
Multimedia Technology

Section # 6: Entropy Coding

Instructor: George Xylomenos

Department: Informatics



Contents

• Optimal Coding

• Shannon-Fano Coding

• Huffman Coding

• Adaptive Huffman Coding

• Arithmetic Coding

• Window-based Coding

• Dictionary-based Coding

2



Optimal Coding

Class: Multimedia Technology, Section # 6: Entropy Coding

Instructor: George Xylomenos, Department: Informatics



Optimal coding (1 of 4)

• Fixed length coding

– Example: ASCII (the original)

– Each character encoded with 7 bits

• Variable length coding (VLC)

– Example: Morse code

– Three different code symbols (dot/dash/space)

– More code symbols for rare characters

– Spaces between codes
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Optimal coding (2 of 4)
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Optimal coding (3 of 4)

• Optimal entropy coding
– As many bits as the information of the symbol

• Average length = source entropy

– What if information is not an integer?

• Efficiency drops accordingly

• Uses only 0 and 1 (no spaces)
– How do we know a code is finished

– Unique prefix property

• No code is the prefix of any other code
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Optimal coding (4 of 4)

• Requires symbol probabilities

– First read the file to find the probabilities

• What if we do not have the entire file?

– Assume a probability distribution

– Gradually compute probabilities

• So, optimal under specific conditions!

– Can we find construct such codes?

– Yes – we will see multiple methods

7



Shannon-Fano coding

Class: Multimedia Technology, Section # 6: Entropy Coding

Instructor: George Xylomenos, Department: Informatics



Shannon-Fano (1 of 6)

• Shannon-Fano coding
– Uses codewords with integer length

• Diverges from theoretically optimal

– No code is the prefix of any other code

• This is the key to VLCs

– Binary coding tree

• Leafs: symbols and probabilities

• Nodes: symbol sets and probabilities

– Exact same tree used for decoding
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Shannon-Fano (2 of 6)

• Tree construction
– We first sort all symbols by probability

• Either increasing or decreasing order

– Break symbols in left and right set
• Each set has the sum of symbol probabilities

• We want sets with as equal probabilities as possible

• Note: we never re-sort the symbols

• The two sets become children of a new node

• Assign 0 to one child and 1 to the other

– Repeat until we only have leaves left
• Each leaf is a different symbol
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Shannon-Fano (3 of 6)

• Example coding tree

– P(a)=0,17, P(b)=0,35, P(c)=0,15, P(d)=0,17, P(e)=0,16

– We start with the sorted sequence b, a, d, e, c

– Average code length: 2,31
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Shannon-Fano (4 of 6)

• Coding: replace symbol x with code w(x)

– Each symbol x corresponds to a leaf

– The labels along its path (from the root) are w(x)

• Decoding 

– You need to know the encoding tree

– Match input against paths in the tree

• Each prefix corresponds to a different path

• We always know when to stop (at the leaf)

– Start each decoding cycle from the root
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Shannon-Fano (5 of 6)

• Code tree construction

– Compute probabilities from file to encode

– Use pre-existing trees

• Basically, assume a specific probability distribution

• Decode tree construction

– Transmit code tree

– Transmit probabilities

• And fix the code tree contsruction rules

– Use pre-existing trees (send a tree ID if many exist)
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Shannon-Fano (6 of 6)

• What happens if we have two options?

– Example: set abc with P(a)=P(b)=P(c)=0.1

• We can either split it ab – c or a – bc

• Or we could have sorted it cba in the beginning

– It actually makes NO difference!

• Different trees but same average code length

– But, we need to know what the rules are!

• This allows the decoder to build the same tree
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Huffman coding

Class: Multimedia Technology, Section # 6: Entropy Coding

Instructor: George Xylomenos, Department: Informatics



Huffman (1 of 3)

• Very similar to Shannon-Fano

– Variable length codes per symbol

– Need to know symbol probabilities

– Binary coding/decoding tree

• May differ from Shannon-Fano tree

– Same coding/decoding algorithm

• Only the tree differs!

– Tree created bottom-up rather than top-down
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Huffman (2 of 3)

• Tree construction

– Each symbol becomes a leaf node 

– All nodes are added to a set

– Select the two nodes with the lowest probabilities

– Replace nodes in the set with a binary subtree

• The parent has the sum of the probabilities

• Assign 0 and 1 to the children

– Stop when there is a single tree left

– Slightly better trees than Shannon-Fano
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Huffman (3 of 3)

• Example coding tree

– P(a)=0,17, P(b)=0,35, P(c)=0,15, P(d)=0,17, P(e)=0,16

– Average code length: 2,3 (better than Shannon-Fano)
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Huffman vs Shannon-Fano (1 of 3)

• Huffman or Shannon-Fano?

– Nearly identical schemes

– Only the tree may be different

– Same coding/decoding algorithm

• Shannon-Fano tree is easier to create

– We do NOT sort symbols at each step

– Easy way to find how to split set

• Start adding probabilities from the left

• When we have more than half, choose a split
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Huffman vs Shannon-Fano (2 of 3)

• Huffman is more efficient

– Shannon-Fano does not lead to optimal splits

• By re-sorting the set, we can find a better one

– Huffman partially re-sorts the set at every step

• Always selects the two lowest probability nodes

– Do we actually need a full sort?

• In each step I select two nodes and add a new one

• A binary heap can do this much faster
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Huffman vs Shannon-Fano (3 of 3)

• Disadvantages of Huffman/Shannon-Fano

– Need to know the symbol probabilities

– Coding is not really optimal

• Need an integer number of bits per symbol

• Diverges from the ideal

– Can we improve efficiency?

• Why not code n symbols at each step?

• This makes the tree huge (kn for k initial symbols)
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Adaptive Huffman Coding

Class: Multimedia Technology, Section # 6: Entropy Coding

Instructor: George Xylomenos, Department: Informatics



Adaptive Huffman (1 of 11)

• Adaptive Huffman coding

– Does not need to know symbol probabilities

• Tree is built as the input is processed

• Automatically adapts to input probabilities

– Start with an initial encoding

• Could be simply the 8 bits in extended ASCII

• The codes gradually change

– Depending on symbol frequency

23



Adaptive Huffman (2 of 11)

• Adaptive Huffman coding

– For every symbol we maintain a counter

• Increased whenever it shows up in the input

• All counters start at 0

– The tree starts with the symbol NEW:0

• NEW means that a new symbol has appeared

• NEW is never an actual input (its counter is 0)

• But, it has a code
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Adaptive Huffman (3 of 11)

• Whenever we encounter a new symbol

– Output the code for NEW

– Then output the initial code for the symbol

– Finally, add the new symbol to the tree

• Split the NEW symbol at the bottom

– Its counter is now 1

• Whenever we encounter an existing symbol

– Output its current code

– Increase its counter
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Adaptive Huffman (4 of 11)

• Example: input is ABCCA

– Initial codes: Α=01, Β=10, C=11

– Initial tree: NEW:0 (code 0) and root

– ABCCA: output 0 01 (ΝΕW and A), add A:1 to tree
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Adaptive Huffman (5 of 11)

• Example: input is ABCCA

– Internal nodes hold the sum of their child counters

– ABCCA: output 0 10 (ΝΕW and B), add B to tree

– Update counters at internal nodes
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Adaptive Huffman (6 of 11)

• The tree must always be sorted

– According to the counters

• Bottom to top in each path, left to right in each level

– Say that a counter changed from N to N+1

• If the node is not in the right position anymore

• Find the furthest node with a counter of N

• Swap the two nodes (or subtrees)

• Repeat until the tree is sorted

– The decoder does the exact same job
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Adaptive Huffman (7 of 11)

– ABCCA: output 00 11 (ΝΕW and C), add C to tree

• NEW got a longer code in the previous step

– Now, the first level has the wrong order
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Adaptive Huffman (8 of 11)

– We need to move A to a different spot

– Swap A with the furthest node with a counter of 2

• We basically swap the children of the root
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Adaptive Huffman (9 of 11)

– ABCCA: output 101 (just C, increase its counter)

– Now C is swapped with A (the furthest node with 1)
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Adaptive Huffman (10 of 11)

– ABCCA: output 101 (just A, increase counter)

– Now A is swapped with B
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Adaptive Huffman (11 of 11)

• Encoder and decoder always in sync

– We first export the code

– And then change the tree

• The decoder sees the code and follows

• It knows which symbol changed its counter

– Output NEW before new codes

• Followed by initial code, to notify decoder of new node

– Note: NEW also changes its code
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Arithmetic Coding

Class: Multimedia Technology, Section # 6: Entropy Coding

Instructor: George Xylomenos, Department: Informatics



Arithmetic (1 of 10)

• Codes input into a single fractional number

– Fraction length depends on input length

• May be very long!

– No need for fixed bits/symbol

• Avoids divergence from the optimal

– Needs to know symbol probabilities

– Needs a terminal symbol in the end

• This is used to end decoding
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Arithmetic (2 of 10)

• Preparatory stage

– Sort all symbols (usually, alphabetically)

– Symbol xi assigned the interval [ai, bi)

• The interval satisfies bi-ai = p(xi)

– Example

• P(a) = 0.4, P(b) = 0.3, P(c) = 0.2 and P($) = 0.1 (terminal)

• Interval a: [0, 0.4), Interval b: [0.4,0.7)

• Interval c: [0.7, 0.9), Interval $: [0.9,1.0)
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Arithmetic (3 of 10)

• Coding algorithm
low = 0.0;

high = 1.0;

repeat {

input s;

range = high - low;

high = low + range * highrange[s];

low = low + range * lowrange[s];

} until s = $;

output any number in [low, high);
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Arithmetic (4 of 10)

• What does the encoder do?

– Lowrange[s]: low end of interval for s

– Highrange[s]: high end of interval for s

– The input is encoded as a interval

• The interval is initialized to [0,1)

• In every step, the interval shrinks

• Depending on the input symbol

• The longer the input, the smaller the interval
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Arithmetic (5 of 10)

• Arithmetic coding example
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Arithmetic (6 of 10)

• Output calculation

– We need a number within the interval

– But, with the shortest fractional part

– We start with 0. and add bits

– Concatenate a 1 at the right end

• If the fraction is over the high end, switch to 0

• Repeat until the fraction is within the interval

– No need to send the initial 0.
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Arithmetic (7 of 10)

• Decoding algorithm

input n;

repeat {

find s so that n is in 

 [lowrange[s], highrange[s]);

output s;

range = highrange[s] - lowrange[s];

n = (n - lowrange[s]) / range;

} until s = $;
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Arithmetic (8 of 10)

• Arithmetic decoding example
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Arithmetic (9 of 10)

• Why do we need a terminal symbol?

– Decoding produces a single number

• Not intervals, like encoding

– It is not clear when to stop

• We could continue forever!

– The terminal symbol is the stop sign

• If we hit its interval, we are done

– We do not need an actual symbol

• We just need to assign it an interval
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Arithmetic (10 of 10)

• Issues with arithmetic encoding

– Fractional numbers with arbitrary bit length

• Needs special libraries

• Block-based encoding

– Break the input into fixed length blocks

– Each blocks requires fewer bits

– Small drop in efficiency

– No need for terminal symbol
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Window-based coding

Class: Multimedia Technology, Section # 6: Entropy Coding

Instructor: George Xylomenos, Department: Informatics



Why a window? (1 of 2)

• Limitations of entropy coding

– VLC: needs handling of bit sequences

– Arithmetic: needs very long numbers

– And they cannot do better than the entropy!

• An alternative: code sequences of symbols

– Ideally, variable length ones

– Which sequences are common?

– How can we represent them?
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Why a window? (2 of 2)

• At any given time the encoder

– Has coded the input up to a point

– Needs to code the input that follows

• Window-based coding

– Looks for input prefixes…

– …which have already been coded…

– …so as to replace the prefix with a code
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LZ77 (1 of 4)

• LZ77 Algorithm (due to Lempel & Ziv, 1977)

– At any given time, a “window” over the input

• Left side: already encoded

• Right side: next piece to encode

– Replace longest possible prefix with (O,L,C)

• O: position of prefix on the left side

• L: length of match

• C: first non-matching symbol
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LZ77 (2 of 4)

• Example of LZ77 encoding

– Replace baa with (4,2,a)

• “ba” found at position 4 on the left side

– First position is 0

• Length of “ba” is 2

• Next symbol is “a”

– If no match, set the length to 0
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LZ77 (3 of 4)

• Overlapping example

– Match can overlap the right side!

– Replace aac with (7,2,c)

• LZ77 encoder implementation

– Windows is usually a power of 2

– Example: 4096+4096 symbols

– Position: 12 bit can point at entire left side

– Length: 12 bit can match entire right side
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LZ77 (4 of 4)

• Starting the encoder

– Assume a specific (known) left side

• Disadvantages of LZ77

– Each triple requires some bytes per match

– The file can grow with bad matches

– Symbols are initially encoded as (0,0,c)

• Encoding starts with a loss!

• Improvement: put all symbols in initial window

51



LZSS (1 of 2)

• LZSS algorithm (Storer and Szymanski)

– Improves upon LZ77

– Differs in its output codes

– Two options: match or symbol (no match)

– Distinguished by first bit of the output 

• Either (O,L): position O, length L

• Or C: character C (no match)

– Triples are broken in two
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LZSS (2 of 2)

• Implementing LZSS

– We do not want to deal with 9 bit codes!

– We split the output in groups of eight codes

– The first byte describes what follows

• One bit per code

• Shows if it is a match or a symbol

• The next bytes are interpreted accordingly

– We always process entire bytes (or words)
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Dictionary-based coding

Class: Multimedia Technology, Section # 6: Entropy Coding

Instructor: George Xylomenos, Department: Informatics



LZ78 (1 of 2)

• Search a dictionary instead of a window

– Due to the same Lempel and Ziv (1978)

– Longest input prefix found in the dictionary

– Replace prefix with (P,C)

• P: index of prefix in dictionary

• C: first non-matching symbol

– Prefix + symbol are added to the dictionary

– The decoder builds the same dictionary

• And uses it for decoding
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LZ78 (2 of 2)

• Example: input aaabbaab

– The dictionary gradually gets longer strings

• In LZ77 you can have long matches much earlier

– The decoder builds the dictionary from the codes

• All references are made to previous entries

Input Output Dictionary

a (0,a) Index 1: a

aa (1,a) Index 2: aa

b (0,b) Index 3: b

ba (3,a) Index 4: ba

ab (1,b) Index 5: ab
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LZW (1 of 8)

• LZW Algorithm (extended by Welch)

– LZ78: same logic as LZ77

• Match prefix + next non-matching symbol

• Guaranteed progress, even without a match

– LSW produces only codes, no symbols!

• The dictionary is initialized with all symbols

• The next entries are built from those

• But how can we extend the dictionary?
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LZW (2 of 8)

• LZW coding

– Find longest input prefix in dictionary

– Replace it with is index

• Do NOT consume the next symbol

– Add prefix + next symbol to dictionary

• This extends the dictionary

– Move input pointer BEFORE the next symbol

• The next symbol is the beginning of the next match
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LZW (3 of 8)

input s;

while not EOF {

input c;

if [s+c] is in dictionary

s = [s+c];

else {

output code(s);

add [s,c] to dictionary with next code;

s = c; } 

} 

output code(s);
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LZW (4 of 8)

• Example: input aaabbaabb

– Dictionary starts with all input symbols

Input Output Dictionary

Index 1: a

Index 2: b

a+a 1 Index 3: aa

aa+b 3 Index 4: aab

b+b 2 Index 5: bb

b+a 2 Index 6: ba

aab+b 4 Index 7: aabb
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LZW (5 of 8)

• LZW decoding

– Read the next code

– If it is in dictionary, replace it in the output

• Do not add current match in dictionary yet

• We do not know the next symbol

– Add instead previous match + first symbol

• Because we know now what that symbol was

• So the decoder is always one step behind
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LZW (6 of 8)

• What if the code is not in the dictionary?

– This occurs if the code is for the latest entry

– But we have not yet added it on our side!

• We do not know what the next symbol is, yet

– The match must have been of the form C???C

• This is the only way for this problem to appear

• So, we get the previous match

• And add its first symbol at its end
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LZW (7 of 8)

s = NIL; // previous string

while not EOF {

input c;

entry = string(c); // current string

if entry not in dictionary

entry = s + s[0];

output entry;

if (s != NIL) // only happens once

 add [s,entry[0]] to dictionary with next code;

s = entry; // current string becomes previous

  }
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LZW (8 of 8)

• Example LZW decoding

– Code 3 points at an empty index

– Must be previous match + first symbol (a+a)

Input Output Dictionary

Index 1: a

Index 2: b

1 a

3 aa Index 3: aa

2 b Index 4: aab

2 b Index 5: bb

4 aab Index 6: ba
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Optimizations (1 of 3)

• Dictionaries for LZ78/LZW

– They grow in each step!

– Extensible pointers/indexes

• We start with (say) 4 bit indexes (16 θέσεις)

• When dictionary full, add 1 bit to indexes

– What happens if it grows too much?

• Either stop adding entries

• Or drop least used ones
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Optimizations (2 of 3)

• LZ78/LZW dictionary compression

– Each new entry extends a previous one

• By one symbol

– Store pointer to previous entry

• Plus the new symbol

– Can this be made efficient?

• During coding, we need to search the dictionary

• Can we do this by following pointers?
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Optimizations (3 of 3)

• TRIE data structure (lexicographic tree)

– Each node has characters as childern

– Each match is a path through the trie

• Each symbol is a branch

• When we reach a leaf, we have a match

• The next symbol is added as a new leaf

– Improves coding speed

– Decoding follows a similar logic
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End of Section # 6

Class: Multimedia Technology, Section # 6: Entropy Coding

Instructor: George Xylomenos, Department: Informatics
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