ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

OIKONOMIKO
MANENIETHMIO
AOHNAQON

Multimedia Technology

Section # 6: Entropy Coding
Instructor: George Xylomenos
Department: Informatics




Contents

Optimal Coding
Shannon-Fano Coding
Huffman Coding
Adaptive Huffman Coding
Arithmetic Coding

Window-based Coding
Dictionary-based Coding



ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

OIKONOMIKO
MANENIETHMIO
AOHNAQON

Optimal Coding

Class: Multimedia Technology, Section # 6: Entropy Coding
Instructor: George Xylomenos, Department: Informatics



Optimal coding (1 of 4)

* Fixed length coding
— Example: ASCII (the original)

— Each character encoded with 7 bits

* Variable length coding (VLC)
— Example: Morse code
— Three different code symbols (dot/dash/space)
— More code symbols for rare characters

— Spaces between codes



Optimal coding (2 of 4)

International Morse Code

1. The length of a dot is one unit.

2. A dash is three units.

3. The space between parts of the same letter is one unit.
4. The space between letters is three units.
5. The space between words is seven units.
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Optimal coding (3 of 4)

* Optimal entropy coding
— As many bits as the information of the symbol

* Average length = source entropy
— What if information is not an integer?
* Efficiency drops accordingly
e Uses only 0and 1 (no spaces)
— How do we know a code is finished
— Unique prefix property

* No code is the prefix of any other code



Optimal coding (4 of 4)

* Requires symbol probabilities
— First read the file to find the probabilities

* What if we do not have the entire file?
— Assume a probability distribution
— Gradually compute probabilities
* So, optimal under specific conditions!
— Can we find construct such codes?

— Yes — we will see multiple methods
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Shannon-Fano (1 of 6)

* Shannon-Fano coding
— Uses codewords with integer length
* Diverges from theoretically optimal

— No code is the prefix of any other code
* This is the key to VLCs

— Binary coding tree
* Leafs: symbols and probabilities

* Nodes: symbol sets and probabilities

— Exact same tree used for decoding



Shannon-Fano (2 of 6)

e Tree construction

— We first sort all symbols by probability
* Either increasing or decreasing order

— Break symbols in left and right set
* Each set has the sum of symbol probabilities
* We want sets with as equal probabilities as possible
* Note: we never re-sort the symbols
* The two sets become children of a new node
* Assign 0 to one child and 1 to the other

— Repeat until we only have leaves left
* Each leaf is a different symbol

10



Shannon-Fano (3 of 6)

0 1
P(b+a) = 0,52 P(d+e+c) = 0,48
0 1 0 1

* Example coding tree
— P(a)=0,17, P(b)=0,35, P(c)=0,15, P(d)=0,17, P(e)=0,16
— We start with the sorted sequence b, a, d, e, c
— Average code length: 2,31
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Shannon-Fano (4 of 6)

e Coding: replace symbol x with code w(x)
— Each symbol x corresponds to a leaf

— The labels along its path (from the root) are w(x)

* Decoding
— You need to know the encoding tree

— Match input against paths in the tree
* Each prefix corresponds to a different path

* We always know when to stop (at the leaf)

— Start each decoding cycle from the root

12



Shannon-Fano (5 of 6)

 Code tree construction
— Compute probabilities from file to encode
— Use pre-existing trees
* Basically, assume a specific probability distribution
 Decode tree construction
— Transmit code tree

— Transmit probabilities

 And fix the code tree contsruction rules

— Use pre-existing trees (send a tree ID if many exist)

13



Shannon-Fano (6 of 6)

 What happens if we have two options?
— Example: set abc with P(a)=P(b)=P(c)=0.1
* We can either splititab—cora—bc

* Or we could have sorted it cba in the beginning

— It actually makes NO difference!

* Different trees but same average code length

— But, we need to know what the rules are!

* This allows the decoder to build the same tree

14
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Huffman (1 of 3)

* Very similar to Shannon-Fano
— Variable length codes per symbol
— Need to know symbol probabilities

— Binary coding/decoding tree

* May differ from Shannon-Fano tree

— Same coding/decoding algorithm
* Only the tree differs!

— Tree created bottom-up rather than top-down

16



Huffman (2 of 3)

* Tree construction
— Each symbol becomes a leaf node
— All nodes are added to a set
— Select the two nodes with the lowest probabilities

— Replace nodes in the set with a binary subtree

* The parent has the sum of the probabilities

e Assign 0 and 1 to the children
— Stop when there is a single tree left

— Slightly better trees than Shannon-Fano

17



Huffman (3 of 3)

P(atb+c+d+e) =

1,00
0
P(b) = 0,35

.1
P(atct+d+e) = 0,65
0 1

 Example coding tree
— P(a)=0,17, P(b)=0,35, P(c)=0,15, P(d)=0,17, P(e)=0,16

— Average code length: 2,3 (better than Shannon-Fano)

18



Huffman vs Shannon-Fano (1 of 3)

 Huffman or Shannon-Fano?
— Nearly identical schemes
— Only the tree may be different

— Same coding/decoding algorithm
 Shannon-Fano tree is easier to create
— We do NOT sort symbols at each step

— Easy way to find how to split set
 Start adding probabilities from the left

 When we have more than half, choose a split

19



Huffman vs Shannon-Fano (2 of 3)

 Huffman is more efficient
— Shannon-Fano does not lead to optimal splits
* By re-sorting the set, we can find a better one

— Huffman partially re-sorts the set at every step

* Always selects the two lowest probability nodes

— Do we actually need a full sort?
* |In each step | select two nodes and add a new one

* A binary heap can do this much faster

20



Huffman vs Shannon-Fano (3 of 3)

* Disadvantages of Huffman/Shannon-Fano
— Need to know the symbol probabilities

— Coding is not really optimal
* Need an integer number of bits per symbol

* Diverges from the ideal

— Can we improve efficiency?
* Why not code n symbols at each step?

* This makes the tree huge (k" for k initial symbols)

21
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Adaptive Huffman (1 of 11)

e Adaptive Huffman coding

— Does not need to know symbol probabilities
* Tree is built as the input is processed
* Automatically adapts to input probabilities

— Start with an initial encoding

* Could be simply the 8 bits in extended ASCI|

* The codes gradually change

— Depending on symbol frequency

23



Adaptive Huffman (2 of 11)

e Adaptive Huffman coding

— For every symbol we maintain a counter
* Increased whenever it shows up in the input

* All counters startat O

— The tree starts with the symbol NEW:0
* NEW means that a new symbol has appeared
 NEW is never an actual input (its counter is 0)

e But, it has a code

24



Adaptive Huffman (3 of 11)

* Whenever we encounter a new symbol
— Output the code for NEW
— Then output the initial code for the symbol

— Finally, add the new symbol to the tree
* Split the NEW symbol at the bottom

— |ts counter is now 1

* Whenever we encounter an existing symbol
— Qutput its current code

— Increase its counter

25



Adaptive Huffman (4 of 11)

0 1

 Example: input is ABCCA
— Initial codes: A=01, B=10, C=11
— Initial tree: NEW:0 (code 0) and root
— ABCCA: output 0 01 (NEW and A), add A:1 to tree

26



Adaptive Huffman (5 of 11)

 Example: input is ABCCA

— Internal nodes hold the sum of their child counters
— ABCCA: output 0 10 (NEW and B), add B to tree

— Update counters at internal nodes

27



Adaptive Huffman (6 of 11)

 The tree must always be sorted

— According to the counters

* Bottom to top in each path, left to right in each level

— Say that a counter changed from N to N+1
* If the node is not in the right position anymore
* Find the furthest node with a counter of N
» Swap the two nodes (or subtrees)

* Repeat until the tree is sorted

— The decoder does the exact same job

28



Adaptive Huffman (7 of 11)

— ABCCA: output 00 11 (NEW and C), add C to tree

* NEW got a longer code in the previous step

— Now, the first level has the wrong order

29



Adaptive Huffman (8 of 11)

— We need to move A to a different spot
— Swap A with the furthest node with a counter of 2

* We basically swap the children of the root

30



Adaptive Huffman (9 of 11)

— ABCCA: output 101 (just C, increase its counter)
— Now Cis swapped with A (the furthest node with 1)

31



Adaptive Huffman (10 of 11)

— ABCCA: output 101 (just A, increase counter)
— Now A is swapped with B

32



Adaptive Huffman (11 of 11)

* Encoder and decoder always in sync
— We first export the code

— And then change the tree
* The decoder sees the code and follows

* It knows which symbol changed its counter

— Output NEW before new codes

* Followed by initial code, to notify decoder of new node

— Note: NEW also changes its code

33



OIKONOMIKO ATHENS UNIVERSITY

MANEMNIEXETHMIO OF ECONOMICS
AOHNON AND BUSINESS
Arithmetic Coding

Class: Multimedia Technology, Section # 6: Entropy Coding
Instructor: George Xylomenos, Department: Informatics



Arithmetic (1 of 10)

* Codes input into a single fractional number
— Fraction length depends on input length
* May be very long!
— No need for fixed bits/symbol
* Avoids divergence from the optimal
— Needs to know symbol probabilities

— Needs a terminal symbol in the end

* This is used to end decoding

35



Arithmetic (2 of 10)

* Preparatory stage

— Sort all symbols (usually, alphabetically)

— Symbol x. assigned the interval [a, b,)
* The interval satisfies b.-a, = p(x)

— Example
* P(a)=0.4, P(b) =0.3, P(c) =0.2 and P(S) = 0.1 (terminal)
* Interval a: [0, 0.4), Interval b: [0.4,0.7)
* Interval c: [0.7, 0.9), Interval S: [0.9,1.0)
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Arithmetic (3 of 10)

* Coding algorithm

low = 0.0;

high = 1.0;

repeat {
input s;
range = high - low;
high = low + range * highrange([s];
low = low + range * lowrangel[s];
} until s = $;

output any number 1n [low, high);

37



Arithmetic (4 of 10)

 What does the encoder do?
— Lowrange]s]: low end of interval for s
— Highrange[s]: high end of interval for s

— The input is encoded as a interval

* The interval is initialized to [0,1)
* In every step, the interval shrinks
* Depending on the input symbol

* The longer the input, the smaller the interval

38



Arithmetic (5 of 10)

: 0.4 0.28 0.244 0.244
$ $ $ $ $

0.9 —— - R R 1
c c c C: C

0.7 —— ; — S ) 1
B B B B B

0.4 —— —— S —r : _—
A A A A A

0 0 0.16 0.208 0.2404

Arithmetic coding example
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Arithmetic (6 of 10)

e Output calculation
— We need a number within the interval
— But, with the shortest fractional part
— We start with 0. and add bits

— Concatenate a 1 at the right end
* |f the fraction is over the high end, switch to O

e Repeat until the fraction is within the interval

— No need to send the initial O.

40



Arithmetic (7 of 10)

* Decoding algorithm
input n;

repeat {

find s so that n 1s 1n

[lowrange|[s],

output s;

range = highrange[s] - lowrangels

highrange[s]) ;

n = (n - lowrange[s]) / range;

} until s = S;

]

4
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Arithmetic (8 of 10)

$ $ § 0,949667 .| $ $

0.9 —— 4 . iy 1
C C C .“'_.,ﬁ C ' C

0.7 —— ——  0,6849 —— 4

0,60547 |
B B B B .| B
0,49667
04 —1— o 4 - 1 —
0,242188 |~

A A A A A

0 0 0.16 0.208 0.2404

Arithmetic decoding example
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Arithmetic (9 of 10)

* Why do we need a terminal symbol?
— Decoding produces a single number
* Not intervals, like encoding

— |t is not clear when to stop

e We could continue forever!

— The terminal symbol is the stop sign

* |f we hit its interval, we are done

— We do not need an actual symbol

* We just need to assign it an interval

43



Arithmetic (10 of 10)

* |ssues with arithmetic encoding
— Fractional numbers with arbitrary bit length
* Needs special libraries
* Block-based encoding
— Break the input into fixed length blocks
— Each blocks requires fewer bits
— Small drop in efficiency

— No need for terminal symbol

44
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Why a window? (1 of 2)

* Limitations of entropy coding
— VLC: needs handling of bit sequences
— Arithmetic: needs very long numbers

— And they cannot do better than the entropy!
* An alternative: code sequences of symbols

— |Ideally, variable length ones

— Which sequences are common?

— How can we represent them?

46



Why a window? (2 of 2)

e At any given time the encoder
— Has coded the input up to a point

— Needs to code the input that follows
 Window-based coding
— Looks for input prefixes...

— ...which have already been coded...

— ...50 as to replace the prefix with a code

47



LZ77 (1 of 4)

N=12

|||||||||||||
B=8 | F=s4

e LZ77 Algorithm (due to Lempel & Ziv, 1977)

— At any given time, a “window” over the input

* Left side: already encoded
* Right side: next piece to encode
— Replace longest possible prefix with (O,L,C)
* O: position of prefix on the left side
* L: length of match

 C: first non-matching symbol

48



LZ77 (2 of 4)

IaIcIaIbIbIaICIa|bIaIaICI

* Example of LZ77 encoding
— Replace baa with (4,2,a)
* “ba” found at position 4 on the left side
— First position is 0
* Length of “ba” is 2

* Next symbolis “a”

— If no match, set the length to O

49



LZ77 (3 of 4)

IaIcIaIbIbIaICIa|aIaIchI

* Overlapping example
— Match can overlap the right side!
— Replace aac with (7,2,c)
 LZ77 encoder implementation
— Windows is usually a power of 2
— Example: 4096+4096 symbols
— Position: 12 bit can point at entire left side

— Length: 12 bit can match entire right side

50



LZ77 (4 of 4)

e Starting the encoder

— Assume a specific (known) left side

* Disadvantages of LZ77
— Each triple requires some bytes per match
— The file can grow with bad matches

— Symbols are initially encoded as (0,0,c)
* Encoding starts with a loss!

* Improvement: put all symbols in initial window

51



LZSS (1 of 2)

e LZSS algorithm (Storer and Szymanski)
— Improves upon LZ77
— Differs in its output codes
— Two options: match or symbol (no match)

— Distinguished by first bit of the output
e Either (O,L): position O, length L
e Or C: character C (no match)

— Triples are broken in two

52



LZSS (2 of 2)

* Implementing LZSS
— We do not want to deal with 9 bit codes!
— We split the output in groups of eight codes

— The first byte describes what follows
* One bit per code
* Shows if it is @ match or a symbol

* The next bytes are interpreted accordingly

— We always process entire bytes (or words)

53
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LZ78 (1 of 2)

e Search a dictionary instead of a window
— Due to the same Lempel and Ziv (1978)
— Longest input prefix found in the dictionary
— Replace prefix with (P,C)
* P:index of prefix in dictionary

e C: first non-matching symbol
— Prefix + symbol are added to the dictionary

— The decoder builds the same dictionary

* And uses it for decoding

55



LZ78 (2 of 2)

Input Output Dictionary
a (0,a) Index 1: a
aa (1,a) Index 2: aa
b (0,b) Index 3: b
ba (3,a) Index 4: ba
ab (1,b) Index 5: ab

* Example: input aaabbaab
— The dictionary gradually gets longer strings
* In LZ77 you can have long matches much earlier

— The decoder builds the dictionary from the codes

* All references are made to previous entries



LZW (1 of 8)

e LZW Algorithm (extended by Welch)
— LZ78: same logic as LZ77

* Match prefix + next non-matching symbol

* Guaranteed progress, even without a match
— LSW produces only codes, no symbols!

* The dictionary is initialized with all symbols

* The next entries are built from those

* But how can we extend the dictionary?

57



LZW (2 of 8)

e LZW coding

— Find longest input prefix in dictionary
— Replace it with is index
* Do NOT consume the next symbol
— Add prefix + next symbol to dictionary
* This extends the dictionary

— Move input pointer BEFORE the next symbol

* The next symbol is the beginning of the next match

58



LZW (3 of 8)

input s;
while not EOF {

input c;

1f [stc] 1s 1n dictionary

s = [s+c];

else {

output code(s);

add [s, c]
s = c; }
}

output code(s);

to dictionary with next code;

59



LZW (4 of 8)

Input Output Dictionary
Index 1: a
Index 2: b
at+a 1 Index 3: aa
aa+b 3 Index 4: aab
b+b 2 Index 5: bb
b+a 2 Index 6: ba
aab+b 4 Index 7: aabb

 Example: input aaabbaabb

— Dictionary starts with all input symbols

60



LZW (5 of 8)

e LZW decoding

— Read the next code

— If it is in dictionary, replace it in the output
* Do not add current match in dictionary yet
* We do not know the next symbol

— Add instead previous match + first symbol
* Because we know now what that symbol was

* So the decoder is always one step behind

61



LZW (6 of 8)

 What if the code is not in the dictionary?

— This occurs if the code is for the latest entry
— But we have not yet added it on our side!
* We do not know what the next symbol is, yet
— The match must have been of the form C???C
* This is the only way for this problem to appear

* So, we get the previous match

* And add its first symbol at its end

62



LZW (7 of 8)

s = NIL; // previous string
while not EOF {
input c;
entry = string(c); // current string
1f entry not in dictionary
entry = s + s[0];
output entry;
if (s != NIL) // only happens once
add [s,entry[0]] to dictionary with next code;

s = entry; // current string becomes previous
}

63



LZW (8 of 8)

Input Output Dictionary
Index 1: a
Index 2: b

1 a

3 aa Index 3: aa

2 b Index 4: aab

2 b Index 5: bb

4 aab Index 6: ba

 Example LZW decoding

— Code 3 points at an empty index

— Must be previous match + first symbol (a+a)

64



Optimizations (1 of 3)

* Dictionaries for LZ78/LZW

— They grow in each step!

— Extensible pointers/indexes
* We start with (say) 4 bit indexes (16 B€oeLcg)
 When dictionary full, add 1 bit to indexes
— What happens if it grows too much?
* Either stop adding entries

* Or drop least used ones

65



Optimizations (2 of 3)

o | Z78/LZW dictionary compression
— Each new entry extends a previous one
* By one symbol
— Store pointer to previous entry
* Plus the new symbol

— Can this be made efficient?
* During coding, we need to search the dictionary

e Can we do this by following pointers?

66



Optimizations (3 of 3)

* TRIE data structure (lexicographic tree)
— Each node has characters as childern

— Each match is a path through the trie
e Each symbol is a branch
 When we reach a leaf, we have a match

* The next symbol is added as a new leaf
— Improves coding speed

— Decoding follows a similar logic

67
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