ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Multimedia Technology

Section # 8: Audio Coding Instructor: George Xylomenos Department: Informatics

Contents

- Channel coding for voice
- Source coding for voice
- Perceptual coding
- MPEG-1 audio coding
- MPEG-2 audio coding
- MPEG-4 audio coding

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Channel coding for voice

Class: Multimedia Technology, **Section # 8:** Audio Coding **Instructor:** George Xylomenos, **Department:** Informatics

G.711

- The ITU G.711 standard
 - Used in POTS (Plain Old Telephony Service)
 - Filters frequencies in the 300-3400 Hz band
 - Logarithmic sampling ("compression")
 - 8 KHz sampling rate (2x4 KHz, with guard bands)
 - 64 Kbps final bitrate
- Serves as the base for many other standards
 The G series channel coders

Channel coding (1 of 5)

- DPCM coding
 - Encode differences instead of samples
 - Send an approximation of the difference
 - Reference: the previous approximation
 - Note that decoding loop at the encoder

Channel coding (2 of 5)

- DPCM with linear prediction
 - Linear combination of previous values
 - Better prediction with fewer bits

Channel coding (3 of 5)

- Adaptive DPCM
 - Multiple values used for prediction
 - Allows changing the quantization step
- G.721: G.711 quality at 32 kbps (DECT)
 - Uses 8 previous values for prediction
 - G.723: similar for 24 and 40 kbps
- G.726: extends/unifies G.721 and G.723

- Supports 16, 24, 32 and 40 Kbps

Channel coding (4 of 5)

- How to vary the quantization step?
 - The basic step is multiplied by a factor $\boldsymbol{\mu}$
 - We monitor the differences
 - Closer to 0: more detail
 - Reduce factor μ
 - Further from 0: less detail
 - Increase factor μ

Channel coding (5 of 5)

- G.722: 64 kbps but for 7 KHz (HD Voice)
 - Splits voice in two frequency bands
 - Uses ADPCM on each band
 - 0-3,5 KHz: assigned 48 kbps
 - Quality similar to POTS (G.711)
 - 3,5-7 KHz: assigned 16 kbps
 - Adds higher frequencies
 - More natural results

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Source coding for voice

Class: Multimedia Technology, **Section # 8:** Audio Coding **Instructor:** George Xylomenos, **Department:** Informatics

Source coding (1 of 8)

- Voice coders (vocoders)
 - Based on a model of the human voice
 - Extracts and transmits voice characteristics
 - Characteristics: parameters of the voice model

Source coding (2 of 8)

- Phonemes: basic sounds of a language
- Voiced sounds
 - Those produced by the vocal chords
 - Vowels and some consonants (e.g., a, b)
 - Their waveforms are periodic
- Unvoiced/Voiceless sounds
 - All the other consonants (e.g., p)
 - Their waveforms look like noise

Source coding (3 of 8)

- Formants
 - Frequencies with peak energy
 - Each phoneme has specific formants (2 or 3)
 - Modulated by chords, mouth, tongue
 - Can be detected via filters
 - We analyze a "frame" of samples (a fixed number)
 - We detect the peak frequencies (formants)
 - We determine the underlying phoneme

Source coding (4 of 8)

- Linear Predictive Coding (LPC)
 - Analyzes a frame of samples
 - Not necessarily the same length as a phoneme
 - Is the sound voiced or unvoiced?
 - Voiced: simulate with frequency generator and filters
 - Unvoiced: simulate noise generator
 - Use old parameters to predict new ones
 - Liner prediction from previous parameters
 - Calculation of differences to send

Source coding (5 of 8)

- Linear Predictive Coding (LPC)
 - Decoding
 - Calculate linear prediction from past values
 - Add the transmitted difference
 - LPC-10: linear combination of 10 frames
 - Frame: 180 samples at 8 kHz = 22.5 ms
 - Bitrates as low as 2.4 Kbps
 - Recognizable but robotic voice

Source coding (6 of 8)

- Code excited LPC (CELP)
 - Two levels of prediction
 - Short term at the sample level (STP)
 - Long term at the frame level (LTP)
 - Use a library of existing characteristics
 - Each one is a set of encoder parameters
 - Find the best match with the current frame
 - Essentially, this is vector quantization

Source coding (7 of 8)

- Code excited LPC (CELP)
 - Add new characteristics to library
 - Use previous predictions for LTP
- G.723.1: 5.3 or 6.3 kbps
 - Used for teleconference over PSTN
 - 8 kHz sampling at 16 bit, 30 ms frames
 - Broken down into 4 subframes for prediction

Source coding (8 of 8)

- G.728: 16 kbps
 - Used for conferencing over ISDN
 - Lower delay compared to plain CELP
- G.729: 8 kbps
 - Used in cellular telephony
 - G.729a used in GSM (2G)
 - 10 ms frame to reduce delay
 - Protection from parameter loss (due to wireless)

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Perceptual coding

Class: Multimedia Technology, **Section # 8:** Audio Coding **Instructor:** George Xylomenos, **Department:** Informatics

Encoding of random sounds

- Voice is a very specific type of sound
 - Can be modeled in a specific way
 - Specific phonemes and formants, periodicity
- How do we encode any type of sound?
 - For example, music
 - Source coding is infeasible
 - We cannot assume specific sources
 - But we do know how people hear!

Human hearing (1 of 2)

- How loud is a sound?
 - Sound pressure level (SPL): measured in dB
 - Relative to the threshold of human hearing
 - This is an objective measure
 - Human perception depends on frequency
 - phon: perception of intensity by humans
 - 1 phon = loudness of 1 dB SPL at 1kHz
 - This is a subjective measure

Human hearing (2 of 2)

Fletcher-Munson curves

- Human ears are most sensitive at 2-5 KHz

Psychoacoustic model (1 of 4)

- Perceptual coding
 - Exploits the psychoacoustic model
 - Looks for less important frequencies
 - Encodes them with fewer bits (or not at all)
- Two basic techniques
 - Frequency masking
 - Temporal masking

Psychoacoustic model (2 of 4)

- Frequency masking
 - Loud signals reduce the dynamic range
 - Increase threshold of hearing in nearby frequencies
 - The masking effect is frequency dependent
 - Most evident at higher frequencies
 - Division of the spectrum in critical bands
 - The ear does not distinguish frequencies in a band
 - The width of these bands grows with frequency

Psychoacoustic model (3 of 4)

- Temporal masking
 - Loud signals affect hearing for some time
 - Increase threshold of hearing in nearby frequencies
 - Effect is reduced with time
 - The masking effect is frequency dependent
 - Two dimensional masking curve
 - Temporal masking
 - Frequency masking

Psychoacoustic model (4 of 4)

- Exploiting masking
 - Start with a frame (consecutive samples)
 - Break down the signal by frequency range
 - In each range locate the louder signals
 - Calculate the masking effects
 - Each range has different characteristics
 - Isolate the less audible signals
 - Encode them with fewer bits

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

MPEG-1 audio coding

Class: Multimedia Technology, **Section # 8:** Audio Coding **Instructor:** George Xylomenos, **Department:** Informatics

MPEG-1 Audio (1 of 7)

- MPEG Audio Layer 1, 2, 3
 - Standardized as part of MPEG-1
 - Originally used in Video-CD (predates DVD)
- Three levels, backward compatibility
 - Level 3 is the most popular (MP3)
 - Higher complexity and latency
- Signal digitization in MPEG-1 Audio

- 48, 44,1 or 32 KHz, 16 bit samples per channel

MPEG-1 Audio (2 of 7)

- Compression based on psychoacoustic model
 - Controls coding rate based on model

MPEG-1 Audio (3 of 7)

- Basic coding: Layer 1
 - Starts with 384 audio samples
 - Uses a filter bank to break down the signal
 - 32 equal width frequency bands
 - Some overlap between bands
 - They do not grow with frequency
 - Unlike critical bands
 - Considers 12 samples per band

MPEG-1 Audio (4 of 7)

- Psychoacoustic model
 - Locates loudest signal in each band
 - Estimates how important each band/sample is
 - 1024-point Fourier transform
 - Assigns bits based on importance
- Quantization
 - Linear quantization of the coefficients
 - Scaling factor used to control quantization
 - Goal: produce a fixed output bit rate

MPEG-1 Audio (5 of 7)

- Intermediate coding: Layer 2
 - Uses three frames in each repetition (1152 samples)
 - Increases latency, but has better accuracy
 - Also exploits temporal masking
- Advanced coding: Layer 3
 - Unequal frequency bands (like critical bands)
 - Modified Discrete Cosine Transform (MDCT)
 - Better at masking than Fourier transform
 - Non-linear quantization

MPEG-1 Audio (6 of 7)

- Entropy coding in the final stage
 - MP1/2: simple PCM
 - MP3: Each pair of coefficients is Huffman coded
 - Huffman tree selected based on input
- Dual adaptive loop (MP3)
 - Internal: based on entropy coding
 - Modifies quantization step to achieve bit rate
 - External: based on noise per band
 - Modifies quantization factors per band

MPEG-1 Audio (7 of 7)

- Final coding
 - Level 1 and 2: constant bit rate
 - Level 3: optional variable bit bit
 - Can change in every audio frame
- Bit rate: at least 32 Kbps
 - Level 1: Up to 448 Kbps
 - Level 2: Up to 384 Kbps
 - Level 3: Up to 320 Kbps
 - The quality of each rate depends on the level

Stereo audio (1 of 3)

- Stereo audio
 - Two audio channels for more realistic sound
 - Microphones / speakers at different locations
 - People perceive stereo in two ways
 - Differences in timing
 - Differences in loudness
- MPEG-1 stereo coding

Independent or joint (exploits commonality)

Stereo audio (2 of 3)

- Intensity joint stereo coding
 - Lower frequencies
 - We mostly perceive timing differences
 - Higher frequencies
 - We mostly perceive loudness differences
 - Mixes left and right channels
 - Adds information for the intensity per channel

Stereo audio (3 of 3)

- Mid-side joint stereo coding
 - The central channel is the sum
 - M=L+R
 - The side channel is their difference
 - S=L-R
 - Can be encoded with fewer bits
 - Transform to original channels
 - L=(M+S)/2, R=(M-S)/2

MPEG-1 bit stream (1 of 2)

- MPEG-1 bit stream
 - MP3 files may have a header
 - Depends on file format, not the standard
 - The bit stream is divided into frames
 - 24 ms of audio at 48 KHz
 - Each frame has a header
 - Allows decoding from the beginning of the frame
 - Timing word: check for periodic appearance
 - May also appear inside the data

MPEG-1 bit stream (2 of 2)

- Frame header
 - Bit rate: can be changed per frame
 - Sampling rate: can be changed per frame
 - Level: 1, 2, 3 or variants
 - Coding type
 - Stereo, joint stereo, etc
 - Protection bits: rarely used

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

MPEG-2 audio coding

Class: Multimedia Technology, **Section # 8:** Audio Coding **Instructor:** George Xylomenos, **Department:** Informatics

MPEG-2 Additions (1 of 2)

- MPEG-2: used in DVDs
 - Allows multichannel sound
 - Up to five full range channels
 - Central, front L/R, peripheral L/R
 - Low Frequency Enhancement (LFE) for 15-120 Hz
 - Different combinations are possible
 - Multiple audio tracks (dubbing, commentaries)
 - Offers 5.1 cinematic sound

MPEG-2 Additions (2 of 2)

- Other MPEG-2 extensions
 - Extended bitrates: 8-96 kHz
 - Works well with 64 Kbps per channel

Limitations of MPEG-1 (1 of 2)

- Distortion in digital audio
 - Very different from distortion in analog audio
- Loss of quality
 - In any frequency band
 - Unlike analog harmonic distortion
 - Can change in each frame
 - Some frequency ranges can disappear
 - Some coefficients are drop to achieve bit rate

Limitations of MPEG-1 (2 of 2)

- Pre-echo
 - Sudden change within a frame
 - Causes distortion in the entire frame
 - Due to lack of sufficient bits
- Double speak
 - Different sound and coding periods
 - Speech is periodic
 - Can be distorted by coding

MPEG-2 AAC (1 of 4)

- MPEG-2 Advanced Audio Coding (AAC)
 - New coded for MPEG-2
 - More efficient than MPEG-1
 - Reduces bit rate by 30% for the same quality
 - Not backwards compatible
 - Same basic idea, but too many modifications
 - Main audio codec for MPEG-4

MPEG-2 AAC (2 of 4)

- Coding improvements
 - 256 or 2048 samples per frame
 - Uses only MDCT, not filter banks
 - 256 samples: lower latency
 - 2048 samples: lower bit rate
 - Splits coefficients into 49 bands
 - Similar to critical bands
 - Coefficient prediction within each bank

MPEG-2 AAC (3 of 4)

- Coding improvements
 - Improved joint stereo coding
 - Huffman coding of four coefficients at a time
- Quality improvements
 - Reduced pre-echo
 - Due to smaller frames
 - Temporal Noise Shaping (TNS)
 - Prevents double speak phenomenon

MPEG-2 AAC (4 of 4)

- AAC bit stream: two options
 - Audio Data Interchange Format (ADIF)
 - All information in a single header
 - Decoding must start at beginning of file
 - Audio Data Transport Stream (ADTS)
 - Per frame headers
 - Similar to MPEG-1
 - Also allows variable length frames
 - Level 4 in the header (MP4!)

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

MPEG-4 audio coding

Class: Multimedia Technology, **Section # 8:** Audio Coding **Instructor:** George Xylomenos, **Department:** Informatics

MPEG-4 audio tools (1 of 2)

- Multiple audio codecs supported
 - 2-6 Kbps: LPC
 - 6-24 Kbps: CELP
 - 24-64 Kbps: AAC
- Text to speech (TTS)
 - 200 bps to 1,2 Kbps bit rates
 - Simple text or text with timing information

MPEG-4 audio tools (2 of 2)

- Score-based audio synthesis
 - 2-3 Kbps bitrate
 - An orchestra consisting of instruments
 - Instructions to each instrument
 - Sound bank plus sound effects
- MPEG-2 AAC expansions
 - HD AAC: lossless compression
 - HE AAC: even lower bit rate

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

End of Section # 8

Class: Multimedia Technology, **Section # 8:** Audio Coding **Instructor:** George Xylomenos, **Department:** Informatics