

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Multimedia Technology

Section # 3: Multimedia systems Instructor: George Xylomenos Department: Informatics

Contents

- Requirements
- Multimedia system hardware
- Multimedia system software
- Real-time systems
- Real-time scheduling

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Requirements

Μάθημα: Multimedia Technology, **Section # 3:** Multimedia Systems **Instructor:** George Xylomenos, **Department:** Informatics

Application requirements (1 of 2)

- Management of large amounts of data
 - Storage, input-output, communication
 - Large loads on all buses (internal and external)
- Communication with the analog world
 - Conversion of media to digital files
 - Digitization of analog streams
 - Digital media processing
 - Conversion back to analog for playback

Application requirements (2 of 2)

- Compression and decompression
 - Hardware, software, or both
 - May be needed in real-time
 - Even inside a peripheral device
 - Example: webcams
- Real-time communication
 - Digitization and playback of audio
 - Digitization and playback of video

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Multimedia system hardware

Μάθημα: Multimedia Technology, **Section # 3:** Multimedia Systems **Instructor:** George Xylomenos, **Department:** Informatics

Hardware (1 of 4)

- Main system controllers
 - Memory and display: northbridge
 - Disks, network, I/O ports and audio: southbridge

Hardware (2 of 4)

- Central Processing Unit (CPU)
 - Media processing instructions
 - Usually with vector processing
- Co-processors
 - Floating Point Unit (FPU)
 - Graphics Processing Unit (GPU)
 - Digital Signal Processor (DSP)
 - Machine Learning (ML/AI)

Hardware (3 of 4)

- Data storage devices
 - High speed controllers
 - RAID arrays (for hard disks)
 - Cost performance tradeoffs
 - HDD for media library
 - SSD for caching
- Input/Output devices
 - Directly on system bus (PCI)
 - On a separate controller (USB)

Hardware (4 of 4)

- Wide range of media devices
 - Analog devices
 - Microphones, headphones, speakers
 - Digital devices
 - Sound cards, frame grabbers
 - USB microphones, headphones and speakers
 - Devices that also compress data
 - Webcams, still/video cameras

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Multimedia system software

Μάθημα: Multimedia Technology, **Section # 3:** Multimedia Systems **Instructor:** George Xylomenos, **Department:** Informatics

Multimedia files (1 of 2)

- Composite media files
 - All media on the same file (e.g., AVI, VOB)
 - Ideally, in consecutive blocks
 - Separation of media segments
 - Video segment
 - Audio segments (multiple)
 - Subtitles (multiple)
 - Redundant reads (must read all languages)

Multimedia files (2 of 2)

- Independent media files
 - More flexible management
 - Only read the right audio and subtitle tracks
 - But, it requires moving the disc head
 - Or investing in SSDs
- Multiple files per title
 - The basis for adaptive streaming
 - Thousands of files per title

File storage (1 of 5)

- Basic distinction: logical vs physical block
- Logical block
 - Example: 1 sec of video
 - Useful for access to the media
- Physical block
 - Example: 16 Kbytes of data
 - Useful for access to the disc

File storage (2 of 5)

- Fixed duration organization
 - Uses small disc blocks
 - Example: 1 KB, 4 KB, 8 KB
 - Each logical block consists of many disc blocks
 - The final one may be partially empty
 - Media index
 - Every logical block has a fixed duration
 - Shows the starting disc block for each logical block

File storage (3 of 5)

- Fixed size organization
 - Uses large disc blocks
 - Example: 256 KB, 512 KB, 1 MB
 - Each disc blocks holds multiple logical blocks
 - May have some empty space in the end
 - Disc index
 - Each disc block has many logical blocks
 - Time code for first logical block in disc block

File storage (4 of 5)

- Fixed duration or fixed size?
- Advantages of fixed duration
 - May required less space
 - Faster location of desired time
 - Each change of quality (for adaptive streaming)
- Advantages of fixed size
 - Fewer disc seeks and transfers
 - Smaller index

File storage (5 of 5)

- Organization for near video on demand
 - Say that we have a 120 min title
 - It starts every 10 min
 - Need to read at 12 different points at once
 - Interleave blocks for every 10 minutes
 - Assume 1 block per minute
 - First group : block 0, block 10, block 20, ...
 - Second group: block 1, block 11, block 21

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Real-time systems

Μάθημα: Multimedia Technology, **Section # 3:** Multimedia Systems **Instructor:** George Xylomenos, **Department:** Informatics

Real-time

- What is a real-time system
 - Executes processes within a specific deadline
 - Regardless of what else is going on
 - The deadline is the latest execution time
 - Usually calculated from when an event occurs
 - Periodic or aperiodic processes
 - Requires complex scheduling
 - Hard and soft real-time systems

Hard and soft systems

- Hard real-time systems
 - Deadlines must always be achieved
 - Otherwise, catastrophic event
 - Example: industrial control
- Soft-real time systems
 - Deadlines statistically achieved
 - Otherwise, user is annoyed
 - Example: set-top box

Multimedia systems

- Soft-real time systems
 - Reliability: there are no catastrophic events
 - In the worst case, the system is useless
 - Redundancy: error hiding
 - Adaptivity: quality reduction
 - Based on understanding human perception
 - Periodicity: usually periodic events
 - Example: display 30 frames per second

Resource Management

- Resources in real-time systems
 - Need to check in advance if resources exist
 - Commit resources to a process
 - Manage resources at any point in time
 - What if resource needs are not constant?
- Resource commitment policies
 - Pessimistic: assume maximum requirements
 - Optimistic: assume average requirements

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Real-time scheduling

Μάθημα: Multimedia Technology, **Section # 3:** Multimedia Systems **Instructor:** George Xylomenos, **Department:** Informatics

Scheduling (1 of 2)

- General purpose systems
 - Priority mechanism
 - Does not provide any guarantees
 - Can just use higher priorities and hope!
- Real-time systems
 - Provide guarantees
 - Pessimistic (worst case) resource commitment

Scheduling (2 of 2)

$$\sum_{i=1}^{m} \frac{C_i}{P_i} \le 1$$

- Process scheduling condition
 - Assume m periodic processes
 - C_i: CPU time, P_i: execution period
 - Total CPU utilization <= 1</p>
 - Not every algorithm can actually achieve this
 - Many fail before they reach 1!

RMS algorithm

- Rate Monotonic Scheduling (RMS): static
 - All processes must be periodic
 - Priority proportional to frequency
 - Process priorities are static
 - Only frequency / period matters
 - Always executes higher priority process
 - As long as it is ready
 - Cannot achieve 100% utilization (in general)

EDF algorithm

- Earliest Deadline First (EDF): dynamic
 - Can also handle aperiodic processes
 - Priority inverse to deadline
 - Could be the next time execution for periodic processes
 - Priorities are dynamic
 - Always executes higher priority process
 - As long as it is ready
 - No guarantees for aperiodic processes

Example: RMS succeeds

διεργασίες

- A: every 30 ms, executes 5 ms
- B: every 40 ms, executes 15 ms
- C: every 50 ms, executes 10 ms
- CPU utilization = 0,74

Example: RMS fails

διεργασίες

- A: every 30 ms, executes 10 ms
- B: every 40 ms, executes 15 ms
- C: every 50 ms, executes 10 ms
- CPU utilization = 0,91

RMS vs EDF

- RMS is simple and fast
 - RMS never changes priorities
 - EDF changes priorities
 - Need to sort the ready list
- EDF is more efficient
 - Can always work for utilization under 100%
 - RMS can fail even at 90%
 - Depends on number and details of processes

Processes vs packets

- Two types of scheduling (in general)
- Preemptive: used with processes
 - A process can be interrupted by a higher priority
 - It will continue later
- Non-preemptive: used with packets
 - Packets always complete transmission
 - Otherwise, the entire transmission is wasted

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

End of Section #3

Μάθημα: Multimedia Technology, **Section # 3:** Multimedia Systems **Instructor:** George Xylomenos, **Department:** Informatics