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Modular Arithmetic

® Deals with restricted ranges of integers, e.g., Zy = {0, 1,
..., N-1} for some large N

* Reset a counter to zero when an integer
reaches a max value N >0

Ifx=gqN+r1, 0<r<N-1, N>0
x mod N =r

x =y (mod N) < x mod N=y mod N
x and y are congruent modulo N




Modular Arithmetic

Examples:
e 1=(9+4)mod12

Srete

« 253 =13(mod 60), since 253= 4*60+13
(253 minutes is 4 hours + 13 min)




Modular Arithmetic

Claim 1: x =y (mod N) iff N [x-y
Proof :
=:  x=pN+1, y=qgN+r = x-y=(p-9)N = N [x-y

<: NIx-y = x-y =kN = x=y+kN
Let r=y mod N, =
that is, y=qN+r

= x=qN+r+kN = x=(q+k)N+r =r=x mod N



Modular Arithmetic

mod N is an equivalence relation
- a=a (mod N) Reflexivity
—a=b (mod N) = b=a (mod N) Symmetry
—a=b (mod N), b=c (mod N)= a=c(mod N) Transitivity

Modulo N arithmetic divides Z into

N equivalence classes each one of the form
[a]= {x| x=a (mod N)} ,0<a<N-1
Or

[a]= {kN+al k € Z}, since x=kN+a, 0<a<N-1



Modular Arithmetic

Example:

There are 5 equivalence classes modulo 5
Z5=10,1, 2,3, 4}

=1{...,-15,-10,-5,0, 5,10, 15, ...}
=1{...,-14,-9,-4,1, 6,11, 16, ...
=1{...,-13,-8,-3,2,7,12,17, ...
=1{...,-12,-7,-2,3, 8,13, 18, ...
=1{...,-11,-6,-1, 4,9, 14, 19, ...
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All numbers in [a] are congruent mod N
(any of them is substitutable by any other)



Modular Addition and Multiplication

Substitution Rule

Letx=x (mod N)and y =y’ (mod N),
then, x+y =x"+y’ (mod N)and xy=x"y (mod N)

The following properties also hold:

i) xHy+z) = (x+y)+z (mod N) Associativity
ii) xy = yx (mod N) Commutativity
iii) x(y+z) = xy+xz (mod N) Distributivity
Hence:

in performing a sequence of additions and multiplications
(mod N) we can reduce intermediate results to their
remainders mod N in any stage

Example:
2345 = (29)9 = 3209 =199=1 (mod 31)




Modular Division

Common arithmetic: inverse of a#0: x=1/x, ax=1

Modular arithmetic: multiplicative inverse of a, modulo N:
e xe Z such that ax=1 (mod N)

e We can also write x = a”! (mod N)

* does not always exist!

Claim 2: For 1 <a <N, a has a multiplicative inverse mod N
iff gcd(a, N) =1

i)Assume a has a multiplicative inverse mod N. Then, there exists x, s.t. ax
= kN+1 for some k. It must hold that gcd(a,N) | ax. Also ged(a,N) | kNN.
Thus, gcd(a,N) | 1, hence it is equal to 1.

ii)If gcd(a,N) =1, then by applying ExtEUCLID(a,N) ...



Modular Division

Example: 2x =1 (mod 6)
gcd(2,6) =2 = 2 does not have an inverse mod 6

How can we find multiplicative inverses when they exist?
If gcd(a,N)=1 then ExtEUCLID returns integers x,y such that
ax +Ny=1=ax=1 (mod N)

Example: 11x =1 (mod 25)

ExtEUCLID(11, 25) returns x = -34 (=16 mod 25), y = 15, ged(11,
25) =1, and thus 11%(-34)=1 (mod 25). The inverse mod 25 is 16

If gcd(a,N)=1 we say that a, N are relatively primes or coprimes

Hence: o has a multiplicative inverse modulo N iff a, N are
coprimes.




Prime Numbers

A number p is prime iff its only divisors are the trivial
divisors 1 and p

AN:Nlp, 2<N<p-1
By convention, 1 is not a prime
P=1{2,3,5,7,11,13,17,19,....... }

Prime numbers play a special role in number theory and its
applications

A number that is not prime is called composite

Goldbach conjecture:

Any even integer greater than 3 can be written as the sum of
two primes



Prime Numbers

Some big prime numbers:

(333+ 10793)1079" + 1 (1585 digits, identified in 1987)
21257787 _ 1 (378.632 digits, 1996)

2772329171 (around 23 million digits, Dec 2017)

Mersenne primes: prime numbers in the form 2™ - 1

— Not all numbers of this form are primes

Fermat primes: prime numbers in the form 22n +1

— Again, not all numbers of this form are primes



Prime Numbers

Fundamental theorem of arithmetic (or unique factorization theorem):
Every natural number = 2, can be written in a unique way as a
product of prime powers:

€] € €,
n=p P, ---pP,
— where each p, is prime, p,< p, < --- <p,and each g, is a positive
integer
— 6000 is uniquely decomposed as 24 - 3 - 53
— Proof by (strong) induction

— Corollary: If p is prime and p|ab = pl|a or p|b (not true when p is
not prime)




Prime Numbers

CLAIM 1 (Euclid’s theorem): There are infinitely many

primes

Proof: Suppose that P = {p;, py, ..., pn} fOor some n

Letp=p;-po-P3- ...  Pn +1

If p is prime, contradiction, since we assumed no
other primes

If p is not prime

By the fundamental theorem, there exists a prime
that divides p

But p mod p;=1, Vi, 1<i<n
again a contradiction.



Prime Numbers

Relatively prime numbers

— Two integers a, b are relatively prime (or co-
primes) if gcd(a, b) = 1.

 E.g., 8 and 15 are relatively prime,

« By Euclid’s algorithm we can decide in polynomial

time if 2 numbers are relatively prime with each
other



Prime Numbers

Euler's phi function

Definition: For every n=2, @(n) = number of integers between 1 and n
that are relatively prime with n

Properties:

— For any prime number p: @(p) = p-1
- @(p?) =p°-p*'=p°(1-1/p)

—  @(mn) = @(m)p(n), iff gcd(m,n) = 1

Corollary: For every n=2

() gL
n)=n ——r
v | ] pL

pln

(where p refers to all prime numbers that divide n)



Prime Numbers

Euler's phi function

The properties help in simplifying the calculations

 @(45) = 24, since the prime factors of 45 are 3 and 5
—  P(45)=45*(1-1/3)(1-1/5)=45*(2/3)(4/5)=24

© ©(1512) = @(2%°3%7) = @(2°)" @(3%) * @(7) =
(23-22) * (33-32)%(7-1) =4 * 18 * 6 = 432

« Hence there are 432 numbers between 1 and 1512 that are
relatively prime with 1512



Prime Numbers

2 useful properties for simplifying calculations

Fermat’ s Little theorem [around 1640]
If p is prime then for every a such that 1 < a < p-1
aPl=1 (mod p)

A generalization: Euler’s theorem
For every integer n>1, a®™ =1 (mod n) for every o
such that gcd(a, n) =1 [if n is prime, ¢(n) =n-1]

For example: Find 22° mod 7
D26 = 22.924=22. (26)4=22. 1 mod 7 = 4 mod 7



Prime Numbers

Fermat’ s Little theorem [around 1640]
If p is prime then for every a such that 1 < a < p-1
aPl=1 (mod p)

Proof:

eletS={1,2,3,...,p-1} all possible non-zero mod p integers
*Main observation: By multiplying integers in S by a (mod p)
we simply re-permute them!

It is an implication of the fact that a has a multiplicative inverse mod
p, since gcd(a, p)=1




Prime Numbers

Example:

a=3,p=7,a°=1 (mod 7)

/p1 1-3 (mod 7) =3
2 23(mod7)=6

3-3 (mod 7) =2
4-3 (mod 7) =5
5-3 (mod 7) = 1
6:3 (mod 7) = 4

I
(1,2,3,4,5,6) = {1-3, 2:3, 3-3, 43, 5-3, 6:3 (mod 7)}

\/\_//

X X

OGP WN =
OOk, W

Taking products: 6! = 3°-6! (mod 7)
6! is relatively prime to 7 = 3°=1 (mod 7)



Prime Numbers

Proof continued (for general a and prime p)

Consider 2 distinct numbers @ 7, I, ] < p-1, 1,j70

The numbers resulting by multiplying the elements of S
by a (mod p) are:
e Distinct
ifnot:x-i=a-j(mod p)=i=j(mod p) =>1i=j,
contradiction
e Non zeromod p
if a -1=0 (mod p) = i=0, contradiction
e In the range [1, p-1]

Hence, they are a permutation of S
= (p-D)!=aP!- (p-1)! (mod p) = abl=1 (mod p)



Primality Testing

Problem Primes:
I: An integer N > 1
Q: Answer whether or not N is prime

One of the most fundamental problems in Computer Science

A naive approach: Trial division

*Iry to see if any of the numbers 2, 3, 4,...,N-1 divides N

e Actually it suffices to try only with the numbers 2, 3, ..., VN
If Nis composite it has a factor, which is at most VN

eIn fact, since N is odd, we can also remove the even numbers

OIWo/rst case complexity: YN/2, hence O(NN), exponential since VN =
2 ogIN/2

e Effective only for small values of N (for RSA, N has 1024 bits or
even more)



Primality Testing

A ditferent approach

 Faster but with a small probability of error

Fermat Test
Algorithm PRIME (N)
Pick a positive integer a<N at random

if a1 =1 (mod N) then return YES // we hope yes
else return NO // definite no

Complexity: only need to use the algorithm for
exponentiation mod N (repeated squaring), hence
O(logN) multiplications



Primality Testing

The algorithm can make errors but only of one kind:

 [tit says that N is composite, then it is correct

 Ifit says that N is prime then it may be wrong

e gcd(a,N)>1: N is not prime, and N fails the test
e gcd(aN)=1
- it N is prime: passes the test

- if N is composite: can pass the test for some ' s!
e.g. 341 =11*31 and 2°%=1(mod341)
- if N is a Carmichael number: passes the test
for all a’ s!!
e.g. 561 =3*11*17 and o>’ =1 (mod 561)
for every a for which: ged(a,n)=1!



Primality Testing

Carmichael numbers

e Actually due to Korselt

* They are the composite numbers that pass the Fermat test for all a’s
that are relatively prime to them

e Alternative definition: A number n is a Carmichael number if it is
not divisible by the square of a prime and, for all prime divisors p
of n, it is true that p—1 | n—1

e They are extremely rare (561, 1105, 1729, 2465,...)
e 561=311-17
e There are only 255 of them less than 10°

e There are 20,138,200 Carmichael numbers between 1 and 10%!
(approximately one in 50 billion numbers)

e Ignore them for now (see Miller-Rabin test for a better algorithm
to test primality)



Primality Testing

/Prlme passes the Fermat test
Composite: passes or fails the test depending on «,

but there is an & for which it fails if it is
not a Carmichael number

If N is composite and not a Carmichael number,
for how many values of a does it fail the test?

CLAIM 3: If a number N fails the Fermat test for some
value of «, then N also fails the test for at least half of
the choices of a <N




Primality Testing

Prime, aN1 =1 (mod N), for all a<N

\ not Prime, aN-' =1 (mod N), for at most half
of the values a<N

Pr[Fermat test returns YES, when N is Prime]=1
Pr[Fermat test returns YES, when N is not Prime] <1/2

Repeat the algorithm k times for different o, a, ..., o
Pr[Fermat test returns YES, when N is not Prime] < 1/2k



Generating Random Primes

Density of prime numbers

Very important to be able to find prime numbers quickly
How should we search for prime numbers?

Theorem: For every n>1, there is always a prime between
n and 2n

Initial proof: Chebyshev (1850)
Simpler proof: Erdos (1932), at the age of 19!!

Thus primes are relatively dense within the natural
numbers




Generating Random Primes

Prime number Theorem (Conjectured by Legendre et al.
~1797-1798, proved in 1896)

Lex m(x) be the number of primes < x. Then
X . T\ X
m(x)~—— or lim (x) =1
Inx 0 x /Inx

If N is a random integer of n bits (hence < 2m), it has roughly
a one-in-n chance of being prime:

2"/In2" 1 loge loge 1.44

=Pr /N is prime] = = =
P [Nis primef 2" In2" log?2" n n



Generating Random Primes

Algorithm

Repeat
Pick a random n-bit integer N
Run the Fermat test on N
Until N passes

How many iterations? (Waiting for the first success)



Generating Random Primes

Analysis on the number of iterations

Let k= #trials until first success for numbers with n bits

Let p = success probability of each trial = Pr[randomly chosen N with n
bits is prime]

Pr[k=j] = probability that we succeed in the j-th trial (and hence fail in
previous ones)

Pr [k5]= (1-p)tp

Elk]1=) jPrlk=j1=) jd-p) ' p=

o0

J=1

o0

J=1

p l-p 1 n

p-1 p’

» 144

P O . -
—— > j(l-p)
p—ljz‘



Generating Random Primes

N=25%10’
25-10°

T(N) = > 10 N 10°

In(25-107)

S
P ro.o\,’@
c.o{@ . C}O&
24%10°| | rermal
¢O Test (a=2)
, A
10" | Primes k Composites| ~20000
N <25%10 Primes |~ 09
20.

Pr[a composite <25-10° passes the test] ~ 0.000 =2-107

10°



Chinese Remainder Theorem

Linear equations in modular arithmetic

— Around 100 A.D.

— Question: Is there an integer x such that in a parade
of x soldiers, when they align themselves in

1. Groups of 3, there is only 1 remaining soldier in the
last row

2. Groups of 4, there are 3 remaining soldiers
3. Groups of 5, there are 3 remaining soldiers



Chinese Remainder Theorem

Theorem:

— Letny, n, ..., N, be positive integers that are relatively
prime with each other, hence gcd(n;, n) =1, V iz].

— Then for any integers a4, a,, ..., a,, the system
X =a,; modny, X =a, modn,, ..., X =a,mod n,,

has a unique solution within Z,, wheren =n;- n, -...-n,

Corollary: If ny, n,, ..., n,, are positive integers that are
relatively prime with each other, then for any x and a:

X=amodn;fori=1,2, .., kiff x=amodn
wheren =n4 N, -...-N,




Chinese Remainder Theorem

Proof:

 Letny, n,, ..., n,be relatively prime with each
other

- Letay, a,, ..., a, be arbitrary integers

« Videfine ¢, = n/n,.

« gcd(c;, n;) =1 =» ¢ has an inverse mod n;

* Letd, be the inverse, hence c,d. mod n,=1

« The number x =a,c,d,+a,c,d,+ ... +a,c,d,
satisfies all the equations

« Complexity: polynomial since we are just using
the extended Euclidean algorithm



Chinese Remainder Theorem

Example

Which x satisfies the following equations?
X =2 (mod 5)
X =3 (mod 13)
a,=2, n;=95, a,=3, n,=13
We have n=n,*n,=5*13=65, ¢, =65/56=13,¢c, =95
Since 13-1=2 (mod 5) and 51 = 8 (mod 13), d,=2, d,=8
Then, x = a,c,d +a,c,d,

X=2:-2-13-+3-5-8 (mod 65)

=52+ 120=42 (mod 65)

All the solutions are in the form x(t)=42+65t,t € Z
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