Special Topics on Algorithms Number-theoretic problems: Exponentiation, Fibonacci numbers and GCD

Vangelis Markakis, Ioannis Milis and George Zois

Exponentiation

• Exponentiation:

I: Two positive integers a,n

Q: Find aⁿ

- Main operation in many cryptographic protocols (e.g., RSA)
- Very important to be able to compute this fast

```
Apply the definition

Apply the definition

Apply the definition

//a, n positive integers p:= 1;

for i:=1 to n do p:=p*a; return p;
```

Complexity: O(n)

Suppose $a \le n$ (or that a is of the same magnitude as n)

```
|I| = \Theta(logn) \Rightarrow n = \Theta(2^{|I|}), O(n) is O(2^{|I|}) = O(exp(I)) NOT POLYNOMIAL!
N(I) = n, O(n) is O(poly(N(I)) PSEUDO-POLYNOMIAL!
```

Is there a polynomial algorithm for EXP?

Exponentiation

Repeated Squaring

Consider n in binary, n =
$$b_k b_{k-1} b_2 b_1 b_0$$
, e.g. 29 = 11101 => 29 = 16+8+4+1 $a^{29} = a^{16} \cdot a^8 \cdot a^4 \cdot a^1$

Idea: Compute sequentially the powers a, a², a⁴, a⁸,... and keep track which ones are needed

Time: O(k) = O(logn)! O(poly|I|)!

Exponentiation

Or equivalently:

```
Exp3(a,n)
p=1;
z=a;
while n>0 do {
   if n is odd then p=p·z;
   z=z²;
   n=[n/2]; }
Return p;
```

Time: O(logn)

<u>29</u>	1	lsb
14	0	
7	1	
3	1	
1	1	msb
0		

Exponentiation – Even more...

- Or yet another implementation
- Based on the recurrence relation:

$$\alpha^{n} = \begin{cases} \left(\alpha^{\frac{n}{2}}\right)^{2}, & \text{n even} \\ \alpha \left(\alpha^{\left\lfloor \frac{n}{2} \right\rfloor}\right)^{2}, & \text{n odd} \end{cases}$$

```
Exp4(a,n)

if n=0 then return 1;

z=Exp4(a,\lfloor n/2 \rfloor);

if n is even then return z^2

else return a \cdot z^2
```

Complexity: T(n) = T(n/2) + O(1)

Solving the recurrence (with the Master theorem) \Rightarrow **O(logn)**

Fibonacci Numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89...

Definition:
$$F_n = F_{n-1} + F_{n-2}$$
, $F_0 = 0$, $F_1 = 1$

Problem Fibonacci:

I: a natural number $n \in N$

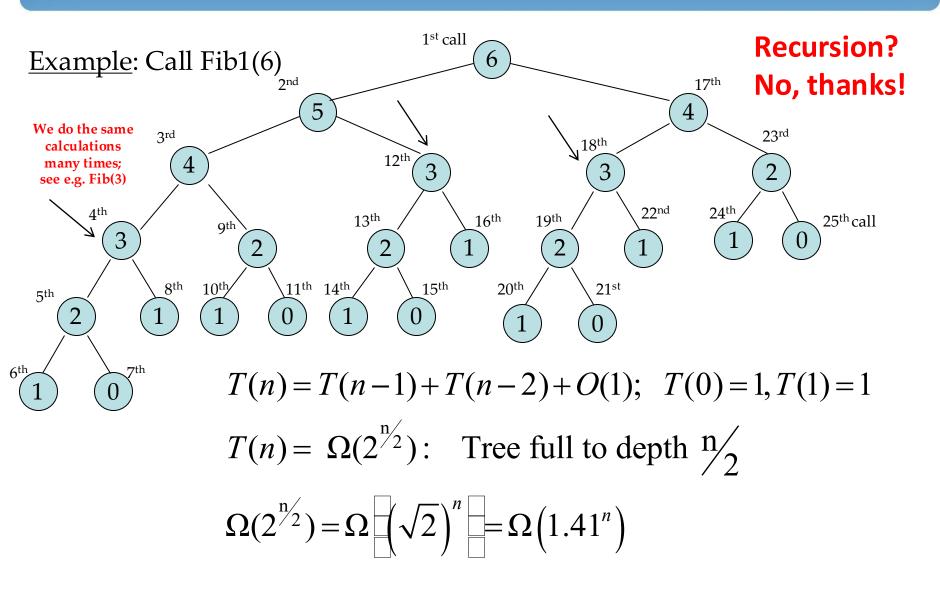
Q: Find F_n

Direct Implementation of Recurrence

```
Fib1(n)
if n<2 then return n
else return Fib1(n-1) + Fib1(n-2)</pre>
```

Complexity of Fib1(n):
$$T(0) = T(1) = 1$$
,
 $T(n) = T(n-1) + T(n-2) + O(1)$

Fibonacci Numbers



Fibonacci Numbers / Dynamic Programming

```
Fib2(n)
f[0]=0; f[1]=1;
for i=2 to n do
    f[i] = f[i-1] + f[i-2];
Return f[n]
```

```
Time: \Theta(n)
```

Space: $\Theta(n)$

Big improvement over Fib 1

But: NOT O(poly(|I|)),

recall |I| = O(logn)

Save Space: No need for an array

Time: still $\Theta(n)$, NOT O(poly(|I|))

Space: $\Theta(1)$ (we only use 3 variables)

Fibonacci Numbers / Closed Form Formula

• Relation to the golden ratio:

$$F_n = \frac{\phi^n}{\sqrt{5}} - \frac{\hat{\phi}^n}{\sqrt{5}}, \text{ where } \phi = \frac{1+\sqrt{5}}{2} = 1.618 \text{ (golden ratio)}$$

$$\text{and } \hat{\phi} = \frac{1-\sqrt{5}}{2} = -0.618$$

$$(\text{roots of } x^2 - x - 1 = 0, \ \hat{\phi} = 1 - \phi = -\frac{1}{\phi}, \ \phi^2 = \phi + 1)$$

• To simplify a bit, let ε be:

$$\varepsilon = \left| \frac{\hat{\varphi}^n}{\sqrt{5}} \right| < \frac{1}{2}, \forall n \square 0 \qquad \frac{\left| \hat{\varphi} \right| < 1 \square \left| \hat{\varphi} \right|^n < 1 \square \left| \hat{\varphi}^n \right| < 1 \frac{\left| \hat{\varphi}^n \right|}{\sqrt{5}} < \frac{1}{2} \frac{\left| \hat{\varphi}^n \right|}{\sqrt{5}}$$

Fibonacci Numbers / Closed Form Formula

Recall F_n is an integer number

$$F_{n} = \frac{\phi^{n}}{\sqrt{5}} - \frac{\hat{\phi}^{n}}{\sqrt{5}} \Rightarrow \begin{cases} F_{n} = \frac{\phi^{n}}{\sqrt{5}} + \varepsilon, & n \text{ odd} \\ F_{n} = \frac{\phi^{n}}{\sqrt{5}} - \varepsilon, & n \text{ even} \end{cases} \Rightarrow F_{n} = round\left(\frac{\phi^{n}}{\sqrt{5}}\right)$$

or
$$F_n = \left| \frac{\phi^n}{\sqrt{5}} + \frac{1}{2} \right|$$
 $F_n \text{ is } \Theta(\varphi^n)$

$$F_n$$
 is $\Theta(\varphi^n)$

Consequences:

- Better lower bound for Fib1:
 - $T(n) = T(n-1) + T(n-2) + O(1) \ge F_n$
 - $T(n) = \Omega(\varphi^n)$ that is $\Omega(1.6^n)$
- 2. We can calculate F_n by using the Exponentiation algorithm, $Exp2(\varphi,n) \leftarrow$ Complexity: O(logn)

But we don't like <u>real (irrational)</u> numbers!

Fibonacci Numbers / Exponentiation

- We can work only with integer/rational arithmetic
- Use the Exponentiation algorithm again, but to an array this time!

Matrix representation:

- Hence, just need to compute Aⁿ
- Use the exponentiation algorithm
 - Exactly as before but replacing number multiplication by matrix multiplication (multiplications of 2 x 2 matrices)
- All intermediate results in the run of the algorithm are integer numbers
- Complexity: O(logn)

Divisibility

- d | a : d divides a (d is a divisor of a)
- Hence, a = kd for some integer k
 - Every integer divides 0
 - If a > 0 and d | a, then |d| ≤ |a|
- Every integer a (with a \neq 0) has as trivial divisors 1 and a itself
- The non-trivial divisors of a are called factors
 - Factors of 20 : 2, 4, 5, and 10

Simple facts:

- $-a|b \Rightarrow a|bc$ for every integer c
- $-a|b \Rightarrow |a| \leq |b| \text{ or } b = 0$
- $a|b \wedge b|c \Rightarrow a|c$
- $a|b \wedge a|c \Rightarrow a|(b + c) \text{ and } a|(b c)$
- $a|b \wedge a|c \Rightarrow a|(bx + cy)$ for all integers x, y
- $a|b \wedge b|a \Rightarrow |a| = |b|$

Division theorem:

For every pair of integers a, b with b≠0, there are unique integers q and r such that

$$a = qb + r (0 \le r < |b|)$$

- $q = quotient = \boxed{\frac{a}{b}}$
- $r = a \mod b = remainder$
- Proof:
 - Existence: either by induction or by looking into the smallest nonnegative integer in the sequence
 -, a-3b, a-2b, a-b, a, a+b, a+2b, a+3b,...
 - Uniqueness: by contradiction

Common divisors

- If d I a, and d I b, then d is a common divisor of a and b
 - e.g., the divisors of 30 are 1, 2, 3, 5, 6, 10, 15, 30
 - divisors of 24: 1, 2, 3, 4, 6, 8, 12, 24
 - Common divisors of 24 and 30: 1, 2, 3, and 6
 - 1 is a common divisor for any 2 integers

 Every common divisor of a and b is at most min (|a|, |b|)

Greatest Common Divisor (GCD)

Greatest common divisor

- gcd(a,b): The biggest among the common divisors (sometimes also written as (a, b)).
- If a ≠ 0, and b ≠ 0, then gcd(a, b) is an integer between 1 and min(|a|, |b|)
- Convention:
 - gcd(0, 0) = 0
- Simple properties:
 - gcd(a,b) = gcd(b,a)
 - gcd(a,b) = gcd(|a|, |b|)
 - gcd(a,0) = |a|
 - gcd(a, ak) = |a| for every k ∈ Z

Greatest Common Divisor (GCD)

GCD

I: $a, b \in \mathbb{N}$

Q: Find gcd(a,b)

A simple algorithm:

```
GCD (a,b)
while a≠b do
   if a>b then a=a-b
   else b=b-a
return a
```

Greatest Common Divisor (GCD)

Correctness of GCD(a,b)

Claim 1: if a > b then gcd(a,b) = gcd(a-b,b)

Proof:

Let g = gcd(a,b), and g' = gcd(a-b,b)

Then, a=gx and b=gy for some x, y \Rightarrow g | a-b \Rightarrow g' \geq g

Also, a-b = g'z and b=g'w for some z, w \Rightarrow a = g'(z+w) \Rightarrow g' | a \Rightarrow g \geq g'. Hence g = g'

Complexity of GCD(a,b)

Worst case (either a=1 or b=1): Complexity O(w), with w=max{a,b}

|I| = O(loga + logb) = O(logw)

O(w) is not O(poly | I |)!

Euclid's Algorithm

Around 300 B.C., Euclid's elements, Book 7

```
EUCLID (a,b) (with a>b)
if b=0 then return a
else return EUCLID(b, a mod b)
```

Correctness of EUCLID (a,b)

Claim 2: if a > b then gcd(a,b) = gcd(b, a mod b)
Proof: Apply repeatedly Claim 1

Example

a	b
55	34
34	21
21	13
13	8
8	5
5	3
3	2
2	1
1	0

Euclid's Algorithm

More examples:

•
$$494 = 1.260 + 234$$

•
$$260 = 1.234 + 26$$

•
$$234 = 9.26$$

•
$$gcd(1742, 494) = 26$$

•
$$132 = 3.35 + 27$$

•
$$35 = 1.27 + 8$$

•
$$27 = 3.8 + 3$$

•
$$8 = 2.3 + 2$$

•
$$3 = 1.2 + 1$$

•
$$2 = 2.1$$

•
$$gcd(132, 35) = 1$$

"We might call it the granddaddy of all algorithms because it is the oldest nontrivial algorithm that has survived to the present day", (D. Knuth)

Euclid Algorithm

Complexity of EUCLID(a,b)

- One of a and b is at least halved at every call
- Both a and b are at least halved after any two

recursive calls

0 b a/2

Claim 3: if a≥b then a mod b<a/2 a mod b

Proof

Case 1: $b \le a/2$, then a mod b < b < a/2

Case 2:
$$b > a/2$$
 then a mod $b = a-b$

Time complexity:

At most k = loga + logb calls, that is O(loga + logb)

How many Euclid calls for Fibonacci Numbers?

Tight example on the complexity

```
EUCLID(F_{k+1},F_k) (=EUCLID(F_k,F_{k+1} \mod F_k))
      EUCLID(Fk,Fk-1)
k-1
     EUCLID(Fk-1,Fk-2)
k-2
                                                       F_{k+1} \mod F_{k=1}
      EUCLID(F_3,F_2) (=EUCLID(2,1))
                                                    (F_k+F_{k-1}) \mod F_k=
      EUCLID(1,0) = 1
                                                F_k \mod F_k + F_{k-1} \mod F_k =
1
                                                    0+F_{k-1} \mod F_k = F_{k-1}
      =k-1 recursive calls
```

Complexity: $O(logF_{k+1} + logF_k)$

EUCLID and Fibonacci numbers

If Euclid needs k calls, can we extract more information about a and b?

$$b=0 \Rightarrow k=0$$
 calls
 $a=b \Rightarrow k=1$ calls

Lemma: For a>b>0, if EUCLID(a,b) performs $k \ge 1$ recursive calls, then $a \ge F_{k+2}$ and $b \ge F_{k+1}$

Proof: By induction on k

Induction base: for k=1 call:

$$b > 0 \Rightarrow b \ge 1 = F_2 \Rightarrow b \ge F_2$$

 $a > b \Rightarrow a \ge 2 = F_3 \Rightarrow a \ge F_3$

Inductive hypothesis: suppose true for k-1 calls:

$$a \ge F_{k+1}$$
, $b \ge F_k$

EUCLID and Fibonacci numbers

Inductive step: suppose the algorithm needed k calls

- $-k > 0 \Rightarrow b > 0 \Rightarrow EUCLID(a,b)$ calls EUCLID(b, a mod b)
- -b = a', a mod b = b': EUCLID(a', b') performs k-1 calls
- By hypothesis

$$a' \ge F_{k+1} \Rightarrow b \ge F_{k+1}$$
 and $b' \ge F_k \Rightarrow a \mod b \ge F_k$

Also, a > b and by the division theorem

$$\Rightarrow$$
 a \geq b + (a mod b)

$$\Rightarrow$$
 a \geq b + $F_k \geq F_{k+1} + F_k = F_{k+2} \Rightarrow$ a \geq $F_{k+2} \Rightarrow$

Corollary: Lame's Theorem

For $k \ge 1$, if a > b > 0, and $b < F_{k+1}$

EUCLID(a,b) performs at most k-1 recursive calls

EUCLID and Fibonacci numbers

 $k \text{ calls} \Rightarrow$

$$b \ge \frac{\phi^{k+1}}{\sqrt{5}} \Longrightarrow$$

$$\phi^{k+1} \leq b\sqrt{5} \Longrightarrow$$

$$k+1 \le \log_{\phi}(b\sqrt{5}) = \log_{\phi}b + \log_{\phi}\sqrt{5} = \log_{\phi}b + 1.672 \Longrightarrow$$

$$k \le \log_{\phi} b + 0.672 \Longrightarrow$$

 $k \text{ is O}(\log b)$

- Hence, even better complexity than O(loga+logb)
- The smallest of the two numbers determines the number of calls

Extended Euclid's Algorithm

- Let a, b be "large" integers
- It is useful to understand further how gcd(a, b) looks like
- If someone claims that gcd(a, b) = d, how can we check this?
- It is not enough to check if d|a and d|b!
 - (this would show that d is a divisor of a and b, but not necessarily the greatest)

Extended Euclid's Algorithm

Claim 3: If d|a, d|b and d = xa+yb, x,y \in **Z**, then gcd(a,b) = d

Proof:

d|a and d|b
$$\Rightarrow$$

$$\begin{cases} \gcd(a,b) \ge d \\ \gcd(a,b) \mid xa+yb = d \Rightarrow \gcd(a,b) \le d \end{cases}$$

Even further:

<u>Claim 4:</u> gcd(a, b) is the smallest positive integer from the set $\{ax + by : x, y \in Z\}$ of the linear combinations of a and b

Useful in certain applications to compute these coefficients (e.g., cryptosystems)

Extended Euclid's Algorithm –Correctness

Example: gcd(13,4) = 1, since 13*1 + 4*(-3) = 1

Existence of integer coefficients x, y such that gcd(a, b) = xa + yb, for every pair of integers a, b, a>b:

Proof by strong induction on b:

Base: For b=0, we have that $gcd(a,0) = a = a^*x + 0^*y$, which holds for x=1 and every integer y

By induction hypothesis, assume that it holds for any integer <b:

let $gcd(b, a \mod b) = bx' + (a \mod b)y'$

Induction Step:

Then $gcd(a,b) = gcd(b, a \mod b) = bx' + (a \mod b)y'$

$$= bx' + (a - \left\lfloor \frac{a}{b} \right\rfloor b) \ y' = ay' + b(x' - \left\lfloor \frac{a}{b} \right\rfloor y')$$

Hence, x = y' and y = x'- a/b y'

Extended Euclid's Algorithm - Examples

One way to think at it is to run Euclid backwards:

•
$$1742 = 3.494 + 260$$

•
$$494 = 1.260 + 234$$

•
$$260 = 1.234 + 26$$

•
$$234 = 9.26$$

•
$$132 = 3.35 + 27$$

•
$$35 = 1.27 + 8$$

•
$$27 = 3.8 + 3$$

•
$$8 = 2.3 + 2$$

•
$$3 = 1.2 + 1$$

•
$$2 = 2.1$$

•
$$(132, 35) = 1$$

•
$$1 = 3 - 2$$

 $= 3 - (8 - 2.3)$
 $= 3.3 - 8$
 $= 3.(27 - 3.8) - 8$
 $= 3.27 - 10.8$
 $= 3.27 - 10.(35 - 27)$
 $= 13.27 - 10.35$
 $= 13.132 - 49.35$

Extended Euclid's Algorithm

```
ExtEUCLID (a,b)

Input: a,b \in \mathbb{N}; a \geq b \geq 0;

Output: x,y,d \in \mathbb{Z}: gcd(a,b)=d=ax+by

if b=0 then return (1,0,a)

else (x',y',d)=ExtEUCLID(b, a mod b);

return (y', x'-\left\lfloor \frac{a}{b} \right\rfloory',d)
```

Correctness: follows by the existence proof

Complexity: O(logb) as EUCLID(a,b)

Extended Euclid's Algorithm

Example

y'	x'-	<u>a</u> b	у'
/ .			

ax + by = d $99(-11) + 78*14 =$ $-1089+1092= 3$	

a	b	a/b	\mathbf{x}	\mathbf{y}	d
99	78	1	-11	14	3
78	21	3	3	-11	3
21	15	1	-2,	3	3
15	6	2	1	-2	3
6	3	2	$\left \begin{array}{c} 0 \end{array} \right $	1	3
3	0	_	$\mid 1 \rangle$	0	3