ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Multimedia Technology

Section # 7: Audio Instructor: George Xylomenos Department: Informatics

Contents

- Nature of sound
- Digitization via transform
- Digitization via sampling
- Sample quantization
- Pulse code modulation
- Symbolic representation and sound synthesis

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Nature of sound

Class: Multimedia Technology, Section # 7: Audio Instructor: George Xylomenos, Department: Informatics

What is sound? (1 of 3)

- Sound is generated by oscillating materials
 - Example: hitting a drum skin
 - Oscillation creates pressure waves
 - Also called sound waves
 - The pressure waves reach our ears
 - The eardrums oscillate based on pressure
 - A set of bones move accordingly
 - Eventually, our brain senses sound

What is sound? (2 of 3)

- Sound waves require a carrier
 - Gasses (like air) are the best carriers
 - Solids and fluids can also carry sound
 - Only some frequencies
 - And with a lot of attenuation
 - Depending on the material
 - Sound does not travel in a vacuum
 - Space battles are silent!

What is sound? (3 of 3)

- Sound waves can use multiple paths
 - The wave can be reflected
 - What we hear depends on the environment
 - Direct wave and multiple reflections
- Sound is sensed by both ears
 - This creates a sense of direction
 - Multiple speakers needed to recreate this
 - And multiple microphones to capture it

Sound categories

- Audible sounds: 20 Hz 20 kHz
 - Also called acoustic signals
 - Below 20 Hz: infrasound
 - Above 20 kHz: ultrasound
 - In practice, each human is different
 - With age, we lose sensitivity to higher frequencies
 - Humans are most sensitive around 3 kHz
 - This is where speech is!

Audio waveforms (1 of 2)

- Sound can be represented as a wave
 - Showing how pressure varies with time
 - The y axis shows the pressure variation
 - The energy is the square of this variation

Audio waveforms (2 of 2)

• Amplitude: determines the level

Divergence from normal pressure

• Period of the wave

- Periodic sounds are more musical

- Frequency: inverse of the period
 - Measured in cycles per second (Hertz, Hz)
 - Pitch of the sound

Audio capture

- Microphone: contains a diaphragm
 - The pressure wave excites the diaphragm
 - Its motion is converted to electric current
 - With magnetic or other means
 - Many types of microphone exist
 - Dynamic, Condenser, Ribbon
 - Each type responds somewhat differently to sound
 - Audio engineers care a lot about microphones!

Audio playback

- Speaker: an oscillating cone
 - Current is converted to oscillations
 - Usually with magnetic means
 - The cone oscillation excites the air
 - A sound wave is created
 - Many different types of speaker exist
 - Each can reproduce different ranges of sound
 - Loudspeakers typically have multiple speakers

Digitization

- A soundwave is an analog signal
 - Amplitude as a function of time g(t)
 - Can take any value at any time
 - A computer cannot represent this!
 - Limited number of values
 - Limited accuracy of values
- Digitization is needed
 - Conversion of analog to digital

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Digitization via transform

Class: Multimedia Technology, Section # 7: Audio Instructor: George Xylomenos, Department: Informatics

Fourier transform (1 of 4)

- The Fourier theorem
 - Decomposition of g(t) to simpler functions
 - It must be periodic
 - But the simpler functions may be infinite!
 - f=1/T: fundamental frequency
 - $-a_n$ and b_n : harmonics of the signal

$$g(t) = \frac{1}{2}c + \sum_{n=1}^{\infty} a_n \sin(2\pi n f t) + \sum_{n=1}^{\infty} b_n \cos(2\pi n f t)$$

Fourier transform (2 of 4)

$$a_n = \frac{2}{T} \int_0^T g(t) \sin(2\pi n f t) dt$$
$$b_n = \frac{2}{T} \int_0^T g(t) \cos(2\pi n f t) dt$$
$$c = \frac{2}{T} \int_0^T g(t) dt$$

- Calculation of g(t)'s component coefficients
 - Can recreate g(t) by superimposing them
 - The coefficients are just numbers

Fourier transform (3 of 4)

$$\sqrt{a_n^2 + b_n^2}$$

- RMS energy of harmonic n
 - Does not decrease with n
 - The harmonics can be too many
 - Dropping harmonics distorts the sound
- The coefficients also need digitization!
 - Only some coefficients can be stored
 - Each coefficient has finite accuracy
 - Calculations also have limited accuracy

Fourier transform (4 of 4)

- So, Fourier is not good for digitization
- But, it is good for many other things!
 - Analyzing the nature of a sound
 - Finding most important frequency components
 - Those with large coefficients
 - Heavily used in audio compression
 - Modifying specific harmonics
 - Used in audio processing

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Digitization via sampling

Class: Multimedia Technology, Section # 7: Audio Instructor: George Xylomenos, Department: Informatics

Sampling (1 of 3)

- Digitization via sampling
 - Periodic measurement of amplitude
 - Each measurement is a sample
 - Makes the signal discrete in the time dimension

Sampling (2 of 3)

- Sampling rate (sampling frequency)
 - Measured Hz (samples / sec)
 - 44,1 kHz in CD Audio, 8 kHz in telephony
- Nyquist's sampling theorem

- Assume a signal where f is the highest frequency

- We can calculate f using a Fourier transform
- Or just use a lowpass filter with f as the cutoff
- A sampling rate of 2f is enough to avoid distortion
 - Specifically, to avoid aliasing

Sampling (3 of 3)

- Alternate version with frequency range
 - Assume a signal with frequencies [f1,f2]
 - Using a bandpass filter with f1 and f2 as cutoffs
 - Sampling rate must be 2(f2-f1)
 - We can move the signal to [0,f2-f1]
 - Without losing any information
- Also called Nyquist-Shannon theorem
 - And Whittaker-Nyquist-Shannon theorem

ADC and DAC (1 of 4)

- Analog to digital and vice versa
 - ADC: Analog to digital converter
 - DAC: Digital to analog converter
 - Filters before ADC and after DAC

ADC and DAC (2 of 4)

- Why a filter before a DAC?
 - Alias signals
 - Black dots: adequate sampling rate
 - White dots: inadequate sampling rate
 - The filter cuts off frequencies above f Hz

- Why a filter after the ADC?
 - Audio pulses are generated periodically
 - The output is a square wave
 - Contains frequency way above f Hz
 - Filtering removes the high frequency components

ADC and DAC (4 of 4)

- Sound waves may contain high frequencies
 Need to filter them before they are sampled
- Audio pulses contain high frequencies
 Need to filter them before the speaker
- Note: filters are not perfect!
 - They attenuate but not eliminate frequencies
 - We allow for some slack in the signals
 - Filter at 20 KHz, sample at 44.1 KHz

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Sample quantization

Μάθημα: Τεχνολογία Πολυμέσων, **Ενότητα # 4:** Ήχος **Διδάσκων:** Γιώργος Ξυλωμένος, **Τμήμα:** Πληροφορικής

Ευρωπαϊκή Ένωση Ευρωπαϊκό Κοινωνικό Ταμείο

ALAXFI

Με τη συγχρηματοδότηση της Ελλάδας και της Ευρωπαϊκής Ένωσης

VUHDEZIV

EIAIKH

Quantization (1 of 2)

- (Sample) quantization
 - Transforms a continuous to a discrete value
 - Each sample is approximated
 - Makes the signal discrete in terms of amplitude

Quantization (2 of 2)

- Quantization affects quality
 - 16 bits: 65536 values, 8 bits: 256 values
 - Fewer values -> higher distortion
 - Called the quantization error
- How many discrete values are enough?
 - No Nyquist theorem for this!
 - We can instead bound the resulting error
 - How many bits do we need to achieve it?

Quantization error

- Calculating the quantization error
 - Assume a signal with an amplitude –V to +V
 - Assume n bits are available for quantization
 - Quantized values differ by $q = 2V / 2^n$
 - Assuming linear quantization (equal distances)
 - Worst case quantization error
 - q/2 = V / 2ⁿ (half of the distance)
 - How large is the acceptable error?

Quantization levels (1 of 4)

- 1st approach: dynamic range
 - Amplitude of smallest audible signal: v
 - Amplitude of largest tolerable signal: V
 - Their difference is the dynamic range
 - $10 \log_{10}(V^2/v^2) dB = 20 \log_{10}(V/v) dB$
 - Recall that power is the square of the amplitude
 - Measured in orders of magnitude (dB)

Quantization levels (2 of 4)

- Exploiting the dynamic range
 - Quantization error < smallest audible signal
 - A reasonable bound for this error

$$-V/2^{n} < v =>V/v < 2^{n}$$

$$-\log_{10}(V/v) < n \log_{10}2 = 0.3 n$$

- $-20 \log_{10}(V/v) < 6 n$
- For a dynamic range of 40 dB, we need n >= 7
 - Hence, at least 7 bits / sample

Quantization levels (3 of 4)

- 2nd approach: signal to noise ratio (SNR)
 - Assume signal with amplitude S
 - Assume noise with amplitude N
 - SNR: 10 log₁₀(S²/N²) dB = 20 log₁₀(S/N) dB
 - Power is the square of the amplitude
 - If S² = 10N², 10dB
 - If S² = 100N², 20dB
 - If S² = 1000N², 30dB

Quantization levels (4 of 4)

- Exploiting the SNR
 - Assume signal with maximum amplitude V
 - Assume that the noise is the quantization error q/2
 - The SNR is $20 \log_{10}(V/(q/2))$
 - $= 20 \log_{10}(V/(V / 2^{n}))$
 - $= 20 \log_{10} 2^n = 6 n$
 - For an SNR > 40 dB, we need n >= 7
 - Hence, at least 7 bits / sample

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Pulse Code Modulation

Class: Multimedia Technology, Section # 7: Audio Instructor: George Xylomenos, Department: Informatics

PCM types (1 of 6)

- Pulse Code Modulation (PCM)
 - Simple periodic sampling
 - Each sample is played back as a pulse
 - Memoryless: each sample is independent
 - Can start playback from any sample
- Linear quantization
 - Equal intervals between quantized values
 - One value per interval

PCM types (2 of 6)

- Audio CD: CD-DA standard
 - Uses linear quantization
 - Makes no assumptions about the input signal
 - Assumes a frequency range of 20 kHz
 - Sample rate 44,1 kHz (48 kHz in DAT)
 - Quantization with 16 bit values
 - Bitrate equal to 1,411 Mbps
 - Assuming stereo sound (two independent channels)

PCM types (3 of 6)

- Logarithmic quantization
 - Pass the signal through a log function
 - Linear quantization of the resulting signal
 - Reverse the process in the decoder
 - Uses analog circuit called a compander
 - Compressor + expander = compander
 - "Compresses" one end of the signal range
 - Allows for higher resolution on the other end

PCM types (4 of 6)

Signal compression (μ-law)

PCM types (5 of 6)

- Why emphasize one end of the range?
 - Either the signal has more information there
 - Or our perception is more sensitive there
- Our ears hear "logarithmically"
 - As the volume grows higher...
 - ...we can only distinguish larger differences
 - So, we need more accuracy at lower volumes

PCM types (6 of 6)

- Voice telephony: ITU G.711 standard
 - Logarithmic quantization: compress higher end
 - Modify signal before / after quantization
 - A-law (Europe), μ-law (US / Japan)
 - Signal range 3.1-3.5 kHz, 8 kHz sampling
 - 8 bit samples (or 7 bit)
 - Equivalent to 12-14 bit with linear (for voice)
 - 64 Kbps bit rate

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Symbolic representation and sound synthesis

Class: Multimedia Technology, Section # 7: Audio Instructor: George Xylomenos, Department: Informatics

The MIDI standard (1 of 5)

- Music is not random sound
 - It consists of instruments playing notes
 - Musical scores are a symbolic notation
 - Each symbol corresponds to a sound
- Musical Instruments Digital Interface (MIDI)

A specification for connecting instruments

- Can also be used as a music representation

The MIDI standard (2 of 5)

- What does MIDI cover?
 - Interconnection specifications
 - Connectors, electrical signals
 - Data formatting over the channel
- Allows communication between instruments
 - Keyboards (controller)
 - Synthesizers (sound modules)
 - Storage (sequencers)

The MIDI standard (3 of 5)

- MIDI messages describe events
 - Actions that musicians perform
 - Press or release a specific key
 - Pitch and amplitude of the key
 - Each message refers to a channel
 - Devices are connected in daisy-chain mode
 - Each device filters its own messages (channels)
 - There are also system wide messages

The MIDI standard (4 of 5)

- 16 event channels
 - Can control one or more synthesizers
 - Monophonic or polyphonic synthesizers
- Each channel must be mapped to a sound
 - The actual sound is called a patch
 - Terminology from modular synthesizers
 - General MIDI: 128 predefined instruments
 - Each synth tries to produce reasonable sounds

The MIDI standard (5 of 5)

- Advantages and disadvantages
 - Very compact representation
 - Allows symbolic processing
 - The output depends on the hardware
 - The "piano" can be wildly different
 - Suitable only for musical instruments
 - Assumes the production of musical notes
 - Does not cover (say) the human voice

Sound synthesis (1 of 4)

- How can we create sounds electronically?
 - From a MIDI sequence in a computer?
- Sounds synthesis predates computing
 - Started with analog synthesizers
 - Digital synthesis followed
 - Initially for instruments, then for computers
 - Evolved into sampling
 - When memory and processors allowed it

Sound synthesis (2 of 4)

- Subtractive synthesis
 - Starts with an oscillator producing a signal
 - Sine wave, square wave, sawtooth wave
 - Applies a set of filters to the signal
 - High pass, low pass, bandpass
 - Combines additional oscillators
 - Low Frequency Oscillator (LFO)
 - Modular synths combine these with patch cables

Sound synthesis (3 of 4)

- Frequency modulation synthesis
 - Two (at least) sine waves
 - One wave modulates the other
 - Waves can have different phases
 - More waves can be combined
 - May have polyphony
 - This takes place entirely digitally (DSP)
 - So, it can be implemented in computer

Sound synthesis (4 of 4)

Sampling

- Starts with sampling an instrument

- Either modulate the sample to create notes
- Or store separate samples per instrument
- A synth can be based around a sampler
- Requires memory and processing power
- But it can reproduce any sound
- Sound cards today are basically samplers

ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

End of Section # 7

Class: Multimedia Technology, Section # 7: Audio Instructor: George Xylomenos, Department: Informatics