ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Multimedia Technology

Section # 11: Video Instructor: George Xylomenos Department: Informatics

Contents

- Nature of video
- Analog TV
- Digital video
- High Definition TV
- Animation

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Nature of video

Class: Multimedia Technology, Section # 12: Video Instructor: George Xylomenos, Department: Informatics

What is video? (1 of 4)

- Video: a sequence of still images
 - Played back at a fixed rate
 - In video we call each <u>full</u> image a frame
 - Frame rate = playback rate
 - Measured in frames per second (fps)
- Digital video has two ancestors
 - Motion pictures
 - Analog television

What is video? (2 of 4)

- Motion pictures or movies or films
 - Each frame is (basically) a photograph
 - Recorded on photographic film
 - At the right frame rate, we see motion
- Analog television
 - A camera scans the frame line by line
 - Transmission by modulating radio waves
 - The demodulated signal drives a screen

What is video? (3 of 4)

- Television screens
 - A frame consists of a sequence of lines
 - Each line drawn left to right
 - Lines drawn top to bottom
 - Either signal from an antenna
 - Analog or digital
 - Or signal from a storage device
 - VCR, laser disk, game console with RF modulator

What is video? (4 of 4)

- Cathode Ray Tubes (CRTs)
 - The original TV screens
 - Image drawn by shooting electrons at screen
 - Phosphors emit light and then decay
 - The screen needs to be refreshed
 - Refresh rate >= frame rate
- Liquid Crystal Displays (LCDs)

No need to refresh the screen

Refresh vs redraw (1 of 3)

- How many fps to sense motion?
 - At 10 fps we have (jerky) motion
 - Smooth motion at 24+ fps (movies)
 - Analog TVs synchronized with AC power
 - Europe: 50 Hz, US: 60 Hz,
 - Frame rates were half that: 25/30 fps
- But CRTs suffer from flicker at 25/30 fps
 - The image decays faster than the frame rate
 - We sense the intensity going up and down

Refresh vs redraw (2 of 3)

- Solution: interlaced scanning
 - We split each frame into odd and even lines
 - Each half frame is called a field
 - We transmit odd and even in sequence
 - Screen is refreshed 50/60 times per second
 - The entire frame is redrawn 25/30 times
 - But some detail is lost
 - Say that we have a very thin horizontal line
 - It may appear and disappear in alternate fields!

Refresh vs redraw (3 of 3)

- LCDs do not need periodic refreshing
 - Their image does not decay
 - We can use progressive scanning
 - All lines drawn in each period
 - Interlaced scanning for TV compatibility
- Comparing interlaced to progressive
 - Interlaced has less vertical detail
 - Multiply total vertical lines by 0.7
 - This is called the Kell factor

Digitizing video (1 of 4)

- Analog TV and Video
 - The input signal drives the electron gun
 - There is no memory buffer!
 - Varies the intensity of the beam
 - Includes retrace or sync signals
 - Horizontal (every line) and vertical (every field)
 - During retrace the screen does not change
 - But the signal keeps getting transmitted!

Digitizing video (2 of 4)

- How many samples to take?
- Vertical: based on scan lines
 - We usually consider an entire frame
 - Not the interlaced fields
- Horizontal resolution: not obvious
 - The signal within a line is continuous
 - Can take any value at any point in time
 - Multiple options exist

Digitizing video (3 of 4)

- Bandwidth-based
 - We can use the sampling theorem
 - Bandwidth depends on the input
 - TV bandwidth is higher than VCR bandwidth
- Experimental
 - Draw a card with thin vertical BW lines
 - How many can we see?
 - This also depends on bandwidth

Digitizing video (4 of 4)

- Aspect ratio-based
 - Aspect ratio: height : width of screen
 - 4:3 (conventional), 16:9 (wide)
 - We start with the vertical resolution
 - We define horizontal resolution indirectly
 - Vertical resolution * aspect ratio
- Convenience-based
 - Start with aspect-ratio based
 - Round up for convenience (e.g. multiple of 8)

Viewing distance (1 of 4)

- Human vision has its own limitations
 - After some point, our eyes merge pixels
 - This is the basis of dithering and antialising
 - How far can we detect individual pixels
 - 2000 x pixel height
 - Pixels may <u>not</u> be square!
 - How large is a pixel?
 - Screen height / scan lines = pixel height

Viewing distance (2 of 4)

- Normalized viewing ratio
 - Viewing distance limit / screen height
 - Which is 2000 / scan lines
 - Multiply by screen height to get distance
- Why this ratio instead of 2000 x pixel height?
 - Each TV standard has fixed scan lines
 - The normalized ratio is fixed!
 - For a specific TV, we just need the height

Viewing distance (3 of 4)

• NTSC: 2000 / 484 = 4.13

- Say that the screen is 9 inches high

- Distance: 4.13 * 9 = 37.17 inches = 94.4 cm
- HDTV 1080p: 2000 / 1080 = 1.85
 - Screen height remains at 9 inches
 - Distance: 1.85 * 9 = 16.65 inches = 42.3 cm
- The largest the screen for a TV system...
- ...the further away we can stand from it

Viewing distance (4 of 4)

- How to get the screen height?
 - Screen sizes are given as diagonals (e.g., 47")
 - To get the height, we need the aspect ratio
 - Say that we have a 47" screen with 16:9 aspect
 - Assume that h is the screen height
 - Then the screen width is (16/9)h
 - So 47²=h² + h²(16/9)²
 - Solve for h (and then multiply by 2000)

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

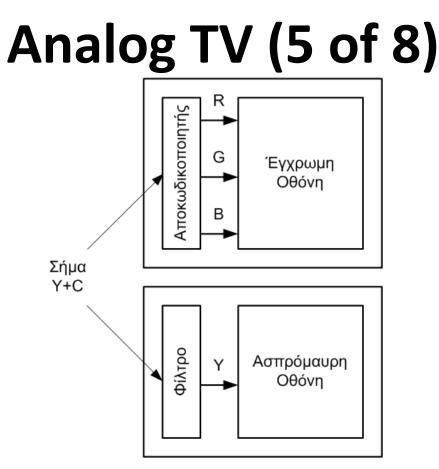
Analog TV

Class: Multimedia Technology, **Section # 11:** Video **Instructor:** George Xylomenos, **Department:** Informatics

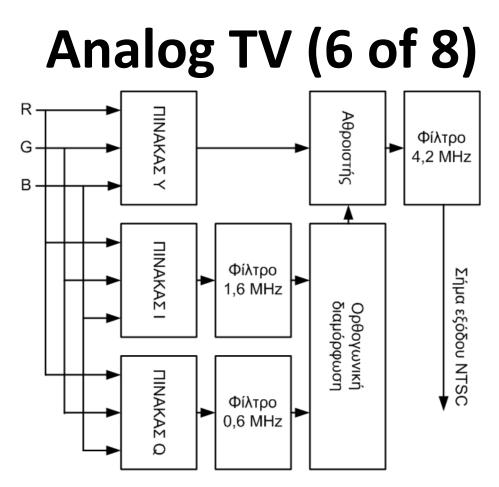
Analog TV (1 of 8)

- Analog TV systems have a long history
 - Initially TV was black and white
 - Color was added much later
 - Color TVs were expensive
 - TV systems needed to support both
- Luminance/Chrominance systems
 - Transform of RGB to three signals
 - Black and white TVs only use luminance signal
 - Color TVs also use the two chrominance signals

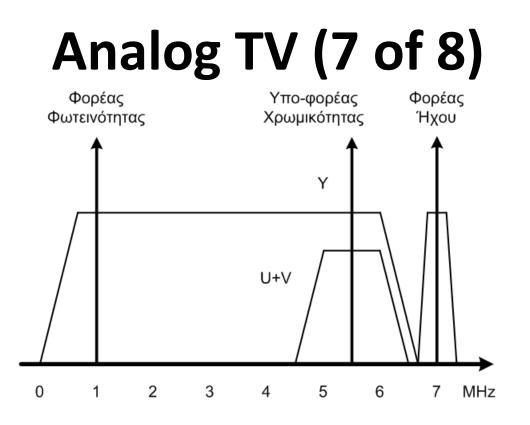
Analog TV (2 of 8)


- RGB to YUV (in PAL)
 - Y = 0.299 R + 0.587 G + 0.114 B
 - U = (B Y) * 0.492
 - -V = (R Y) * 0.877
- RGB to YIQ (in NTSC)
 - Y = 0.299 R + 0.587 G + 0.114 B
 - I = 0.596 R 0.274 G 0.321 B
 - Q = 0.211 R 0.523 G + 0.311 B
- Reverse transform for display

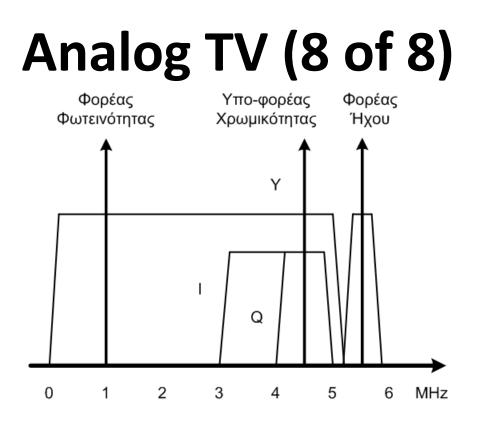
Analog TV (3 of 8)


- Luminance sent with more bandwidth
 - Initially, only luminance was sent
 - Chrominance was added later
 - It had to fit in what was available
- Fortunately, our eyes are fine with this
 - Far more sensitive to brightness
 - Far less sensitive to color

- Color difference signals (chrominance)
 - U and V are what is left after taking Y out
 - Also called Y, B-Y, R-Y
 - U and V multiplexed into C (chroma)
 - Y and C are combined by modulator



- Signal demultiplexing
 - Black and white TVs just filter out chrominance
 - Color TVs do the full transform



• Multiplexing in YIQ

- Similar to YUV, but more compatible with BW

- Signal multiplexing (PAL, 8 MHz channels)
 - Chrominance subcarrier carefully chosen
 - More bandwidth than NTSC

- Signal multiplexing (NTSC, 6 MHz channels)
 - I and Q have different bandwidths
 - Compatible with previous BW standard

Analog TV systems (1 of 4)

- NTSC (National Television Systems Committee)
 - 525 scan lines, 484 visible
 - 6 MHz channels, amplitude modulation
 - ~30 Hz frame rate, ~60 Hz refresh rate
- PAL (Phase Alternating Line)
 - 625 scan lines, 575 visible
 - 8 MHz channels, amplitude modulation
 - 25 Hz frame rate, 50 Hz refresh rate

Analog TV systems (2 of 4)

- SECAM (SEquential Couleur Avec Memoire)
 - Like PAL but with frequency modulation
 - Better image quality (and color)
 - Invented in France, used in Eastern Europe
 - To prevent getting western TV
 - East Germans could not watch West German TV
 - NTSC used in the US
 - PAL eventually used throughput Europe

Analog TV systems (3 of 4)

Σύστημα	Γραμμές	Λεπτομέρεια	Εύρος	Y	I/U	Q/V	Πεδία /
			(MHz)	(MHz)	(MHz)	(MHz)	Πλαίσια (Hz)
NTSC	525/484	340/242	6.0	4.2	1.6	0.6	59.94/29.97
PAL	625/575	400/290	8.0	5.5	1.8	1.8	50/25
SECAM	625/575	400/290	8.0	6.0	2.0	2.0	50/25

- Summary of analog TV systems
 - Scan lines / visible lines
 - Progressive / Interlaced scanning detail
 - Conversion based on Kell factor

Analog TV systems (4 of 4)

- What does "visible lines" mean?
 - Scan line period: time between two scan lines
 - Includes horizontal retrace
 - Frame (field) period: time between frames (fields)
 - Includes vertical retrace
 - Frame : line period = scan lines
 - Some of these are not shown
 - Hence, the difference with visible lines

Analog video connectors

- Composite video
 - Multiplexes luminance and chrominance
 - Some crosstalk between them
- S-Video
 - Separate lines for luminance and chrominance
- Component video
 - Separate RGB (VGA) or YCbCr lines
 - Harder to keep in sign over longer distances

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Digital video

Class: Multimedia Technology, **Section # 11:** Video **Instructor:** George Xylomenos, **Department:** Informatics

How to digitize video? (1 of 2)

- Digital and analog video
 - Broad compatibility to allow conversion
 - Similar "resolutions" and frame rates
- Digitization of composite signal
 - All signal components sampled together
 - No provision for different treatment
 - Maintains interference between components
 - Used only for transmission (satellites)

How to digitize video? (2 of 2)

- Digitization of components
 - Allows different sampling rates
 - Best option for digital processing
 - In principle, can do with RGB
 - Cameras are RGB after all
 - In practice, nearly always with YUV/YIQ
 - Suitable for transmission
 - Exploits the limitations of human vision

CCIR-601 standard (1 of 4)

- The CCIR-601 digital video standard
 - Designed for TV studios
 - Interlace scanning (it is for TV!)
 - Higher quality for studio use
 - Reduced quality for transmission
 - Bandwidth per signal component
 - 6 MHz for luminance (Y)
 - 3 MHz for each chrominance (U and V)

CCIR-601 standard (2 of 4)

- Sampling rates
 - Luminance: 13.5 MHz
 - NTSC: 63.56 µs per scan line, 52 µs visible
 - PAL/SECAM: 64 μs per scan line, 52 μs visible
 - 702 visible samples in both cases
 - 720 luminance samples (18 are black)
 - 360x2 chrominance samples (4:2:2)
 - 8 bit per sample for each component

CCIR-601 standard (3 of 4)

- CCIR-601 for PAL/SECAM
 - 720 x 576 (visible frame) at 25 fps
 - NTSC is 720 x 480 at 29.97 fps
- Transmission (with non visible areas)
 13.5 x 10⁶ x 8 + 2 x 6.75 x 10⁶ x 8 = 216 Mbps
- Transmission (visible areas only)
 (720 x 576 x 25 + 2 x 360 x 576 x 25)x8=166 Mbps
 - (720 x 480 x 30 + 2 x 360 x 480 x 30)x8=166 Mbps

CCIR-601 standard (4 of 4)

- Reduced quality for transmission
 - Lower sampling rate (4:2:0)
 - We drop half of the chrominance samples
 - Averages the samples from two lines
- Transmission (with non visible areas)

 $-13.5 \times 10^{6} \times 8 + 2 \times 3.375 \times 10^{6} \times 8 = 162$ Mbps

- Transmission (visible areas only)
 - (720 x 576 x 25 + 2 x 360 x 288 x 25)x8=124 Mbps
 - (720 x 480 x 30 + 2 x 360 x 240 x 30)x8=124 Mbps

Other standards (1 of 4)

- SIF: Standard Interchange Format
 - This is equivalent to analog TV
 - One quarter the resolution of CCIR-601
 - SIF for NTSC: 360 x 240 luminance
 - SIF for PAL/SECAM: 360 x 288 luminance
 - Progressive scanning at 29.97 or 25 fps
 - Subsampling at (4:1:1)
 - (4:1:1) signifies progressive scanning
 - (4:2:0) signifies interlaced scanning

Other standards (2 of 4)

- CIF: Common Interchange Format
 - Used across the world for conferencing
 - Similar to SIF but mix of NTSC and PAL/SECAM
 - 360 x 288 for luminance (PAL/SECAM)
 - Scanning: progressive at 30 fps (NTSC)
 - Subsampling at (4:1:1)
 - Subsampling of chrominance
 - 180 x 144 per component

Other standards (3 of 4)

- CIF variants
 - Subsampling fixed at (4:1:1)
 - Progressive scanning fixed at 30 fps
- 4CIF: 720 x 576 for luminance
- 16CIF: 1440 x 1152 for luminance
- QCIF: 180 x 144 for luminance
 - Also allows 15 and 7.5 fps
 - Used in very early conferencing standards

Other standards (4 of 4)

- Even more variants exist!
 - Different horizontal resolution for computers
 - Square pixels with 4:3 aspect ratio
 - In NTSC and PAL pixels are NOT square!
 - Need to adjust horizontal resolution
 - Resolution rounded to multiples of 16
 - Used in many compression standards
 - Based on four 8x8 square tiles (from JPEG)

Resolutions redux

Σύστημα	Οριζόντια	Κατακόρυφη	Ανανέωση
CCIR-601/US	720/360	480/240	59.94-I
CCIR-601/EUR	720/360	576/288	50-I
SIF/US	360/180	240/120	29.97-P
SIF/EUR	360/180	288/144	25-P
16CIF	1440/720	1152/576	30-P
4CIF	720/360	576/288	30-P
CIF	360/180	288/144	30-P
QCIF	180/90	144/72	15/7.5-P

- Different resolutions and frame rates
 - Luminance / chrominance
 - P or I for scanning

Digital video connectors

- DVI-D (the digital part)
 - Different pins for each component
 - More pins for pixel clock and screen info
- HDMI
 - Based on packets, also carries audio
 - CEC channel (control) and audio return channel
- DisplayPort
 - Also based on packets, with audio (like HDMI)
 - Supports multiple screens

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

High Definition TV

Class: Multimedia Technology, Section # 11: Video Instructor: George Xylomenos, Department: Informatics

HDTV (1 of 3)

- HDTV: refers to very different systems
 - Today: only digital systems
 - Up to 2000 scan lines
 - (16:9) aspect ratio
- Why different HDTV systems?
 - Coexistence with analog TV
 - Content compatibility (resolutions, fps)
 - Channel compatibility (channel bandwidth)

HDTV (2 of 3)

- US: Advanced Television Systems Committee (ATSC)
 - Transition ended in 2009
 - Variants to suit every need
 - Frame rates of 24, 30 ή 60 fps
 - Progressive or interlaced scanning
- Europe: Digital Video Broadcasting (DVB)
 - DVB-S, DVB-C, DVB-T, DVB-H
 - No paneuropean transition
 - Each country transitioned differently

HDTV (3 of 3)

- ATSC: Three quality levels
 - SDTV: corresponds to SIF
 - Similar detail to analog TV
 - EDTV: corresponds to CCIR-601
 - Higher definition
 - HDTV: higher resolution with 3 options
 - 720p: 1280 x 720 progressive
 - 1080i: 1920 x 1080 interlaced
 - 1080p: 1920 x 1080 progressive

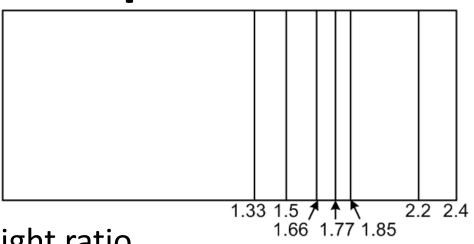
HD Video terminology

• HD Ready: 720p (1280x720)

– The original HD format

• Full HD: 1080p (1920x1080)

- When it came out, HD Ready was retrofitted


• 2k: 2560 x 1440

– Also called QHD (4 times 720p)

• 4k: 3840 x 2160

– We now count the horizontal resolution!

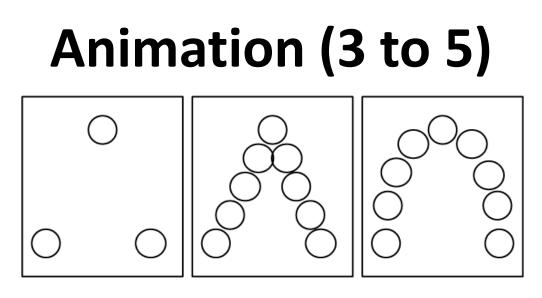
Aspect ratios

- Width to height ratio
 - Analog TV: 1.33 (4:3)
 - 35 mm still film: 1.5 (3:2)
 - Computers: 1.66 (15:9)
 - HDTV: 1.77 (16:9)
 - Motion pictures: 1.85-2.2-2.4
 - Anamorphic lenses fit these into 35mm movie film!

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Animation


Class: Multimedia Technology, **Section # 11:** Video **Instructor:** George Xylomenos, **Department:** Informatics

Animation (1 to 5)

- Dynamic form of graphics
 - Computer generated
 - Based on paintings or drawings
- Key frames
 - Edge or characteristic positions of drawing
 - Direct drawn or scanned from paper
 - Programmatically generated

Animation (2 to 5)

- Motion generation
 - Key frames: drawn
 - Intermediate frames: calculated
- Linear interpolation
 - Consider each point of a drawing
 - Create a linear trajectory from start to end
 - Draw the point for each frame
 - Realistic only for simple trajectories

- Spline curves
 - The trajectory is a curve
 - Which fits the points in each keyframe
 - Smoother interpolation between frames
 - More realistic than linear

Animation (4 to 5)

- Wireframe movement
 - Used in modern animation
 - Each object represented by a wireframe
 - Two or three dimensional
 - Interpolation for the movement of each point
 - Calculation of intermediate positions
 - Drawing of lines between them
 - Projection of texture on the wireframe

Animation (5 to 5)

- Physics models
 - Calculation of forces affecting objects
 - Push, gravity, collision, deformation
 - Special libraries (PhysX)
 - Custom hardware (PPU)
 - Simplifies programmer's job
 - No need to calculate each one individually

Double buffering

- Drawing directly on refresh buffer
 - What happens if we read it at the same time
 - A frame can have partial lines in it
- Two refresh buffers
 - One used to update the screen
 - The other used for drawing
 - When drawing is finished, they are switched

Transmission of animation

- Symbolic transmission
 - Symbolic representation of objects
 - Commands to move objects
 - Small but variable bandwidth
 - Requires image drawing at the receiver
- Raster transmission
 - Image drawn at sender
 - Entire raster is transmitted
 - Large but fixed bandwidth

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

End of Section # 11

Class: Multimedia Technology, Section # 11: Video Instructor: George Xylomenos, Department: Informatics