
Special Topics on Algorithms
Number-theoretic problems:

Exponentiation, Fibonacci numbers
and GCD

Vangelis Markakis, Ioannis Milis and
George Zois

Exponentiation

• Exponentiation:

I: Two positive integers a,n

Q: Find an

Apply the
definition

• Main operation in many cryptographic protocols (e.g., RSA)

• Very important to be able to compute this fast

Exp1(a,n);
//a, n positive integers
p:= 1;

for i:=1 to n do p:=p*a;
return p;

Complexity: O(n)
Suppose a ≤ n (or that a is of the same magnitude as n)
|I| = Θ(logn)  n = Θ(2|I|) , O(n) is O(2|I|) = O(exp(I)) NOT POLYNOMIAL !
N(I) = n, O(n) is O(poly(N(I)) PSEUDO-POLYNOMIAL !

Is there a polynomial algorithm for EXP ?

Exponentiation

Consider n in binary, n = bkbk-1....b2b1b0 , e.g. 29 = 11101 => 29 = 16+8+4+1

 a29 = a16  a8  a4  a1

Idea: Compute sequentially the powers a, a2, a4, a8,...

and keep track which ones are needed

Exp2(a,n)

p=1;

z=a;

for i=0 to k do

 { if bi=1 then p=p·z;

 z=z2 ; }

Return p;

Time: O(k) = O(logn) !

 O(poly|I|) !

k is O(logn)Repeated Squaring

Exponentiation

 2n

 2n

Exp3(a,n)

p=1;

z=a;

while n>0 do {

 if n is odd then p=p·z;

 z=z2;

 n= ; }

Return p;

29

14

7

3

1

0

1 lsb

0

1

1

1 msb

Time: O(logn)

 2n

Or equivalently:

Exponentiation – Even more...

Exp4(a,n)

if n=0 then return 1;

z=Εxp4(a,);

if n is even then
return z2

else return a·z2

 2n

• Or yet another implementation

• Based on the recurrence relation:










































=










oddn , α

evenn ,

2

2

2

2

n

n

n

a





Complexity: T(n) = T(n/2) + O(1)

Solving the recurrence (with the Master theorem)  O(logn)

Fibonacci Numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89...

Problem Fibonacci:
I: a natural number nN
Q: Find Fn

Direct Implementation of Recurrence

1 ,0 , :Definition 1021 ==+= −− FFFFF nnn

Fib1(n)

if n<2 then return n

else return Fib1(n-1) + Fib1(n-2)

Complexity of Fib1(n): T(0) = T(1) = 1,
 T(n) = T(n-1) + T(n-2) + O(1)

Fibonacci Numbers

Example: Call Fib1(6) 6

5

4

23

2

1 0

1 01

2

01

3

1

4

23

2

1 0

1 01

1st call

2nd

3rd

4th

5th

6th

7th

8th

9th

10th

11th

12th

13th

14th

15th

16th

17th

18th

19th

20th

21st

22nd

23rd

24th 25th call

T (n) =T (n-1)+T (n- 2)+O(1); T (0) =1,T (1) =1

T (n) = Ω(2
n

2) : Tree full to depth n
2

Ω(2
n

2) =Ω 2()
næ

è
ç

ö

ø
÷ =Ω 1.41n()

We do the same
calculations
many times;

see e.g. Fib(3)

Recursion?
No, thanks!

Fibonacci Numbers / Dynamic Programming

Fib2(n)

f[0]=0; f[1]=1;

 for i=2 to n do

 f[i] = f[i-1] + f[i-2];

Return f[n]

Time: Θ(n)

Space: Θ(n)

Big improvement over Fib 1

But: NOT O(poly(|I|)),

recall |I|= O(logn)

Fib3(n);

if n<2 then return n

a=0; b=1;

for i=2 to n do

 { f=b+a; a=b;

b=f; }

Return f;}

Time: still Θ(n), NOT O(poly(|I|))

Space: Θ(1) (we only use 3 variables)

Save Space: No need for an array

Fibonacci Numbers / Closed Form Formula

e =
ĵ n

5
<

1

2
,"n ³ 0

ĵ <1Þ ĵ
n
<1Þ ĵ n <1

 1 5 <1 2

ü

ý
ï

þï
Þ

ĵ n

5
<

1

2

æ

è

ç
ç

ö

ø

÷
÷

,
5

ˆ

5

nn

nF


−=

)1 ,
1

1ˆ ,01 of (roots

 618.0
2

51ˆ and

 ratio)(golden 618.1
2

51
 where

22 +=−=−==−−

−=
−

=

=
+

=










xx

• To simplify a bit, let ε be:

• Relation to the golden ratio:

Fibonacci Numbers / Closed Form Formula









=

























−=

+=

5

even ,
5

odd ,
5

n

nn

n

n

n

roundF

nF

nF
















+=

2

1

5
or

n

nF


−=
5

ˆ

5

nn

nF


Consequences:

1. Better lower bound for Fib1:

• T(n) = T(n-1) + T(n-2) + O(1) ≥ Fn

• T(n) = Ω(φn) that is Ω(1.6n)

2. We can calculate Fn by using the
Exponentiation algorithm, Exp2(φ,n)

Complexity: O(logn)

Fn is Θ(φn)

But we don’t like
real (irrational)

numbers!

Recall Fn is an integer number

Fibonacci Numbers / Exponentiation

Fn+1 Fn

Fn Fn-1

é

ë

ê
ê

ù

û

ú
ú
=

1 1

1 0

é

ë
ê

ù

û
ú

n

= An, that is -1()
n
= Fn+1Fn-1 -Fn

2

• We can work only with integer/rational arithmetic
• Use the Exponentiation algorithm again, but to an array this time!

Prove this by
induction

Matrix representation:

(Cassini’s identity)

• Hence, just need to compute An

• Use the exponentiation algorithm
• Exactly as before but replacing number multiplication by

matrix multiplication (multiplications of 2 x 2 matrices)
• All intermediate results in the run of the algorithm are integer

numbers
• Complexity: O(logn)

Number theory - Divisibility

• Divisibility

– d | a : d divides a (d is a divisor of a)

– Hence, a = kd for some integer k

• Every integer divides 0

• If a > 0 and d | a, then |d| ≤ |a|

– Every integer a (with a  0) has as trivial divisors 1 and a itself

– The non-trivial divisors of a are called factors

• Factors of 20 : 2, 4, 5, and 10

Number theory - Divisibility

• Simple facts:

– a|b  a|bc for every integer c

– a|b  |a| ≤ |b| or b = 0

– a|b  b|c  a|c

– a|b  a|c  a|(b + c) and a|(b - c)

– a|b  a|c  a|(bx + cy) for all integers x, y

– a|b  b|a  |a| = |b|

Number theory - Divisibility

• Division theorem:

– For every pair of integers a, b with b0, there are unique

integers q and r such that

a = qb + r (0 ≤ r < |b|)

– q = quotient =

– r = a mod b = remainder

• Proof:

– Existence: either by induction or by looking into the smallest non-

negative integer in the sequence

….., a-3b, a-2b, a-b, a, a+b, a+2b, a+3b,…

– Uniqueness: by contradiction

a

b

ê

ëê
ú

ûú

Number theory - Divisibility

• Common divisors

– If d I a, and d I b, then d is a common divisor of a

and b

• e.g., the divisors of 30 are 1, 2, 3, 5, 6, 10, 15, 30

• divisors of 24: 1, 2, 3, 4, 6, 8, 12, 24

• Common divisors of 24 and 30: 1, 2, 3, and 6

• 1 is a common divisor for any 2 integers

– Every common divisor of a and b is at most

min (|a|, |b|)

Greatest Common Divisor (GCD)
• Greatest common divisor

– gcd(a,b): The biggest among the common divisors (sometimes

also written as (a, b)).

– If a  0, and b  0, then gcd(a, b) is an integer between 1 and

min(|a|, |b|)

– Convention:

• gcd(0, 0) = 0

– Simple properties:

• gcd(a,b) = gcd(b,a)

• gcd(a,b) = gcd(|a|, |b|)

• gcd(a,0) = |a|

• gcd(a, ak) = |a| for every k є Ζ

16

GCD

I: a, b 

Q: Find gcd(a,b)

A simple algorithm:

GCD (a,b)

while a≠b do

 if a>b then a=a-b

 else b=b-a

return a

Greatest Common Divisor (GCD)

Correctness of GCD(a,b)
Claim 1: if a > b then gcd(a,b) = gcd(a-b,b)
Proof:
Let g = gcd(a,b), and g’ = gcd(a-b,b)

Then, a=gx and b=gy for some x, y  g | a-b  g’ ≥ g

Also, a-b = g’z and b=g’w for some z, w  a = g’(z+w) 
g’ | a  g ≥ g’. Hence g = g’

Complexity of GCD(a,b)
Worst case (either a=1 or b=1): Complexity O(w), with
w=max{a,b}
|I|= O(loga + logb) = O(logw)
O(w) is not O(poly|I|)!

Greatest Common Divisor (GCD)

EUCLID (a,b) (with a>b)

if b=0 then return a

else return EUCLID(b, a mod b)

Claim 2: if a > b then gcd(a,b) = gcd(b, a mod b)
Proof: Apply repeatedly Claim 1

Correctness of EUCLID (a,b)

Euclid’s Algorithm

Example
Around 300 B.C., Euclid’s elements, Book 7

Euclid’s Algorithm

• a = 1742, b = 494

• 1742 = 3494 + 260

• 494 = 1260 + 234

• 260 = 1234 + 26

• 234 = 926

• gcd(1742, 494) = 26

• a = 132, b = 35

• 132 = 335 + 27

• 35 = 127 + 8

• 27 = 38 + 3

• 8 = 23 + 2

• 3 = 12 + 1

• 2 = 21

• gcd(132, 35) = 1

“We might call it the granddaddy of all algorithms because it is the

oldest nontrivial algorithm that has survived to the present day”,

(D. Knuth)

More examples:

Complexity of EUCLID(a,b)

•One of a and b is at least halved at every call

•Both a and b are at least halved after any two
recursive calls

Claim 3: if ab then a mod b<a/2

Proof

Case 1: b ≤ a/2, then a mod b < b <a/2

Case 2: b > a/2 then a mod b = a-b < a/2

Time complexity:

At most k = loga + logb calls, that is O(loga+logb)

Euclid Algorithm

EUCLID(Fk+1,Fk) (=EUCLID(Fk, Fk+1 mod Fk))

EUCLID(Fk,Fk-1)

EUCLID(Fk-1,Fk-2)

…………………….

…………………….

EUCLID(F3,F2) (=EUCLID(2,1))

EUCLID(1,0) =1

=k-1 recursive calls

Fk+1 mod Fk=
(Fk+Fk-1) mod Fk=

Fk mod Fk + Fk-1 mod Fk=
0+Fk-1 mod Fk = Fk-1

How many Euclid calls for Fibonacci Numbers?

k-1

k-2
.
.
..
.
2

1

Complexity: O(logFk+1+logFk)

Tight example on the complexity

Lemma: For a>b>0, if EUCLID(a,b) performs k  1
recursive calls, then a  Fk+2 and b  Fk+1

Proof: By induction on k

Induction base: for k=1 call:

b > 0  b  1 = F2  b  F2

a > b  a  2 = F3  a  F3

Inductive hypothesis: suppose true for k-1 calls:

a  Fk+1, b  Fk

b=0  k=0 calls
a=b  k=1 calls

EUCLID and Fibonacci numbers

If Euclid needs k calls, can we extract
more information about a and b?

Inductive step: suppose the algorithm needed k calls

- k > 0  b > 0  EUCLID(a,b) calls EUCLID(b, a mod b)

- b = a’, a mod b = b’: EUCLID(a’, b’) performs k-1 calls

- By hypothesis

 a’  Fk+1  b  Fk+1 and b’  Fk  a mod b  Fk

 Also, a > b and by the division theorem

  a  b + (a mod b)

  a  b + Fk  Fk+1 + Fk = Fk+2  a  Fk+2

Corollary: Lame’s Theorem

For k  1, if a > b > 0, and b < Fk+1

EUCLID(a,b) performs at most k-1 recursive calls

EUCLID and Fibonacci numbers

EUCLID and Fibonacci numbers

b) O(log is

672.0log

672.1log5loglog)5(log1

5

5

 callsk

1

1

k

bk

bbbk

b

b

k

k

+

+=+=+







+

+









• Hence, even better complexity than O(loga+logb)
• The smallest of the two numbers determines the number of calls

• Let a, b be “large” integers

• It is useful to understand further how gcd(a, b) looks
like

• If someone claims that gcd(a, b) = d, how can we check
this?

• It is not enough to check if d|a and d|b !
• (this would show that d is a divisor of a and b, but not

necessarily the greatest)

Extended Euclid’s Algorithm

Claim 3: If d|a, d|b and d = xa+yb, x,y  Z, then

gcd(a,b) = d

Proof:

 gcd(a,b)  d

 gcd(a,b)|xa+yb =d  gcd(a,b)  d

Extended Euclid’s Algorithm

{ }d|a and d|b 

Even further:
Claim 4: gcd(a, b) is the smallest positive integer from the
set {ax +by : x, y є Z} of the linear combinations of a and b

Useful in certain applications to compute these
coefficients (e.g., cryptosystems)

Example: gcd(13,4) = 1, since 13*1 + 4*(-3) = 1

Εxistence of integer coefficients x, y such that gcd(a, b) = xa + yb,
for every pair of integers a, b, a>b:

Proof by strong induction on b:

Base: For b=0, we have that gcd(a,0) = a = a*x + 0*y, which holds
for x=1 and every integer y

By induction hypothesis, assume that it holds for any integer <b:

let gcd(b, a mod b) = bx’ + (a mod b)y’

Extended Euclid’s Algorithm –Correctness

y’ a/b x’-y and y’ xHence,

)y'
b

a
 b(x'-ay'y' b)

b

a
 -(abx'

 b)y' mod (a bx'b) mod a gcd(b,b)gcd(a,Then

==









+=








+=

+==Induction
Step:

Extended Euclid’s Algorithm - Examples

• a = 1742, b = 494

• 1742 = 3494 + 260

• 494 = 1260 + 234

• 260 = 1234 + 26

• 234 = 926

• (1742, 494) = 26

• 26 = 260 - 234

 = 260 - (494 - 260)

 = 2260 - 494

 = 2(1742- 3494) - 494

 = 21742 - 7494

• a = 132, b = 35

• 132 = 335 + 27

• 35 = 127 + 8

• 27 = 38 + 3

• 8 = 23 + 2

• 3 = 12 + 1

• 2 = 21

• (132, 35) = 1

• 1 = 3 - 2

 = 3 - (8 - 23)

 = 33 - 8

 = 3(27 - 38) - 8

 = 327 - 108

 = 327 - 10(35 - 27)

 = 1327 - 1035

 = 13(132 - 335) - 1035

 = 13132 - 4935

One way to think at it is to run Euclid backwards:

ExtEUCLID(a,b)

Input: a,b  ; a  b  0;

Output: x,y,d  : gcd(a,b)=d=ax+by

if b=0 then return (1,0,a)

else (x’,y’,d)=ExtEUCLID(b, a mod b);

return

Correctness: follows by the existence proof

Complexity: O(logb) as EUCLID(a,b)

Extended Euclid’s Algorithm

d) ,y'
b

a
 x'-,(y' 









Example

ax + by = d

99(-11) + 78*14 =

-1089+1092= 3

Extended Euclid’s Algorithm

y'
b

a
 x'-y' 









	Slide 1: Special Topics on Algorithms Number-theoretic problems: Exponentiation, Fibonacci numbers and GCD Vangelis Markakis, Ioannis Milis and George Zois
	Slide 2: Exponentiation
	Slide 3: Exponentiation
	Slide 4: Exponentiation
	Slide 5: Exponentiation – Even more...
	Slide 6: Fibonacci Numbers
	Slide 7: Fibonacci Numbers
	Slide 8: Fibonacci Numbers / Dynamic Programming
	Slide 9: Fibonacci Numbers / Closed Form Formula
	Slide 10: Fibonacci Numbers / Closed Form Formula
	Slide 11: Fibonacci Numbers / Exponentiation
	Slide 12: Number theory - Divisibility
	Slide 13: Number theory - Divisibility
	Slide 14: Number theory - Divisibility
	Slide 15: Number theory - Divisibility
	Slide 16: Greatest Common Divisor (GCD)
	Slide 17
	Slide 18
	Slide 19: Euclid’s Algorithm
	Slide 20: Euclid’s Algorithm
	Slide 21: Euclid Algorithm
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Extended Euclid’s Algorithm - Examples
	Slide 30
	Slide 31

