

Multimedia Technology

Section # 22: Synchronization

Instructor: George Xylomenos

Department: Informatics

Contents

- Introduction
- Synchronization requirements
- Resynchronization
- Distributed synchronization
- Synchronization specifications

Introduction

Class: Multimedia Technology, Section # 22: Synchronization

Instructor: George Xylomenos, Department: Informatics

What is synchronization? (1 of 3)

- Multimedia means unifying different media
 - Digital media representation
 - Independent media handling
 - So, we need to synchronize them!
- At which level do we synchronize them?
 - LDU: Logical Data Unit (of some medium)
 - Synchronization at the LDU level
 - Example: a video frame

What is synchronization? (2 of 3)

- Single medium synchronization
 - Applies to continuous media only
 - Timing relations between LDUs of the medium
 - Periodic playback, e.g., at 30 fps
- Multiple media synchronization
 - Timing relations between many media
 - One of them must be continuous
 - Example: subtitles, lip sync

What is synchronization? (3 of 3)

- Live synchronization
 - All media are digitized together
 - Example: audio and video in a camera
 - Need to reproduce their original relations
- Synthetic synchronization
 - Media are digitized or created independently
 - The relations are defined afterwards
 - Example: audio and subtitles in a movie

Synchronization requirements

Class: Multimedia Technology, Section # 22: Synchronization

Instructor: George Xylomenos, **Department:** Informatics

Requirements (1 of 2)

- Single medium synchronization
 - Limit jitter during playback
 - Strictly periodic playback
 - Example: one frame every 40 ms (25 fps)
- Multiple media synchronization
 - Synchronization after independent delays
 - Each medium may face different conditions
 - Example: reading independent video and audio files

Requirements (2 of 2)

- How much tolerance do we have?
- Depends on multiple factors
 - Nature of the medium
 - Audio is more restrictive than video
 - Way media are combined
 - Lip sync is more restrictive than subtitle sync
 - User expectations
 - Sound usually follows video (why?)

Lip sync (1 of 4)

- Lip synchronization (lip sync)
 - Video (lips) and audio (voice)
 - Positive offset: video follows audio
 - Negative offset: audio follows video
- Empirical study based on questionnaires
 - Subject viewed a news presenter
 - Head, shoulders and body view
 - AV offset set at +/- k x 40 ms

Lip sync (2 of 4)

Lip sync (3 of 4)

- Tolerance to offset
 - Similar results (curves)
 - Head view makes offset more noticeable
 - Positive offset is more annoying
 - Curves rise faster on the right side
 - Negative offset is a natural phenomenon
 - Light travels faster than sound
 - For a distance of 34.3 m, negative offset ~100 ms

Lip sync (4 of 4)

- Three "areas" of synchronization
- In sync: -80 ms to +80 ms
 - Imperceptible or acceptable
- Out of sync: more than +/-230 ms
 - Perceptible and annoying
- Intermediate: +/- 80 to 230 ms
 - Acceptance depending on viewpoint

Pointer sync

- Example: a person comments on an image
 - We present an image
 - We point at various points
 - And comment on what we show
 - Up to 750 ms when the pointer follows the voice
 - Up to 500 ms when the voice follows the pointer
- Similar to subtitle sync

Audio channel sync

- Stereo audio: 11 μs (not ms!)
 - Mimics the small differences between our ears
 - Which help locate audio sources
- Speech with music on the background: 500 ms
 - Volume change in movies
- Discussion from different channels: 120 ms
 - Same as in natural conversations

Requirements table

Medium		Application	Tolerance
Video	Animation	Correlation	+/- 120 ms
	Audio	Lip sync	+/- 80 ms
	Image	Overlaid	+/- 240 ms
		Nov overlaid	+/- 500 ms
	Text	Overlaid	+/- 240 ms
		Not overlaid	+/- 500 ms
Audio	Animation	Correlation	+/- 80 ms
	Audio	Closely coupled (stereo)	+/- 11 μs
		Coupled (dialog)	+/- 120 ms
		Loosely coupled (background)	+/- 500 ms
	Image	Closely coupled (score)	+/- 5 ms
		Loosely coupled (presentation)	+/- 500 ms
	Text	Text commentary	+/- 240 ms
	Pointer	Pointer commentary	-500 ms / +750 ms

Synchronization levels

- Production level sync
 - Needed during processing
 - Tiny or no offset
 - Allows some relaxation during presentation
- Presentation level sync
 - Needed during playback
 - Offset within requirements
 - See previous table

QoS and QoE (1 of 2)

- Quality of Service (QoS)
 - Objective criteria
 - Example: latency limits
 - Relies on measurement equipment
- Quality of Experience (QoE)
 - Subjective criteria
 - Example: Likert scale for sync
 - Relies on questionnaires

QoS and QoE (2 of 2)

- In general, complex relationship
 - Media offset is part of QoS
 - Offset tolerance is part of QoE
 - Tolerance depends on many factors
- QoE functions
 - Combination of multiple QoS criteria
 - Example: streaming video QoE
 - QoE=f(number & duration of stalls, fps, resolution)

Resynchronization

Class: Multimedia Technology, Section # 22: Synchronization

Instructor: George Xylomenos, **Department:** Informatics

Why resync? (1 of 2)

- Variable access delays
 - Video and audio in different files
 - Seek times are unpredictable
- Variable network delays
 - Loss of sync for a single medium
 - Due to delay jitter
 - Loss of sync between media
 - Due to different delays

Why resync? (2 of 2)

- Gaps in the LDU sequence
 - Entire LDUs may be lost
 - Lost or delayed packets
 - If a packet misses its deadline, it is lost
- Prevention methods
 - Prefetching and buffering
 - Data interleaving
 - Forward error correction

Resync options (1 of 2)

- What if nothing works?
- Restricted blocking
 - Leave gaps for minor losses
 - Audio blanks out for a while
 - Repeat LDUs for larger losses
 - Freeze videos
 - This leads to perceptible issues
 - Audio clicks, video blocking

Resync options (2 of 2)

- Media resampling
 - Works for long-term issues
 - Slow down (and speed up) playback
 - Used to resync media when clocks drift
 - Repetition/skip/interpolation of LDUs
 - Also used in PAL/SECAM/NTSC/film conversions
 - Creation and dropping of frames
 - Needs considerable processing

Distributed synchronization

Class: Multimedia Technology, Section # 22: Synchronization

Instructor: George Xylomenos, **Department:** Informatics

Distributed multimedia

- Two main issues arise with networks
- Delay (or latency)
 - Time between capture and playback
 - Sampling, queueing, transmission, ...
- Jitter (delay variance)
 - Mainly due to queuing
 - Main issue with packet switching

Transmitting specifications (1 of 2)

- When are specifications sent?
 - For media synchronization
- Before the presentation
 - Makes sense for synthetic sync
 - Adds some extra delay before media transmission
- Over a separate channel
 - Makes sense for live sync
 - Needs extra sync channel

Transmitting specifications (2 of 2)

- Multiplexed with media
 - No initial delay
 - No extra channels
 - But, no independent media handling
 - Independence is lost during transmission

Synchronization location (1 of 2)

- At the source
 - All media synced at the source
 - One channel can be used for everything
 - Multiplexing of all media streams
 - All media face the same issues
 - Delay, jitter, loss

Synchronization location (2 of 2)

- At the sink
 - Media synced before playback
 - Independent media transmission
 - Each media may face different issues
 - Requires some buffering at the receiver
 - Allows changes at the sink

Synchronization basis

- How can we actually know what to do when?
 - Media can use a common time basis
 - Example: SMPTE timecode
 - Hour:minute:second:frame
 - Coded with 32 bits (using BCD)
 - But each device has its own clock
 - Must translate it to SMPTE
 - Still, clocks diverge from each other

Synchronization tolerance

- Say that audio and video are shown at T_{AV}
 - Audio: must start transmission at at $T_A = T_{AV} D_A S_A$
 - Video: must start transmission at $T_V = T_{AV} D_V S_V$
 - D_A, D_V: transmission delays
 - S_A, S_V: timing offset between clocks (unknown)
 - Need to estimate an upper clock offset
 - Also need to reserve buffers and plan in advance

Synchronization specifications

Class: Multimedia Technology, Section # 22: Synchronization

Instructor: George Xylomenos, **Department:** Informatics

How to specify sync? (1 of 2)

- Live sync is straightforward
 - Must replicate timing during capture
 - Good for video and audio from same camera
- What about synthetic sync?
 - Possibly due to media independence
 - Video and subtitles
 - Or due to presentation complexity
 - Multipart interactive presentations

How to specify sync? (2 of 2)

- Sync specifications
 - We need a way to express specifications
 - How are media streams related?
 - Whan should an event happen?
 - How does it relate to other events?
 - How to account for interactivity?
 - We need a specification "language"

Interval-based (1 of 3)

Interval-based (2 of 3)

- Interval-based specifications
 - Media streams are broken into intervals
 - Example: sound effect, video clip
 - Many types of interval relations
 - Showing how intervals A and B are related
 - Parameters $\delta 1$, $\delta 2$, $\delta 3$
 - Example: before $(\delta 1)$
 - Interval A begins $\delta 1$ before the beginning of B

Interval-based (3 of 3)

- Interval-based specifications
 - Allows unknown parameters
 - Can be filled in during the presentation
 - This allows dynamic navigation
 - Can only deal with entire intervals
 - May need to break down clips for example
 - Possible issues with unknown parameters
 - It may be impossible to achieve sync

Hierarchy-based (1 of 2)

Hierarchy-based (2 of 2)

- Control flow-based specifications
 - Synchronization at specific control points
- Hierarchy-based specifications
 - Presentation in series or in parallel
 - Leaf: media object
 - Nodes: order of presentation
 - Unknown delays can be objects
 - Synchronization only at object beginning/end
 - Cannot express more complex relations

Axis-based (1 of 2)

- Axis-based specifications
 - Central axis used as a reference
 - Media are synced to this axis

Axis-based (2 of 2)

- Axis-based specifications
 - Cannot handle unknown durations
 - For example, waiting for a user to click
 - All media must be synced with the same axis
 - Usually, the audio clock is the axis
 - Audio is most sensitive to jitter
 - And its sampling clock is in the kHz range
 - Most common in applications

ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

End of Section #22

Class: Multimedia Technology, Section # 22: Synchronization

Instructor: George Xylomenos, **Department:** Informatics