ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Multimedia Technology

Section # 9: Still Images Instructor: George Xylomenos Department: Informatics

Contents

- Vision
- Digital representation
- Color encoding
- Imaging devices
- Color depth vs resolution
- Symbolic representation
- Image transmission

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Vision

Class: Multimedia Technology, Section # 9: Images Instructor: George Xylomenos, Department: Informatics

Vision and color (1 of 4)

- How do we perceive images?
- We start with a light source

– Natural light, incandescent, PL, LED

- Color temperature
 - Warm white: 2000-3000K
 - Cool white: 3000-4500K
 - Daylight: 4500-6500K (sunlight ~ 5000K)

Vision and color (2 of 4)

- Each light source has a spectrum
 - Color rendering index (CRI)
 - Comparison with a reference source
 - The sun is a type B and C source
 - Incandescent lamps are type A sources
 - How close are we to the reference?
 - PL lamps generally have a low CRI
 - LED lamps generally have a high CRI

Vision and color (3 of 4)

- Light is reflected off a surface
 - The surface absorbs part of the spectrum
 - Black: absorbs the entire spectrum
 - White: reflects all the spectrum
 - The leftover also depends on the source
 - Assume a monochromatic source (e.g., red laser)
 - Only red can be reflected!
 - Reflection depends on source and surface

Vision and color (4 of 4)

- The reflected light reaches our eyes
 - The eye can send intensity and color
 - Different sensors for each color (RGB)
 - Separate sensor for low intensity
 - The eye has a complex behavior
 - Less sensitive to blue, more sensitive to green
 - Combines intensity and color

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Digital representation

Class: Multimedia Technology, Section # 9: Images Instructor: George Xylomenos, Department: Informatics

Image representation (1 of 3)

- Image: representation of a scene
 - Projected into a plane (2D)
 - Continuous function (any value at any point)
 - Natural or synthetic image
- Image digitization
 - Rectangular sampling grid: resolution
 - Quantization to discrete values: color depth
 - Storage in an array: picture elements (pixels)

Image representation (2 of 3)

- Example: VGA
 - 640x480 pixels (lines x columns)
 - 8 bits per pixel or bpp (256 colors or intensities)
- Capture formats
 - Simple representation
 - Quick capture and presentation
- Storage formats
 - Efficient storage
 - Flexible management

Image representation (3 of 3)

- Representing pixel color
 - Three intensities (RGB)
 - Three pointers to intensities
 - Pointers to RGB triples (CLUT)
 - Or, a linear transform to another space
- Image metadata
 - Height, width, color depth
 - Usually in storage format header

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Color encoding

Class: Multimedia Technology, Section # 9: Images Instructor: George Xylomenos, Department: Informatics

Color representation (1 of 4)

- Grayscale images: only intensities
- Color images: color and intensity
- Red, Green, Blue encoding (RGB)
 - Additive representation
 - Combines three light sources
 - Corresponds to the way we see
- Color depth: 24 bits
 - White: 255*R+255*G+255*B
 - Black: 0*R+0*G+0*B

Color representation (2 of 4)

- Color space transforms
 - Linear 3x3 transforms to/from RGB
 - Produce a different color representation
 - We choose one based on the application
- Basic colors
 - A set where none is produced by the others
 - Three basic colors are enough to create all
 - RGB is one example

Color representation (3 of 4)

- CMY/CMYK encoding
 - Light absorption instead of production
 - Subtractive coding
 - Used in printing
 - Basic colors: Cyan, Magenta, Yellow (CMY)
 - Black: all colors
 - White: no colors (in white paper!)
 - Black (K) added for economy

Color representation (4 of 4)

- Luminance/Hue/Saturation encoding
 - Luminance: white to black
 - Hue: red to purple
 - Saturation: white to pure color
 - Used in drawing/painting programs
- Luminance/chrominance encodings
 - YUV and YIQ: see video chapter
 - Used for more efficient transmission
 - Also, backwards compatible with BW TVs!

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

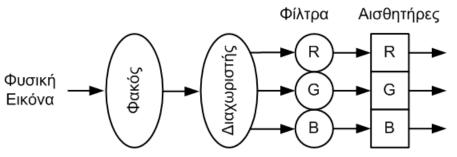
ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Imaging devices

Class: Multimedia Technology, Section # 9: Images Instructor: George Xylomenos, Department: Informatics

Input devices

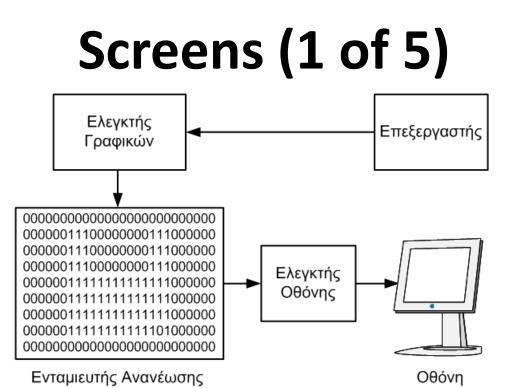
- Drawing devices
 - Mouse
 - Graphic tablet
 - Touch screen
 - Using fingers or stylus
- Capture devices
 - Scanner
 - Still camera


Scanner

- Used to capture printed images
 - Scans the image in one direction
 - Moving either the image or the scanning head
 - Scanning head
 - Produces very intense light
 - The light is reflected on the cover
 - Or the printed surface
 - A sensor detects the reflection

Still camera (1 of 2)

- Used to capture natural images
 - Light comes through a lens
 - Detected by a CCD (or CMOS) sensor
 - In the past the CCD scanned the image
 - Now the CCD can cover the entire image
- How does it detect color?
 - CCDs just detect light intensity
 - Colors must be separated


Still camera (2 of 2)

- Filtering mask
 - Only a single color reaches each CCD
 - For CCD elements per pixel
 - Two green, one red, one blue
- Separation prisms
 - Each color reaches a separate CCD array

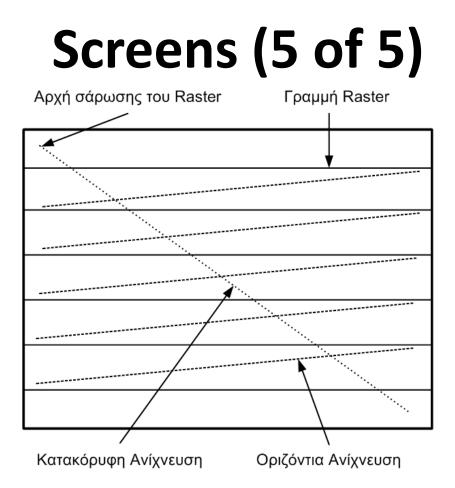
Output devices

- Screen, printer, plotter
 - Raster devices
 - Print an array of (possibly, colored) dots
 - Nearly every screen and printer
 - Vector devices
 - Print actual lines
 - Plotters
 - Older screens

- Screen output requires multiple elements
 - Graphics controller
 - Refresh buffer
 - Display controller

Screens (2 of 5)

- Graphics controller
 - Draws images to a refresh buffer
 - Many ways to achieve this
- Refresh buffer
 - Dual ported memory
 - Mediates between the controllers
- Display controller


Converts the buffer to screen commands

Screens (3 of 5)

- What is in the refresh buffer?
- In the past, character codes (MDA)
 - The processor writes the codes
 - The controller converts them to pixels
 - Uses a ROM with the character glyphs
- Alternatively, tile codes
 - The processor writes tile codes
 - The controller converts them to pixels
 - Uses a ROM or RAM with the tile images

Screens (4 of 5)

- Now, just pixels!
 - The graphics controller draws to memory
 - Based on CPU commands
 - May perform quite complex operations
 - Shading, projection, mapping
 - The memory holds a pixel array
 - At the appropriate resolution and color depth
 - The display controller reads the memory
 - And drives an interface to the screen

- Pixel rendering order
 - CRT screens need retrace intervals

Screen types (1 of 4)

- Cathode ray tubes (CRT)
 - An electron gun scans the screen line by line
 - It bombards phosphor elements on the screen
 - Different color elements in color screens
- Screen refresh for CRTs
 - The phosphors get discharged
 - We need to refresh (redraw) each line
 - Refresh rate given in Hz (e.g., 50 or 60 Hz)

Screen types (2 of 4)

- Horizontal and vertical retrace
 - Moving the electron gun to next/first line
 - Can be used to transfer metadata
- Liquid Crystal Displays (LCD)
 - Each pixel is and independent devices
 - Liquid crystal and polarizer
 - Blocks or allows light to pass through
 - Filters used for color displays

Screen types (3 of 4)

- Liquid Crystal Displays (LCD)
 - The pixels do not actually produce light
 - They either reflect ambient light
 - Or backlighting is used (PL or LED)
 - The image does not need refreshing
 - The liquid crystals stay in the same state
 - Only need to read the buffer to change the image
 - Normally, line by line as in CRTs

Screen types (4 of 4)

- Organic LED displays (OLED)
 - Each pixel produces its own light
 - No need for backlighting
 - Higher intensity with less energy
 - Pixels can be burnt with constant use
 - Otherwise, the same as LCDs
 - No need to refresh the image
 - Only need to redraw it

Printers (1 of 2)

• Printers use subtractive synthesis

– Colors on the page absorb the light

• Dot matrix printers

A head presses an ink ribbon on the paper

• Inkjet printers

A head sprays color on the paper

• Laser, LED, dye sublimination, etc.

Printers (2 of 2)

- Page description languages
 - Decouple image from output
 - Description of objects (lines, letters)
 - The printer translates them to a raster
 - Essentially, draws the page in memory
 - Adobe PostScript, HP PCL
 - Used (far less, though) for screen description

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Color depth vs resolution

Class: Multimedia Technology, Section # 9: Images Instructor: George Xylomenos, Department: Informatics

Dithering (1 of 3)

- The available colors are not infinite
 - Printing uses at most four colors (CMYK)
 - Can we avoid mixing them?
 - To prevent soaking the page
- Half toning
 - Prints dots of different sizes
 - Printed next to each other
 - Size depends on intensity
 - Used in large scale printing (banners)

Dithering (2 of 3)

- Dithering
 - Half toning for pixels
 - Pixels have the same size!
 - Based on color mixing by our eyes
 - Simulates larger color depth
 - Sacrifices resolution for color
 - Based on pixel patterns
 - Simulation of additional gray scales
 - Simulation of additional colors

Dithering (3 of 3)

- Example: 2x2 pattern
 - Loses half of the resolution in each dimension
 - One quarter of the original
 - 5 instead 2 of 2 levels
 - As long as we are far enough from the pixels
 - In general: k pixels for k+1 gradations
 - More interesting with color

Antialiasing (1 of 2)

- Pixelization: visible pixel artefacts
 - Curves
 - Diagonal lines
 - Characters in small sizes
- Anti-aliasing
 - Simulates partially covered pixels
 - Makes lines seem smoother
 - Avoids lines with dissimilar width

Antialiasing (2 of 2)

- Improves perceived resolution
 - Intensity depending on pixel coverage
 - Intermediate colors at edge pixels
 - Used (a lot!) for text
 - Example: the vertical lines in N
 - At small sizes, they may no have the same width
 - We draw some pixels in gray
 - Sacrifices color depth for resolution

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Symbolic representation

Class: Multimedia Technology, Section # 9: Images Instructor: George Xylomenos, Department: Informatics

Graphics (1 of 5)

- Basic elements of computer graphics
 - Various shapes
 - Example: circle
 - Attributes of shapes
 - Example: center, diameter, line width
- Graphics library: a collection of elements
 - Defines shapes and their attributes
 - Can be standardized at different levels
 - Closer or further from hardware

Graphics (2 of 5)

- Symbolic representation of images
 - Reduction of storage requirements
 - Easier modification (e.g., move a circle)
 - Needs conversion before output
 - Conversion depends on output device
- Special graphics hardware
 - Line draw, fills, texture mapping
 - Use software when not available

Graphics (3 of 5)

- Graphics combine 4 subsystems
- Application model
 - Basic shape definitions
 - What shapes are available
 - What properties can be defined
 - Independent of hardware and OS
 - Example: Adobe Illustrator files (.ai)

Graphics (4 of 5)

- Application program
 - Handles user input
 - Applies input to application model
 - Sends commands to graphics system
 - Example: Adobe Illustrator app
- Model vs. app
 - Many apps can handle .ai files
 - But each one of them works differently

Graphics (5 of 5)

- Graphics system
 - Elementary graphics commands
 - Standardized library (independent of apps)
 - Example: OpenGL, DirectX
- Graphics hardware (controller)
 - Pixel drawing commands
 - Optimization of some graphics commands
 - Example: AMD RX470

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Image transmission

Class: Multimedia Technology, Section # 9: Images Instructor: George Xylomenos, Department: Informatics

Transmission (1 of 3)

- What do we need to transmit an image?
 - Size depends on format
 - Resolution & color depth
 - Raw, compressed, symbolic
 - In general, no real time requirements
 - Image appears whenever it arrives!
 - Requirements at receiving end also vary
 - Depending on format

Transmission (2 of 3)

- Transmission of raw image
 - Uses a capture format
 - More data, less or no processing
- Transmission of compressed image
 - Storage format
 - Requires decompression
- Transmission of symbolic image
 - Graphics format
 - Requires transformation to output

Transmission (3 of 3)

- Transmission reliability
 - Unimportant for raw images
 - May have a few corrupted pixels
 - Important for graphics
 - May corrupt entire shapes
 - Very important for compressed images
 - Small losses can make the image unreadable
 - The price or removing redundancy!

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

End of Section # 9

Class: Multimedia Technology, Section # 9: Images Instructor: George Xylomenos, Department: Informatics