

Multimedia Technology

Section # 13: Video coding: MPEG-1/2

Instructor: George Xylomenos

Department: Informatics

Contents

- MPEG-1
- Frame groups
- Data stream
- MPEG-2
- Scalable coding
- Program and Transport streams

MPEG-1

Class: Multimedia Technology, Section # 13: Video coding: MPEG-1/2

Instructor: George Xylomenos, **Department:** Informatics

What is MPEG? (1 of 2)

- MPEG: Motion Pictures Experts Group
 - Similar name (and approach) to JPEG
 - Goal: digital video and audio
 - Media distribution or transport
 - No need for worldwide compatibility
 - Distribution needs random access
 - MPEG-1 (1990): CD-ROM, T1
 - MPEG-2 (1996): DVD, DTV
 - MPEG-4 (two "phases"): HDTV, mobile, interaction

What is MPEG? (2 of 2)

- Based on previous standards
 - JPEG: intraframe coding
 - H.261: interframe coding
- MPEG system: set of standards
 - Audio coding (MP3, AAC, ...)
 - Video coding
 - Data multiplexing

MPEG-1 goals (1 of 2)

- Bitrate: 1.2-1.5 Mbps
 - 1x CD-ROM (1.2 Mbps) or T-1 line (1.5 Mbps)
- Image format
 - YCbCr color, (4:1:1 4:2:0) subsampling
 - 8 bits per pixel per component
- 14 <u>pixel</u> aspect ratios
 - 1:1 is square pixels (as in computers)
 - Different ratios for 4:3 and 16:9 screens

MPEG-1 goals (2 of 2)

- Standard Interchange Format (SIF)
 - NTSC
 - 352 x 240 (luminance)
 - 176 x 120 (chrominance)
 - PAL/SECAM
 - 352 x 288 (luminanc)
 - 176 x 144 (chrominance)
 - Frame rates from 23.97 Hz to 60 Hz

MPEG-1 frame structure

- Macroblock (MB)
 - 16 x 16 luminance, 8 x 8 chrominance
- Slices: horizontal MB strips
 - 352 x 240 (NTSC): 15 slices x 22 MBs
 - 352 x 288 (PAL/SECAM): 18 slices x 22 MBs

I-Frames (1 of 2)

- I-frames: intracoded
 - Coded without references to other frames
 - Ideal for random access
 - Nearly the same as baseline JPEG
 - Minor changes for simplification

I-Frames (2 of 2)

- Input: Block (8x8)
 - DCT transform
 - Coefficient quantization
 - DPCM for DC coefficients
 - Zig-zag sequence for AC coefficients
 - Run Length Encoding
 - Huffman-like entropy coding

P-Frames (1 of 2)

P-frames

- Motion compensation relative to reference
- Reference: preceding I-frame or P-frame
- Location of most similar area
 - Half pixel resolution
- MBs may also be intracoded when no good prediction found

P-Frames (2 of 2)

- Motion vector
 - DPCM coded between consecutive MBs
- Block differences: DCT
 - Same coding for DC/AC coefficients

B-Frames

- B-frames
 - Prediction with two reference frames
 - One or two motion vectors
 - Same encoding as with P-frames
 - Based on periodic creation of I- and P-frames

D-Frames

- D-frames
 - Intracoded
 - Lower quality than I-frames
 - Only DC coefficient coded
 - Coded in addition to I-frames
 - Not used for prediction
 - Intended for fast forward/rewind
 - Dropped in newer MPEG versions

Bit rate

- Achieving a fixed bit rate
 - Quantization scale factor
 - Similar idea to H.261
 - Integer between 1 and 31
 - Used to multiply quantizers
 - In I-frames we have a quantizer matrix (as in JPEG)
 - In P/B-frames we have a single quantizer (as in H.261)
 - Monitors buffer occupancy
 - Transmitted whenever it changes value

Frame groups

Class: Multimedia Technology, Section # 13: Video coding: MPEG-1/2

Instructor: George Xylomenos, **Department:** Informatics

Group of pictures

- Group of Pictures (GOP)
 - Starts with an I-frame
 - Ends right before the next I-frame
 - Includes all intermediate P- and B-frames
 - N: minimum random access unit

Group of frames

- Group of frames
 - Starts with an I- or a P-frame
 - Ends right before the next P- or I-frame
 - M: minimum decoding unit

Frame buffering (1 of 2)

- How long is each frame buffered?
 - I-frame: until next P-frame
 - P-frame: until next P- or I-frame
 - B-frame: no buffering
 - Never used as reference frames
 - Need next P- or I-frame for decoding

Frame buffering (2 of 2)

- Display order vs decoding order
 - I-frames do not reference other frames
 - P-frames reference previous I or P-frame
 - But B-frames also reference future frames!
 - Before encoding a B-frame, we need to wait
 - First, we encode the next I or P-frame
 - Then, we encode all the intermedia B-frames
 - Decoder must also start with next I or P-frame

Frame sequences

- Common frame sequences
 - PAL
 - Display "IBBPBBPBBIBBPBB..."
 - (De)coding "IPBBPBBIBBPBBPBB..."
 - NTSC
 - Display "IBBPBBPBBPBBPBBPBB ..."
 - (De) coding "IPBBPBBPBBPBBPBBPBB ..."
 - Transmission in (de)coding order

Data streams

Class: Multimedia Technology, Section # 13: Video coding: MPEG-1/2

Instructor: George Xylomenos, **Department:** Informatics

Stream organization

Data layers (1 of 2)

- Video bitstream consists of 6 layers
- Video sequence layer: buffering!
 - Corresponds to a video clip
 - States bitrate and buffering requirements
 - Image resolution, pixel aspect ratio
- GOP layer: random access
 - At least one I-frame from which to begin decoding
 - Timestamp of first frame
- H.261 does not have such layers

Data layers (2 of 2)

- Image layer: frame
 - Sequence numbers to identify frames
- Slice layer: slices for each frame
 - Special sync code in the beginning
 - After an error, we skip to the next sync code
- Macroblock level: MB details
- Block level: block details
- These are similar to H.261

Multiplexing (1 of 2)

- Multiplexing of audio and video
 - Each medium's bit stream divided into packets
 - Typical size: 2048 byte (CD-ROM sector)
 - Other sizes possible
 - Timestamps for synchronization (90 kHz)
 - Packetized elementary stream (PES)
 - Derived from encoder's Elementary Streams (ES)
 - An MP3 bit stream is the audio ES

Multiplexing (2 of 2)

- Multiplexing of audio and video
 - The PES's are multiplexed into packs
 - Each pack has a timestamp
 - Allows decoder to synchronize
 - Heading in the first packet
 - Maximum bitrate, PES types included
 - Hard to access in a network setting
 - Pack must be received from its start (for the heading)

MPEG-1 vs H.261

- H.261 is much simpler
 - Slightly older (1988 vs 1990)
 - But: created for a single app (conferencing)
 - No need for random access
 - Need for worldwide interoperability
- MPEG-1 can be used for different apps
 - Transmission or distribution of video
 - Many compatibility options

MPEG-2

Class: Multimedia Technology, Section # 13: Video coding: MPEG-1/2

Instructor: George Xylomenos, **Department:** Informatics

MPEG-2 goals

- Goals
 - High resolution for HDTV
 - Used in DVD video
 - Bitrates from 4 Mbps to 100 Mbps
 - Appropriate for storage and transmission
- Why there is no MPEG-3?
 - Initially, MPEG-3 was intended for HDTV
 - But HDTV was added into MPEG-2

Differences with MPEG-1

- Supports interlaced scanning
 - MPEG-1 was created for computers only
- 4:2:0 or 4:2:2 subsampling
 - 4:2:2 used inside the studio
- Frame rates up to 60 Hz
- No D-frames (redundant)
- New coding tools

Profiles and levels (1 of 3)

- Profiles vs levels
 - Profile: supports a class of apps
 - Describes a coding algorithm
 - Level: provides parameters
 - Subsampling, resolution, bit rate
- Levels
 - Low: analog TV quality
 - Main: DVD, digital video
 - High: HDTV in two variants

Profiles and levels (2 of 3)

- Simple profile: similar to MPEG-1
- Main profile: DVD, digital TV
- Scalable profiles
 - Low resolution mobile TV
 - Fixed HDTV
- High profile
 - Both SNR and spatial scalability
 - 4:2:2 subsampling

Profiles and levels (3 of 3)

Profile	Simple	Main	SNR	Spatial	High
B-frames	N	Υ	Υ	Υ	Υ
Subsampling	4:1:1	4:1:1	4:1:1	4:1:1	4:1:1,4:2:2
Scalability	N	N	SNR	Spatial	Both
Level					
High (1920x1152)		<80 Mbps			<100 Mbps
High-1440 (1440x1152)		<60 Mbps		<60 Mbps	<80 Mbps
Main (720x576)	<15 Mbps	<15 Mbps	<15 Mbps		<20 Mbps
Low (352x288)		<4 Mbps	<4 Mbps		

Predefined combinations

Interleaved modes (1 of 2)

- Interleaved scanning
 - Every <u>frame</u> is divided into two <u>fields</u>
 - Odd field: odd lines of the frame (1,3,5,...)
 - Even field: even lines of the frame (2,4,6,...)
- Forming macroblocks (I-frames)
 - Field mode: different MBs per field
 - Frame mode: MBs per frame

Interleaved modes (2 of 2)

- Macroblock coding (P- and B-frames)
 - What is used for prediction?
 - Frame mode
 - Next/previous frames
 - Next/previous fields
 - We first break the frame into fields
 - Field mode
 - Next/previous fields

MPEG-2 image structure

- Example: 720x576 resolution (DVD PAL)
 - 36 slices per frame
 - 45 MBs per slice
 - 6 blocks per MB in (4:1:1) or 8 blocks in (4:2:2)

Scalable coding

Class: Multimedia Technology, Section # 13: Video coding: MPEG-1/2

Instructor: George Xylomenos, **Department:** Informatics

Scalability (1 of 4)

- Why scalable coding?
 - Support heterogeneous channels
 - Support variable bit rate channels
 - Always send base layer
 - Add enhancement layers when possible
 - Support noisy channels
 - Send base layer with error protection
 - Add enhancement layers without error protection

Scalability (2 of 4)

- Spatial scalability
 - Spatially scalable profile
 - Similar to hierarchical JPEG
 - Pyramid encoding of frame
 - Usually, based on subsampling by powers of 2
 - Encode subsampled base layer
 - Magnify base layer to next resolution
 - Encode difference as next layer

Scalability (3 of 4)

- SNR scalability
 - SNR scalable profile
 - Similar to progressive JPEG
 - Variable quantization of DCT coefficients
 - First use a large quantizer
 - Reverse the quantization
 - Calculate different from original
 - Quantize difference with smaller quantizer

Scalability (4 of 4)

- Time scalability
 - Reduce frame rate at each layer
 - Example: 15 fps + 15 fps
 - The base layer is independently encoded
 - Motion compensation based only on its frames
 - The next layer has two options
 - Encode only referencing the base layer
 - Encode referencing the base and enhancement layers

Program and Transport streams

Class: Multimedia Technology, Section # 13: Video coding: MPEG-1/2

Instructor: George Xylomenos, **Department:** Informatics

Data stream (1 of 3)

- Stream multiplexing in MPEG-2
 - We start with the PES of MPEG-1
- Program Stream (PS)
 - Suitable for storage (e.g., DVD)
 - Error-free environment (DVD has tons of error correction!)
 - Similar to MPEG-1 streams
 - One program (video) per stream
 - Large variable length packets
 - Common timing base for all media

Data stream (2 of 3)

- Transport stream (TS)
 - PES plus independent timing bases
 - Allows multiple programs per stream
 - Table assigns PES to programs
 - Essentially, many channels in a stream
 - Suitable for transmission (e.g., HDTV)
 - Error-susceptible environments
 - Fits multiple channels in 6 or 8 MHz

Data stream (3 of 3)

- Transport Stream (continued)
 - Fixed length packets (184+4 bytes)
 - Originally for ATM networks (48 bytes/cell)
 - Simpler error correction
 - Low latency multiplexing
- End-to-end latency < 1 sec
 - Too high for interactive applications
 - Good enough for channel switching

End of Section #13

Class: Multimedia Technology, Section # 13: Video coding: MPEG-1/2

Instructor: George Xylomenos, **Department:** Informatics