needs-to-know-about-social-graphs/

SNA: Marketing campaign

Leader Leader

Citation Networks

Transport Networks

The WWW

Web graph is large

• How to query and locate relevant and
trustworthy information in the web?

– Human curated approach: build web directories
(e.g. Yahoo, DMOZ)

– Automated approach: adapt IR (keyword search)

• Inverted lists, Latent Semantic Indexing,…

• Issues: scale of the web, heterogeneity of
pages, lots of untrusted sources, spam, etc.

Spamming

• Deliberate action to boost a web page’s
position in search engine results

• (Assume that) search engines index pages by
the keywords they contain

• I want to increase visibility of my web page
that sells toasters: cheapToasters.com

– Ideas?

cheapToasters.com

Simple trick

• Pick a popular search term, e.g. “movies”
• Want to make my cheapToasters.com page

appear in movie searches
• Make my page look similar to the top-ranking

pages in that result listing
– Pick few pages that come on-top when searching for

movies
– Copy keywords from these pages (or whole

paragraphs), paste them into my cheapToasters.com
page but make them invisible when rendering the
page in the browser.

Link Analysis

• Believe what people say about you, rather
than what you say about yourself

– Use information from the web link structure in
order to measure the importance of web pages,
when ranking the results of a query

• Assumption: trustworthy/authoritative
sources may link to each other

PageRank* (informal)

x

y

Page x is important if many
important pages link to it

(recursive def)

Page y has more incoming links but
lower PageRank than page x

*Larry Page and Sergey Brin

How to measure importance

• An incoming link acts as a
positive testimony (a “vote”)
– Votes from important pages

count more

• Weight of a vote is equally
split between all outgoing
edges
– Fig: node 3 has three

outgoing edges

• Votes received by node 1:
– r1 = r3/3 + r4

1
2

3

4

r1 = r3/3 + r4

r2 = r1/2 + r3/3
r3 = r1/2
r4= r2 + r3/3

𝒓𝟑
𝟑𝒓𝟑

𝟑
𝒓𝟑
𝟑

Solution

• 4 equations/4 unknowns

– No unique solution

• Add another constraint:

– All ranks sum up to 1

• Solution:

– r1 = 6/18, r2 = 4/18

– r3 = 3/18, r4 = 5/18

1
2

3

4

r1 = r3/3 + r4

r2 = r1/2 + r3/3
r3 = r1/2
r4= r2 + r3/3
r1+ r2 + r3 + r4= 1

Matrix representation of the WWW

• Let matrix W denote the web
graph

– Wji = 1/di, if link i→j appears in
the web

1
2

3

4

1/3 1

1/2 1/3

1/2

1 1/3

From:

To:

columns summing to 1

𝟏

𝟐

𝟏

𝟐

Store ranks in a vector r

• r=(r1,r2,r3,r4)T

• r1+r2+r3+r4=1

1
2

3

4

r1

r2

r3

r4

r =

Equivalent matrix formulation

• Previous equations are
expressed as : W*r = r

1
2

3

4

1/3 1

1/2 1/3

1/2

1 1/3

r1

r2

r3

r4

=.

r1 = r3/3 + r4

r2 = r1/2 + r3/3
r3 = r1/2
r4= r2 + r3/3
r1+ r2 + r3 + r4= 1

r1

r2

r3

r4

Ranks as eigenvectors

• A*x = λ*x, iff x is an
eigenvector of matrix A

– λ is the eigenvalue of x

• Recall W*r = 1*r

– Thus, r is the principal
eigenvector (for λ=1)

1
2

3

4

1/3 1

1/2 1/3

1/2

1 1/3

=.

1/3

2/9

1/6

5/18

1/3

2/9

1/6

5/18

Power Iteration Method

• Start with any valid (=ranks sum to 1) vector
r(0)

– For instance, initialize ranks as ri=1/n, where n is
the number of nodes in the graph

• At step i compute r(i)=W*r(i-1)

• Stop when you have converged to a solution

– E.g. |r(i)-r(i-1)| < ε, for some small constant ε

Distance (e.g. L2) of the two solutions is small

Example

• Set r(0)=(1/4,1/4,1/4,1/4)T

1
2

3

4

1/3 1

1/2 1/3

1/2

1 1/3

1/3

5/24

1/8

1/3

=.

¼

¼

¼

¼

Example

• Set r(1)=(1/3,5/24,1/8,1/3)T

1
2

3

4

1/3 1

1/2 1/3

1/2

1 1/3

27/72

17/72

1/6

14/72

=.

1/3

5/24

1/8

1/3

Example

• Set
r(2)=(27/72,17/72,1/6,14/72)T

1
2

3

4

1/3 1

1/2 1/3

1/2

1 1/3

59/216

105/432

27/144

53/216

=.

27/72

17/72

1/6

14/72

Convergence

27/72

17/72

1/6

14/72

1/3

5/24

1/8

1/3

¼

¼

¼

¼

59/216

105/432

27/144

53/216

1/3

2/9

1/6

5/18

…

Example 2

• Set r(0)=(1/3,1/3,1/3)T

1
2

3

1/2 1

1/2

1

=.
1/3

1/3

1/3

1/2

1/6

1/3

Example 2

• Set r(1)=(1/2,1/6,1/3)T

1
2

3

1/2 1

1/2

1

=.
1/2

1/6

1/3

7/12

1/4

1/6

Example 2

• Set r(2)=(7/12,1/4,1/6)T

1
2

3

1/2 1

1/2

1

=.
7/12

1/4

1/6

11/24

7/24

¼

Example 2

• Set r(3)=(11/24,7/24,1/4)T

1
2

3

1/2 1

1/2

1

=.
11/24

7/24

1/4

23/48

11/48

7/24

Example 2

• Set r(3)=(23/48,11/48,7/24)T

1
2

3

1/2 1

1/2

1

=.
23/48

11/48

7/24

51/96

23/96

11/48

Example 2
1

2

3

1/2 1

1/2

1

=.
51/96

23/96

11/48

95/192

51/192

23/96

• Next iteration

Example 2
1

2

3

1/2 1

1/2

1

=.
95/192

51/192

23/96

1/2

95/384

51/192

• Next iteration

Example 2

• In the end…
1

2

3

1/2 1

1/2

1

=.
1/2

1/4

1/4

1/2

1/4

1/4

Random Web Surfer

• Surfer starts at arbitrary node

• Picks one outgoing link at
random and follows it

• E.g. assume surfer is at node 1

– with probability ½ she jumps to
node 2, OR

– with probability ½ she jumps to
node 3

1
2

3

4
𝟏

𝟐

𝟏

𝟐

Matrix formulation

• Let vector pt=(pt
1, pt

2,… pt
n)

• Each coordinate pt
i denotes the

probability that the surfer is at
node i at time t

• Where is the surfer at time t+1?

1
2

3

4

pt+1 =W*pt

Markov process/random walk

What happens in the end

• Assume that after some (possibly long) time, the
probability distribution on the location of the
surfer reaches a state where pt = W*pt

• Then, pt is stationary distribution of a random
walk

• Recall that in the power iteration method we
where looking for ranks such that r = W*r

• Thus, the ranks in r define a stationary
distribution of the random walk performed by the
surfer

Convergence

• For graphs that satisfy certain condition, the
random walk always reaches a stationary
distribution, no matter the initial conditions

– What can go wrong?

Problem #1: Dead ends

• Node #4 has no outgoing edge

• Ranks (votes) that flow to that
node, disappear in the next
iteration!

• Equivalently: the surfer gets
trapped on that node

1
2

3

4

x

Simpler example 1
2

3
1/2 0 0

1/2 0 0

0 1 0

=.
1/3

1/3

1/3

1/6

1/6

1/3

1/2 0 0

1/2 0 0

0 1 0

=.
1/6

1/6

1/3

1/12

1/12

1/6

1/2 0 0

1/2 0 0

0 1 0

=.
1/12

1/12

1/6

1/24

1/24

1/12

converges to? 0

0

0

SUM = 2/3

SUM = 1/3

Problem #2: Closed communities

• Also called spider-traps

• Flow of ranks gets trapped
inside them

• Surfer has no way out!

1
2

3

Problem #2: Closed communities

1
2

3

1 1

1

=.
1/3

1/3

1/3

0

2/3

1/3

1 1

1

=.
0

2/3

1/3

0

1/3

2/3

1 1

1

=.
0

1/3

2/3

0

2/3

1/3

Google’s solution: add teleports

• At each iteration, the surfer does one of the
following

– With probability β, she follows an outgoing link at
random

– With probability 1-β, she jumps to a random node
in the graph

1
2

3

1
2

3

Dead ends

• Always perform a random
teleport from dead-ends

1
2

3

Google’s Page Rank formulation*

nd

r
r

ji i

j

i 1
)1( −+=

→

* Formula assumes no-dead-ends (explicitly perform random jumps with prob=1 from these nodes)

Remember:
• ri : page rank of node i
• di : degree (fan-out) of node i
• n: number of nodes in the graph (web)
• β: a number close to 1 (e.g. 0.8-0.9)

Does this converge?

• The power-iteration methods converges to a
stationary distribution if matrix W is
stochastic, irreducible and aperiodic.

pt+1 =W*pt

Is W stochastic?

• Stochastic  columns add to 1 1
2

3

1/2

1/2

1

Sum = 0 for dead-ends

Is W stochastic?

• Stochastic  columns add to 1 1
2

3

1/2 1/3

1/2 1/3

1 1/3

Make column stochastic

Note: while teleports are the solution for dead-ends, in practice the pageRank algorithm
does not change the martix W on dead-ends (otherwise these columns require O(n) space).
Instead It explicitly makes a random jump from these nodes.

Is W aperiodic?

• A Markov-chain is periodic if there exists k > 1
such that the interval between two visits to
some state s is always a multiple of k

1 2

3

Note: not all teleports required
for making W aperiodic

Is W irreductible?

• A Markov-chain is irreductible if from any
state, there is a non-zero probability of going
from any one state to any another

1 2

3

Google Matrix (no dead-ends)

• G = β*W+(1-β)/n*Ε

– Ε: nxn matrix with all ones

• Example: make the matrix of the following
graph stochastic, aperiodoc and irreductible

1
2

3
4

Example

• Original matrix W:

• Node 4 is a dead-end. Compute W’:

0.5 0.5

1

0.5

0.5

1
2

3

0.5
0.5

0.5
1

4

0.5 0.5 0.25

1 0.25

0.5 0.25

0.5 0.25

0.5

1
2

3

0.5
0.5

0.5 1
4

0.25
0.25

0.25
0.25

0.5

Example (cont.)

• Adjusted matrix W’:

• Assume β=0.8. Thus, G = 0.8*W + 0.2/4*Ε

• New matrix G:

0.5 0.5 0.25

1 0.25

0.5 0.25

0.5 0.25

0.45 0.45 0.05 0.25

0.05 0.05 0.85 0.25

0.05 0.45 0.05 0.25

0.45 0.05 0.05 0.25

0.8*0.5 + 0.05 0.8*0.5 + 0.05 0.05 0.8*0.25 + 0.05

0.05 0.05 0.8*1 + 0.05 0.8*0.25 + 0.05

0.05 0.8*0.5 + 0.05 0.05 0.8*0.25 + 0.05

0.8*0.5 + 0.05 0.05 0.05 0.8*0.25 + 0.05

=

Original Matrix

• Notice that original matrix is very sparse

0.5 0.5

1

0.5

0.5

However

• Matrix G requires n2 space:

• Do not want to compute it for large graphs (or the web)
• Instead, write recursion as:

r = β*W*r+(1-β)/n*e
– e: a vector with n coordinates that are all 1

• Formula assumes no dead-ends (→ranks sum to 1)
– Thus, in practice some pagerank will get lost
– Google’s algorithm: correct ranks after each iteration to make them

sum up to one

0.45 0.45 0.05 0.25

0.05 0.05 0.85 0.25

0.05 0.45 0.05 0.25

0.45 0.05 0.05 0.25

Google’s algorithm

• Given web graph W (with dead-ends and closed
communities), β
Let r0 = (1/n,….,1/n);

t=0;

Do {

t++;

Compute rt = β*W*rt-1;

Let L = Σrt(i); // L≤β due to dead-ends

//Re-insert leaked page-rank:

rt(i)=rt(i) + (1-L)/n; //now all ranks add to 1

} while |rt(i)-rt-1(i)|>e;

Note

• Assume n=1 billion web nodes
• Assume ranks are stored as 4 bytes numbers
• Dense matrix would require:

1Bx1B numbers = 4*1018bytes =~ 3.5 Zettabytes

• Google’s algorithm does not pre-adjust the matrix W. Instead it re-
inserts leaked page-rank back into computation

• Original matrix is very spare: few links per node
– Store W row-wise (=for each node, keep list of incoming edges)

• Inverted web-graph computed easily via map-reduce

– We need 14 * 1 billion ids =~ 56GΒ
– r(t), r(t-1) vectors need ~4GB each
– Thus, computation requires a server with 64GB available memory

GraphX:
Define nodes using a DataFrame

val v =
spark.sqlContext.create
DataFrame(List(

("john", "John", 29),
("sara", "Sara", 22),
("jim", "Jim", 42),
("patrick", "Patrick",19),
("mary", "Mary", 31)

)).toDF("id", "name",
"age")

name: John

name: Jim

name: Sara

name: Maryname: Patrick

Now define edges & GraphFrame

val e =
spark.sqlContext.createData
Frame(List(

("john", "sara", "knows"),
("john", "jim", "knows"),
("jim", "sara", "knows"),
("jim","mary","knows"),
("sara", "patrick", "knows"),
("sara", "mary", "knows")

)).toDF("src", "dst",
"relationship")

val g = GraphFrame(v, e)

name: John

name: Jim

name: Sara

name: Maryname: Patrick

Computing PageRank: Spark/GraphX

name: John

name: Jim

name: Sara

name: Maryname: Patrick

Create Social Graph script: Neo4j

//create social graph

//label each node as “Person”

create (john:Person {name:"John"})

create (sara:Person {name:"Sara"})

create (jim:Person {name:"Jim"})

create (patrick:Person {name:"Patrick"})

create (mary:Person {name:"Mary"})

create (john)-[:Knows]->(jim)

create (john)-[:Knows]->(sara)

create (jim)-[:Knows]->(sara)

create (sara)-[:Knows]->(patrick)

create (sara)-[:Knows]->(mary)

create (jim)-[:Knows]->(mary);

create (john:Person {name:"John"})

label property

variable, used later-on while
defining edges for this node

Computing PageRank: Neo4j

name: John

name: Jim

name: Sara

name: Maryname: Patrick

CALL algo.pageRank(“Person", “Knows",

{iterations: 20, damping: 0.85})

:Person

Topic-specific search

Search term: “apple”

?

Topic-specific search

• Assume user is interested in a specific topic,
e.g. ‘electronics’

• Can we adjust PageRank calculations so that
search favors pages from that topic?

Adjust definition of PageRank

• An electronics web-site is important if it has
incoming links from other important
electronics sites

• Web-surfer: initiate random walks from a
selected pool of good web-sites on electronics

= make restarts from selected electronics sites

= make teleports point back to selected electronics sites

Assume T={1,3} are well known
electronics sites

1
2

3

4

Electronics

Teleports

5

6 7

DMOZ: The Open Directory

• Example: use
16 top-level
categories
from DMOZ

Topic-specific PageRank

• Let T be a set of pages on the topic

– E.g. use Open Directory (DMOZ) pages for a given
topic

• We want to bias PageRank calculations in favor of
pages in set T

• Simple trick: make teleports point to those pages

– Random surfers jumps to a random page from T,
instead of teleporting anywhere

– Can be adjusted so that pages in T have different bias

Topics?

• This trick implies that topic-specific pageRank
calculations have been computed a-priori

– E.g. each page has different PageRanks depending
on the topic

– Utilize appropriate topic-specific PageRank for a
given query

• Each page now has a PageRank vector instead
of a single value

Adjusted Google Matrix

Gij =
β*Wij+(1-β)/|T| , if page i in T

β*Wij , otherwise

Who defines the topic on a given
query?

• The user…

• Infer topic from other keywords in the same
query (classification problem)

• Context (e.g. query coming from an
electronics store, user search history)

More applications of pageRank

• pageRank ranks network nodes using
incoming links as a notion of positive
testimony for the worthiness of a node

• Many problems can be modeled in a similar
setting

• Note difference between global and
personalized ranking

Ranking tweets for a specific user

User A User B
follows

Tweet
X

tweets

User C

Question: pageRank provides global ranking of tweets.
Can I get personalized rankings for e.g. User A?

User D
Tweet

Y

tweets

re-tweets

Tweet
W

tweets

Circle-of-Trust (Twitter)
source: “WTF: The Who to Follow Service at Twitter”

• For each user compute
her circle-of-trust (“hubs”)
containing ~500 of the
top-ranked nodes using
personalized pageRank

• Authorities are users that
the hubs follow

• Perform random walks
(SALSA*), use top-pics
from RHS

*SALSA=Stochastic Approach for Link-Structure Analysis

Hotel Recommendations
example adapted from Antonis Dimakis slides http://users.ece.utexas.edu/~dimakis/GraphDay_wNotes.pdf

• Ask hotel site to find hotels within 10km from
Athens center on specific dates

• System pulls 1000 hotels from database with
available rooms, must present top-10 to the
user

• Idea: form a graph at runtime to rank hotels

Hotel Preference Graph

Hotel A Hotel B

Create a link if a past user ranked/rated hotel B higher than hotel A

Weight w may denote the difference between the two ratings, possibly
adjusted by the trustworthiness of a user

Recall: edges were used to cast “votes” in our initial consideration of
pageRank

w

HITS:
HYPERLINK-INDUCED TOPIC SEARCH

HITS: Hyperlink-Induced Topic Search

• Developed by Jon Kleinberg (Cornell) at about
the same time as PageRank

– Used in Ask.com search engine

• Web search: looking for pages that are
authoritative for a given query

– E.g. query = “automotive makers”

• Authorities: Ferrari.com, bmw.com,
honda.com, hyundai.com, etc.

Hubs

• Hubs are pages that helps you find relevant
information by providing links towards the
authoritative pages
– E.g. cars.com, edmunds.com, 4troixoi.gr point to

car manufacturers’ pages

• A good hub points to valuable authoritative
pages

• A good authoritative page is pointed to by
valuable hubs

Formulation

• For each page i maintain

– Authority weight αi

– Hub weight hi

αi
h2

h1

hk

αi = sum of hj for all pages j pointing to page i

α1

α2

αk

hi

hi = sum of αj for all pages j pointed to by page i

Simple Example*

FerrariEdmunds

Cars

Honda

4troxoi.gr

h=1

h=1

h=1

*In practice most pages are both hubs and authorities
In the example, we do not normalize weights

Update α

FerrariEdmunds

Cars

Honda

4troxoi.gr

h=1

h=1

h=1

α=2

α=3

Update h

FerrariEdmunds

Cars

Honda

4troxoi.gr

h=5

h=5

h=3

α=2

α=3

Update α

FerrariEdmunds

Cars

Honda

4troxoi.gr

h=5

h=5

h=3

α=10

α=13

Update h

FerrariEdmunds

Cars

Honda

4troxoi.gr

h=23

h=23

h=13

α=10

α=13

Update α

FerrariEdmunds

Cars

Honda

4troxoi.gr

h=23

h=23

h=13

α=46

α=59

HITS computation

• Let vector a = (a1,….an)

vector h = (h1,…hn)

nxn matrix A: Aij = 1 if i→j

• Then α=ΑΤ*h , h = A*α


→

=
ji

ji ha 
→

=
ji

ji ah

Convergence

• α=ΑΤ*h, h = A*α

• Thus, α = ΑΤ*(A*α) = (ΑΤ*A)*α

– (ΑΤ*A)*α = 1*α

– α is the principal eigenvector of (ΑΤ*A)

• Similarly, h = (A*ΑΤ)*h

– h is the principal eigenvector of (A*ΑΤ)

PageRank vs HITS

• Both use links to compute importance of a
web page

• In PageRank the value of an incoming link
u→v to page v depends on the links k→u into
page u

• In HITS, the value of the in-link u→v depends
on the value of other links u→k out of u

FIGHTING SPAM

Spam

• Recall that the idea behind link analysis in e.g.
PageRank, HITS is to look at who is talking
about your page rather than what you claim
about it.

• Can these algorithms be fooled?

– yes !

Boost my cheapToasters.com page!

cheapToasters

Create “link farm” of e.g. 100K pages
pointing to cheapToasters.com

WON’T WORK!

Web

Boost my cheapToasters.com page!

cheapToasters

Add links from accessible pages to cheapToasters.com and the farm

Now PageRank leaks into cheapToaster.com and the farm

However, search engines are getting increasingly better at detecting these farms

blog

comment

Web

Fighting spam

• Similar idea to topic-specific PageRank

• Assemble a list T to trusted pages from the
web
– Use trusted domains such as .edu, .gov, etc whose

content is curated, OR

– Get pages with highest PageRank values. These
are hard to compromise. Have humans examine
them and decide which of them are trustworthy.

TrustRank

• Compute PageRank
using teleports towards
those pages in T only
– TrustRank = computed

PageRank

• If a page is linked from
or is in a short distance
from pages in T, it gets
a high value of
TrustRank

Web

T

i

ti = TrustRank of page I
pi = PageRank of page i

i

ii
i

p

tp
massspam

−
=−

Spam-mass

• Portion of PageRank
that comes from
spam
– Small or negative

values mean that page
is most likely not
spam

– A value close to 1
means that the page
is probably spam

Web

T

i

ti = TrustRank of page I
pi = PageRank of page i

i

ii
i

p

tp
massspam

−
=−

Spam-mass of cheapToasters.com

cheapToasters

blog

comment

Web

i

ii
i

p

tp
massspam

−
=−

If no trustworthy page links to my web-
site (directly or indirectly), then its
spam-mass will be close to 1

