ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Multimedia Technology

Section # 12: Video coding: H.261/3 Instructor: George Xylomenos Department: Informatics

Contents

- Video coding basics
- H.261
- H.263
- H.263+/++

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Video coding basics

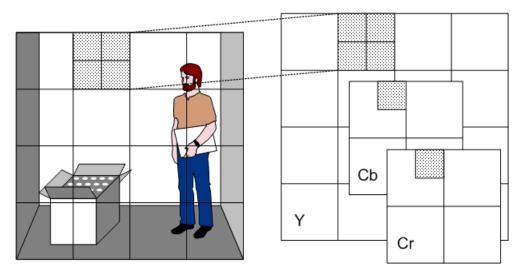
Class: Multimedia Technology, **Section # 12:** Video coding: H.261/3 **Instructor:** George Xylomenos, **Department:** Informatics

Redundancy in video (1 of 2)

- Spatial redundancy
 - Similarity between neighboring pixels
 - Examination of a single frame
 - <u>Intraframe</u> coding
- Temporal redundancy
 - Similarity between consecutive frames
 - Comparison of frames
 - Identification of similar areas
 - <u>Interframe</u> coding

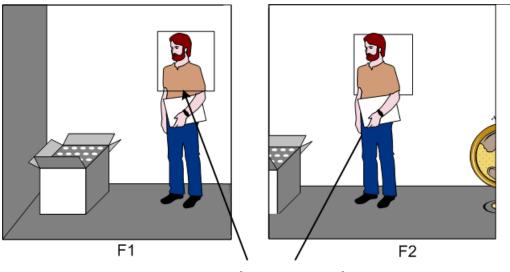
Redundancy in video (2 of 2)

- Spatial compression
 - Low delay but not much compression
 - Similar with still image coding
 - Mostly based on JPEG
- Spatial and temporal compression
 - Higher delay due to search of entire frame
 - JPEG + prediction
 - Many more compression opportunities
 - Bit: errors may affect multiple frames!


Intraframe coding

- When do we need intraframe?
- Required for first video frame
 There is nothing to predict from!
- Makes sense when we have scene changes
 Prediction does not offer much
- Periodic throughout the video
 - Random access
 - Recovery from errors

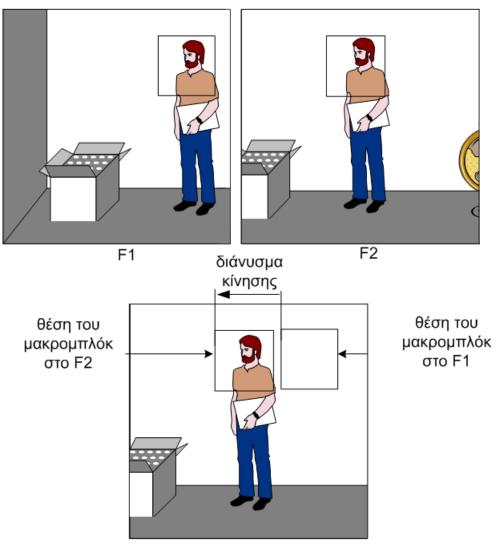
Interframe coding


- Compare current frame with reference
 - Identification of similar areas
 - Computationally complex (too many options!)
 - Matches may not be exact
- Motion prediction
 - Motion vector: how much the area moved
- Motion compensation
 - How the area was modified

Blocks and macroblocks

- Video coded in blocks of 8x8 pixels
 - Similar flow to JPEG
- Macroblocks are n blocks (typically 6)
 - Blocks from all components in an area
 - Same as an MCU in JPEG

Frame types (1 of 7)

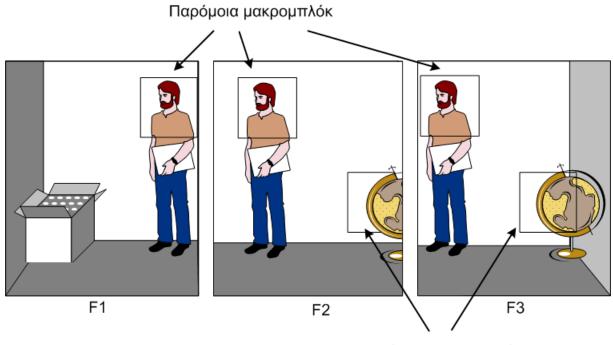

πανομοιότυπες περιοχές

- I-frames: intra-coded frames
 - Coded similar to JPEG
 - Used as <u>reference</u> frames
 - Example: frame F1

Frame types (2 of 7)

- P-frames: intra-coded frames
 - Coded with reference to another frame
 - We look for similar macroblocks
 - All blocks of the macroblock should be similar
 - Motion vector: how the macroblock moved
 - Compared to the similar area in the reference frame
 - Differences between current and reference blocks
 - Differences encoded similar to I-frames

Frame types (3 of 7)


Frame types (4 of 7)

- How are similar areas located?
 - Standards do <u>not</u> say how!
 - They may limit the search area
 - It cannot be larger than the motion vector
 - Motion vectors are expressed in pixels
 - Sometimes, fractions of pixels (see later)
 - How many blocks are up to one pixel away?
 - 9 (-1,0,+1 pixel in each dimension)
 - With more pixels, the number goes up fast

Frame types (5 of 7)

- Many options exist
 - Tradeoffs between performance and efficiency
 - Various tricks to avoid repeating calculations
- A very simple policy
 - Just use the luminance samples
 - Subtract the values of current and reference
 - Sum up the absolute differences
 - Choose the reference with the smallest sum

Frame types (6 of 7)

• B-frames

Παρόμοια μακρομπλόκ

- Two reference frames (one earlier, one later)
- One or two motion vectors
 - If two, interpolate two reference blocks

Frame types (7 of 7)

- Why do we even have B-frames?
 - Say that the sequence is F1, F2, F3
 - Say that F2 has similarities with F3
 - Which do not exist with F1
 - Then, why not predict F3 from F2?
 - The reason is the periodic I-frames
 - We need them for random access
 - Therefore, we can use them as references

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

H.261

Class: Multimedia Technology, **Section # 12:** Video coding: H.261/3 **Instructor:** George Xylomenos, **Department:** Informatics

ISDN video conferencing (1 of 3)

- A long time ago (80s) ISDN was designed
 - As successor of the analog PSTN
 - ISDN lines consist of 64 Kbps B channels
 - There are also D channels for signalling
- ISDN Primary Rate (PRI): 30 B channels
 Trunk line for companies (AUEB had some)
- ISDN Basic Rate (BRI): 2 B channels

- Residential line (I had one at home)

ISDN video conferencing (2 of 3)

- H.261: video coder for either PRI and BRI
 - Targets p x 64 Kbps lines, where p=1,2,...,30
 - Standardized in 1988
 - Conferencing also needs an audio encoder
- Coding requirements
 - Real-time coding (not offline)
 - Real-time decoding
 - Maximum latency < 150 ms
 - Conferencing is an interactive application

ISDN video conferencing (3 of 3)

- Targets a fixed bit rate
 - ISDN is digital, but circuit switched
- Variable transmission quality
 - Based on variable quantizer
 - Changes quantization step to achieve target
- "Economical" terminals
 - Videotelephones (not computers)

Picture format (1 of 3)

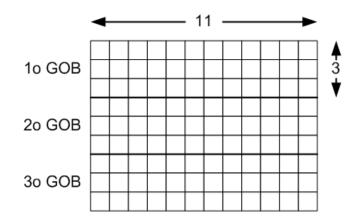
- Has to work worldwide
 - Unlike TV which is inherently local
 - You must be able to call other countries
 - Exactly as in telephony
- Compromise between PAL and NTSC
 - Frame rate from NTSC
 - Resolution from PAL

Picture format (2 of 3)

- Input frame rate: 29.97 fps (NTSC)
- Output frame rate: 29.97, 15 or 7,5 fps
- Progressive scanning
- Luminance (Y), chrominance (Cb and Cr)
 - 4:3 aspect ration
 - 4:1:1 subsampling
 - 8 bits per pixel per component

Picture format (3 of 3)

- Common interchange format (CIF): optional
 - Luminance: 352 x 288
 - Chrominance: 176 x 144
 - Based on PAL/SECAM
- Quarter CIF (QCIF): mandatory
 - Luminance: 176 x 144
 - Chrominance: 88 x 72
 - Cheap terminals and lines could not do CIF


Compression ratio

- Bit rate before compression
 - QCIF at 15 fps: 4.55 Mbps
 - CIF at 30 fps: 36.45 Mbps
- Target bitrate for transmission
 - 1:70 for QCIF at 15 fps in 1 B channel (64 Kbps)
 - And we also need sound!
 - 1:95 for CIF at 30 fps in 6 B channels (384 Kbps)
 - Suitable only for PRI links

Frame structure (1 of 2)

- Block
 - 8x8 pixels in a single component
- Macroblock (MB)
 - 4 Y blocks, 1 block each for Cb and Cr
 - 16x16 pixel area in the luminance compoment
- Group of Blocks (GOB)
 - 3x11=33 MBs
 - Starts with a fixed bit sequence
 - Allows synchronization after bit errors

Frame structure (2 of 2)

- QCIF: three GOBs
 - 3 "rows" x 1 "column"
- CIF: 23 GOBs

- 6 "rows" x 2 "columns"

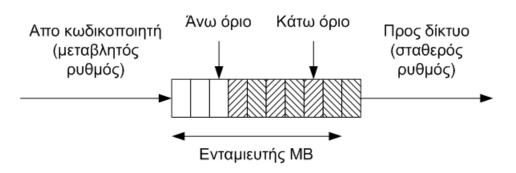
• After an error, you lose the rest of the GOB

Intraframe coding

• We start with a DCT

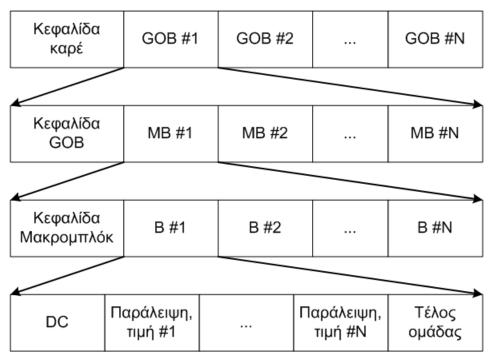
– For each 8x8 pixel block

- Separate quantization of DC/AC coefficients
 - But with only two quantizers
 - Fixed DC quantizer (8)
 - Variable AC quantizer (2-62)
 - Simpler than the quantizer matrix of JPEG
- Ends with entropy coding (JPEG-like)


Interframe coding

- Used whenever the encoder choose so
 - No periodic I-frames
 - There is no random access!
- Prediction of each MB
 - Comparison with areas from previous frame
 - And <u>only</u> the previous frame
 - Reference may be I-frame or P-frame
- If not enough similarity?
 - Just use intraframe coding

Motion coding


- Motion vectors
 - Displacement from reference area
 - Vectors are entropy coded
- Differences between blocks
 - Starts with differences (DPCM)
 - Then, same as intraframe
 - Very small differences are skipped
 - Higher compression at a cost to quality

Achieving a fixed bit rate

- The quantizer step can be adjusted
 It applies only to AC coefficients
- Buffer fills -> increase quantizer
- Buffer empties -> decrease quantizer
 High and low watermark for step change
- Result: fixed bit rate, variable quality

Bit stream (1 of 2)

- Generalization of JPEG
 - The bit stream is divided into frames
 - The frames are divided into GOBs

Bit stream (2 of 2)

- Frame header
 - Sync code, timestamp
- GOB header
 - Sync code, GOB number
 - Quantizer step
- MB header
 - Position in GOB, type (I or P)
 - Quantizer step (for MB only)

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

H.263

Class: Multimedia Technology, **Section # 12:** Video coding: H.261/3 **Instructor:** George Xylomenos, **Department:** Informatics

New features (1 of 4)

- H.263: extension of H.261/262 (=MPEG-2)
 - Standardized in 1996
 - Appropriate even for PSTN
 - Supports even lower bitrates
 - Offers improved error resilience
- Additional resolutions
 - SQCIF: 128x96, 15 or 7.5 fps
 - 4CIF and 16CIF for higher resolutions
 - Also supports CIF/QCIF to interoperate with H.261

New features (2 of 4)

- Half pixel accuracy
 - We take two reference areas
 - And interpolate their corresponding values
- Motion vector prediction
 - We use the median of three motion vectors
 - Left, above, above right
 - And transmit the difference from the prediction
 - Saves space when multiple MBs can be predicted

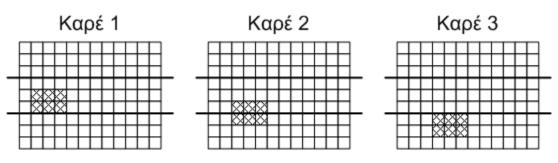
New features (3 of 4)

- Prediction outside the frame edge
 - Reference is an area partially outside the edge
 - We assume a fixed value for the pixels outside
 - Useful in smaller resolutions
- Arithmetic coding of coefficients
 - Rather than Huffman
 - With better compression rates
 - Different statistics for each hierarchy level

New features (4 of 4)

- Bidirectional prediction
 - Similar to B-frames in MPEG-2
 - PB-frames: coding P and B frame together
 - P-frame predicted from previous P or I
 - B-frame predicted from previous and current
 - Better quality for the same bitrate
 - But also requires more memory
 - In 1996 though, we have computers!

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ



ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

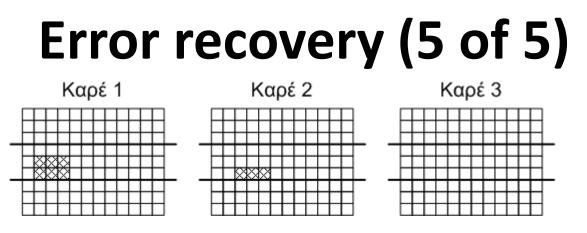
H.263+/++

Class: Multimedia Technology, **Section # 12:** Video coding: H.261/3 **Instructor:** George Xylomenos, **Department:** Informatics

Error recovery (1 of 5)

- Bit errors lead to losing a GOB
 - Decoding fails until next sync code
 - Which appears at the beginning of each GOB
 - These failures also affect future frames
 - Say that we lost the blocks of an entire GOB
 - If these are used as references, the loss persists
 - Bigger problem with PSTN (compared to ISDN)

Error recovery (2 of 5)


- Dealing with errors in H.261
 - Periodically send I-frames
 - I-frames do not rely on previous ones
 - But we do not know when to send them
 - Bitrate is wasted due to no feedback
 - H.263+/++ offer better choices
 - Recovery without full I-frames
 - Standardized in 1988 (+) and 2000 (++)

Error recovery (3 of 5)

- Base technique: error tracking
 - The encoder monitors dependencies
 - Which block was predicted from which area
 - The decoder sends feedback on lost GOBs
 - The encoder checks which MBs are affected
 - Their blocks can be intraframe coded
 - We stop error propagation
 - We only use intra when we have to

Error recovery (4 of 5)

- Reference frame selection
 - Reference to older frames
 - Not just the previous one
 - Allows recovery from lost GOBs
 - Need to track dependencies
 - Need to buffer more previous frames
 - Decoder can send two types of feedback
 - Acknowledge correct reception
 - Notify of erroneous reception

- Independent GOB decoding
 - Each GOB treated separately as a subframe
 - We can only refer to the same previous GOB
 - We lose some compression opportunities
 - But we have simpler dependency tracking
 - And errors do not propagate outside the GOB

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

End of Section # 12

Class: Multimedia Technology, Section # 12: Video coding: H.261/3 Instructor: George Xylomenos, Department: Informatics