Special Topics on Algorithms
Number-theoretic problems:

Exponentiation, Fibonacci numbers
and GCD

Vangelis Markakis, loannis Milis and
George Zois

Exponentiation

* Exponentiation:

I: Two positive integers a,n

Q: Find a

* Main operation in many cryptographic protocols (e.g., RSA)

* Very important to be able to compute this fast

Expl (a,n) ;
Apply the //§,ln positive integers

definition P -

— | for 1i:=1 to n do p:=p*a;
return p;

Complexity: O(n)

Suppose a < n (or that a is of the same magnitude as n)
[1] = O(logn) = n=0(2!"1), O(n) is O(2"') = O(exp(l)) NOT POLYNOMIAL !

N(I) = n, O(n) is O(poly(N(I))

Is there a polynomial algorithm for EXP ?

PSEUDO-POLYNOMIAL !

Exponentiation
Repeated Squaring W

Consider n in binary, n = byby4....b,b;by, e.g. 29 =11101 => 29 = 16+8+4+1

229=316. 28. a4. gl
Idea: Compute sequentially the powers a, a? a%, a3,...

and keep track which ones are needed

Exp2 (a,n) .
o= ; Time: O(k) = O(logn) !
AEBLE |
for i=0 to k do Olpoly 1)
{ 1f b;=1 then p=p -z;
Zesze]
Return p;

Exponentiation

Or equivalently:

Exp3(a,n)

p=1;

z=a;

while n>0 do {
1if n is odd then p=p-z;
T=72 ¢
n=|n/2);)

Return p;

Isb

S T

Time: O(logn)

Exponentiation — Even more...

* Or yet another implementation

e Based on the recurrence relation:

n 2 Exp4 (a,n)
o ? , N ceven if n=0 then return 1;
o = - , z=Exp4 (a,|_n/2J);
LEJ if n 1is even then
2
ol a 2 ., n odd return z
else return a-z?

Complexity: T(n) = T(n/2) + O(1)

Solving the recurrence (with the Master theorem) = O(logn)

Fibonacci Numbers

0,1,1,2, 3,5,8, 13, 21, 34, 55, 89...

Definition: F =F +F ,, F,=0, F, =1

Problem Fibonacci:

I: a natural number neN

Q: Find F,

Direct Implementation of Recurrence

Fibl (n)

1if n<2 then return n
else return Fibl (n-1) + Fibl (n-2)

Complexity of Fib1(n):

T(0)=T(1) =1,
T(n) =T(n-1) + T(n-2) + O(1)

Fibonacci Numbers
Example: Call Fib1(6) ® Recursion?
@Wh No, thanks!
wm;ln{lltltmnm 3 12h \18h / E
e.g. Fib(3) f :)
13t é 5 @25&‘(:&111
G LA

é }@ IT'(n)=T(n-1)+T(n-2)+01); TO)=LT1)=1
T(n)= Q(2"): Tree full to depth 1

0@")=0{2) =a(141')

Fibonacci Numbers / Dynamic Programming

Fib2 (n)

f[0]=0,;, f[1]=1;
for 1=2 to n do

fli] = £[1-1]

Return f[n]

+ f[1i-2];

Time: O(n)
Space: O(n)
Big improvement over Fib 1

But: NOT O(poly(I11)),

Save Space: No need for an array

Fib3 (n) ;

if n<2 then return n
a=0; b=1;

for 1=2 to n do

{ f=b+ta;
b=f; }

Return f£;}

a=b;

Time:

Space:

recall [I1=0O(logn)

still ©(n), NOT O(poly(IIl))
O(1) (we only use 3 variables)

Fibonacci Numbers / Closed Form Formula

* Relation to the golden ratio:

AN . where ¢=1+*E=1.618 (golden ratio)

5 W5 2{

and ;3:1_—5=—0.618
2
(roots of x> —x—1=0, ¢?:1—¢:—%, ¢ =¢+1)

e To simplify a bit, let ¢ be:

A <100 |o" <100 |9"|<1 5 | g =

g:¢—<l,‘v’nDO @gp |¢| v nin ¢—<1E
V5| 2 5 1/\5<126 V3] 2F

Fibonacci Numbers / Closed Form Formula

Recall F, is an integer number

. 5
n F =—=+¢, nodd)
F = ¢ _ ¢ — 9 \/ng &:Fnzround[ig]
\/g \/g Fn:¢ —&, neven
e J

S|
or F = {¢— + —J F,is O(p")

Consequences:

1. Better lower bound for Fibl:
¢« T(n)=Tn-1)+T(n-2) +O(1) >F,
* T(n)=Q(¢p") thatis (1.6")

2. We can calculate F, by using the But we don ’t like
Exponentiation algorithm, Exp2(¢p,n) real (irrational)
Complexity: O(logn) numbers!

Fibonacci Numbers / Exponentiation

e We can work only with integer/rational arithmetic
e Use the Exponentiation algorithm again, but to an array this time!

Matrix representation:

L L]

A =0 AN thatis (<1 =FLFL = F e |
% ' n-l E a a (Cassini’s identity)

e Hence, just need to compute An
* Use the exponentiation algorithm
« Exactly as before but replacing number multiplication by
matrix multiplication (multiplications of 2 x 2 matrices)
e All intermediate results in the run of the algorithm are integer
numbers

¢ Complexity: O(logn)

Number theory - Divisibility

* Divisibility
— d| a:ddivides a (d is a divisor of a)
— Hence, a = kd for some integer k
* Every integer divides 0
« Ifa>0andd]|a, then|d| < |a]
— Every integer a (with a # 0) has as trivial divisors 1 and a itself

— The non-trivial divisors of a are called factors
e Factorsof20:2,4,5,and 10

Number theory - Divisibility

« Simple facts:
— alb = albc for every integer c

—alb=|al<s|blorb=0

— alb A blc = alc

— alb Aalc=a|(b+c)andal(b-c)

— alb A alc = a|(bx + cy) for all integers x, y

— alb A bla = |a] = |b]

Number theory - Divisibility

 Division theorem:

— For every pair of integers a, b with b0, there are unique
integers q and r such that

a qb+r(0<r<|b|)
— Q= quotlent-%t—)g
— r=amod b = remainder
* Proof:

— Existence: either by induction or by looking into the smallest non-
negative integer in the sequence

.., a-3b, a-2b, a-b, a, a+b, a+2b, a+3b,...

— Uniqueness: by contradiction

Number theory - Divisibility

e Common divisors

— Ifdla,and d | b, then dis a common divisor of a
and b

* e.g., thedivisorsof 30 are 1, 2, 3, 5, 6, 10, 15, 30
« divisorsof24:1,2,3,4,6, 8,12, 24

« Common divisors of 24 and 30: 1, 2, 3, and 6

* 1is a common divisor for any 2 integers

— Every common divisor of a and b is at most
min (|al, [b])

Greatest Common Divisor (GCD)

Greatest common divisor

gcd(a,b): The biggest among the common divisors (sometimes
also written as (a, b)).

If a=0, and b # 0, then gcd(a, b) is an integer between 1 and
min(|al, |bl)
Convention:

gcd(0,0)=0
Simple properties:

gcd(a,b) = ged(b,a)
cd(a,b) = ged(|al, [b])
cd(a,0) = |a|
(

o o

g
g

gcd(a, ak) = |a| forevery k € Z

16

Greatest Common Divisor (GCD)

GCD
I.a,belN
Q: Find gcd(a,b)

A simple algorithm:

GCD (a,b)

while a#b do
1f a>b then a=a-b
else b=b-a

return a

Greatest Common Divisor (GCD)

Correctness of GCD(a,b)

Claim 1: if a > b then gcd(a,b) = gcd(a-b,b)

Proof:

Let g =gcd(a,b), and g’ = gcd(a-b,b)

Then, a=gx and b=gy forsome x, y=>¢glab=>g =g

Also, a-b = g’z and b=g’w for some z, w = a = g’(ztw) =
g la=>g2>g’ Henceg=¢g

Complexity of GCD(a,b)

Worst case (either a=1 or b=1): Complexity O(w), with
w=max{a,b}

[Il= O(loga + logb) = O(logw)
O(w) is not O(poly|11)!

Euclid’s Algorithm

Example

Around 300 B.C., Euclid’s elements, Book 7

EUCLID (a,b) (with a>b)
1f b=0 then return a

else return EUCLID (b, a mod Db)

Correctness of EUCLID (a,b)

Claim 2: if a > b then gcd(a,b) = gcd(b, a mod b)
Proof: Apply repeatedly Claim 1

34
21

O = N W U o

Euclid’s Algorithm

More examples:

a=1742, b = 494
1742 = 3.494 + 260
494 = 1.260 + 234
260 = 1.234 + 26
234 = 9.26
gcd(1742, 494) = 26

a=132,b=35
132 = 3.35 + 27
35=1.27 + 8
27 = 3.8+ 3
8§=23+2
3=1.2+1

2 =2.1
gcd(132, 35) = 1

“We might call it the granddaddy of all algorithms because it is the
oldest nontrivial algorithm that has survived to the present day”,
(D. Knuth)

Euclid Algorithm

Complexity of EUCLID(a,b)

*One of a and b is at least halved at every call

*Both a and b are at least halved after any two
recursive calls PAIENEVYNIVIN

0 \ b a72 a
Claim 3: if a>b then a mod b<a/2 amodb
Proof

Case 1: b<a/2, then amod b <b <a/2
Case 2:b>a/2 thenamodb = a—b6

)

afZ b a
Time complexity: a rrkd b
At most k =loga + logb calls, that is O(loga+logb)

How many Euclid calls for Fibonacci Numbers?

Tight example on the complexity

k-1

k-2

EUCLID(Fx+1,Fx) (<EUCLID(F, Fie1 mod Fx))
EUCLID(Fx, Fi-1)
EUCLID(Fx-1,Fx-2)

EUCLID(Fs,F2) (=EUCLID(2,1))
EUCLID(1,0) =1

Fx+1 mod Fx=
(Fx+Fk-1) mod Fk=
Fx mod Fx + Fx-1 mod Fx=
0+Fk-1 mod Fk=Fk-1

=k-1 recursive calls

Complexity: O(logF,,,+logF,)

EUCLID and Fibonacci numbers

If Euclid needs k calls, can we extract
more information about a and b?

b=0 = k=0 calls
a=b = k=1 calls

Lemma: For a>b>0, if EUCLID(a,b) performs k > 1
recursive calls, then a > F,,, and b > F 4

Proof: By induction on k
Induction base: for k=1 call:
b>0=b>1=F,= |b>F,
a>b=a>2=F;= |a=>F;
Inductive hypothesis: suppose true for k-1 calls:
a>F,.,, b>F,

EUCLID and Fibonacci numbers

Inductive step: suppose the algorithm needed k calls

-k>0=Db>0= EUCLID(a,b) calls EUCLID(b, a mod b)
-b=a’,amodb=b": EUCLID(a’, b’) performs k-1 calls
- By hypothesis

a >F,,=>b>F,, and b" >F, =>amodb>F,

Also, a>b and by the division theorem

—a>b+(amodb)

—a>b+F >F _,+F =F.,, =>a>F,,

Corollary: Lame’ s Theorem
Fork>1,ifa>b>0,and b <F,,,
EUCLID(a,b) performs at most k-1 recursive calls

EUCLID and Fibonacci numbers

k calls=
k+1
b > s

—

J5
§ <b 5=
k+1<log,(hv/5)=log,b+log, 5 =log, b +1.672 =
k<log,b+0.672 =
k 1s O(log b)

e Hence, even better complexity than O(loga+logb)
e The smallest of the two numbers determines the number of calls

Extended Euclid’ s Algorithm

Let a, b be “large” integers

It is useful to understand further how gcd(a, b) looks
like

If someone claims that gcd(a, b) = d, how can we check
this?

It is not enough to check ifdlaand dlb'!

* (this would show that d is a divisor of a and b, but not
necessarily the greatest)

Extended Euclid’ s Algorithm

Claim 3: If dla, dIb and d = xa+yb, x,y € Z, then

gcd(a,b) =d
Proof:
gcd(a,b) > d
dlaand dlb = { gcd(a,b) I xatyb =d = ged(a,b) < d }

Even further:
Claim 4: gcd(a, b) is the smallest positive integer from the
set {ax +by : X, y € Z} of the linear combinations of a and b

Useful in certain applications to compute these
coetficients (e.g., cryptosystems)

Extended Euclid’ s Algorithm —Correctness

Example: gcd(13,4) =1, since 13*1 +4*(-3) =1

Existence of integer coetficients x, y such that gcd(a, b) = xa + yb,
for every pair of integers a, b, a>b:

Proof by strong induction on b:

Base: For b=0, we have that gcd(a,0) = a = a*x + 0*y, which holds
for x=1 and every integer y

By induction hypothesis, assume that it holds for any integer <b:
let gcd(b, amod b) =bx’ + (a mod b)y’

Induction Then ged(a,b) = ged(b, a mod b) = bx'+ (a mod b)y'

Step:

a

= bx'+(a - [%J b) y'=ay+b(x'- [EJ y")

Hence,x =y’andy=x’- a/b y’

Extended Euclid’ s Algorithm - Examples

a=1742, b = 494
1742 = 3.494 + 260
494 = 1.260 + 234
260 = 1.234 + 26
234 = 9.26

(1742, 494) = 26

26 = 260 - 234
= 260 - (494 - 260)
= 2.260 - 494
= 2.(1742- 3.494) - 494
= 2.1742 - 7.494

One way to think at it is to run Euclid backwards:

a=132,b=35
132 = 3.35 + 27
35=1.27 +8
27 = 38+3
8§=23+2
3=12+1
2=21

(132, 35) =1

1=3-2
=3-(8-23)
=33-8
=3.(27-38)-8
=3.27-10-8
= 3.27 - 10-(35 - 27)
= 13.27 - 1035
= 13.(132 - 3.35) - 10-35
= 13.132-49.35

Extended Euclid’ s Algorithm

ExtEUCLID (a,b)

Input: a,b €elN; a > b > 0;
Output: x,vy,d €Z : gcd(a,b)=d=ax+by
1f b=0 then return (1,0, a)
else (x ,vy ,d)=ExtEUCLID (b, a mod b);

return (Y, X'- L%J y',d)

Correctness: follows by the existence proot
Complexity: O(logb) as EUCLID(a,b)

Extended Euclid’ s Algorithm

Example

ax+by=d
99(-11) + 78*14 =
-1089+1092= 3

y x| =

e
a|b|la/bl|x|y]|d
0978 1 [1114] 3
7821 3 | 3l11] 3
2115] 1 |-20\3] 3
15| 6 | 2 1\\-2 3
63| 2 |0/1]3
300/ - [100]3

	Slide 1: Special Topics on Algorithms Number-theoretic problems: Exponentiation, Fibonacci numbers and GCD Vangelis Markakis, Ioannis Milis and George Zois
	Slide 2: Exponentiation
	Slide 3: Exponentiation
	Slide 4: Exponentiation
	Slide 5: Exponentiation – Even more...
	Slide 6: Fibonacci Numbers
	Slide 7: Fibonacci Numbers
	Slide 8: Fibonacci Numbers / Dynamic Programming
	Slide 9: Fibonacci Numbers / Closed Form Formula
	Slide 10: Fibonacci Numbers / Closed Form Formula
	Slide 11: Fibonacci Numbers / Exponentiation
	Slide 12: Number theory - Divisibility
	Slide 13: Number theory - Divisibility
	Slide 14: Number theory - Divisibility
	Slide 15: Number theory - Divisibility
	Slide 16: Greatest Common Divisor (GCD)
	Slide 17
	Slide 18
	Slide 19: Euclid’s Algorithm
	Slide 20: Euclid’s Algorithm
	Slide 21: Euclid Algorithm
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Extended Euclid’s Algorithm - Examples
	Slide 30
	Slide 31

