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Exponentiation

• Exponentiation:

I: Two positive integers a,n

Q: Find an

Apply the 
definition

• Main operation in many cryptographic protocols (e.g., RSA)

• Very important to be able to compute this fast

Exp1(a,n);
//a, n positive integers
p:= 1;

for i:=1 to n do p:=p*a; 
return p;

Complexity: O(n)
Suppose a ≤ n (or that a is of the same magnitude as n)
|I| = Θ(logn)  n = Θ(2|I|) , O(n)  is O(2|I| ) = O(exp(I))   NOT POLYNOMIAL ! 
N(I) = n, O(n) is O(poly(N(I))                       PSEUDO-POLYNOMIAL !

Is there a polynomial algorithm for EXP ?



Exponentiation

Consider n in binary, n = bkbk-1....b2b1b0 , e.g. 29 = 11101 => 29 = 16+8+4+1

      a29 = a16  a8  a4  a1

Idea: Compute sequentially the powers a, a2, a4, a8,... 

and keep track which ones are needed

Exp2(a,n)

p=1;

z=a;

for i=0 to k do 

 { if bi=1 then p=p·z;

   z=z2 ; }

Return p;

Time: O(k) = O(logn) !

         O(poly|I|) !

k is O(logn)Repeated Squaring 



Exponentiation 

 2n

 2n

Exp3(a,n)

p=1;

z=a;

while n>0 do { 

    if n is odd then p=p·z;  

    z=z2;

    n=    ;  }

Return p;
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Time: O(logn)

 2n

Or equivalently:



Exponentiation – Even more...

Exp4(a,n)

if n=0 then return 1;

z=Εxp4(a,    );

if n is even then 
return z2

else  return  a·z2

 2n

• Or yet another implementation

• Based on the recurrence relation:
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Complexity: T(n) = T(n/2) + O(1)

Solving the recurrence (with the Master theorem)  O(logn)



Fibonacci Numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89...

Problem Fibonacci:
I: a natural number nN
Q: Find Fn   

Direct Implementation of Recurrence
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Fib1(n)

if n<2 then return n 

else return Fib1(n-1) + Fib1(n-2) 

Complexity of Fib1(n):    T(0) = T(1) = 1,   
                           T(n) = T(n-1) + T(n-2) + O(1)



Fibonacci Numbers

Example: Call Fib1(6) 6
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T (n) =T (n-1)+T (n- 2)+O(1);   T (0) =1,T (1) =1
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We do the same 
calculations 
many times;     

see e.g. Fib(3)

Recursion?
No, thanks!



Fibonacci Numbers / Dynamic Programming

Fib2(n)

f[0]=0; f[1]=1;

  for i=2 to n do 

       f[i] = f[i-1] + f[i-2];

Return f[n]

Time: Θ(n) 

Space: Θ(n)

Big improvement over Fib 1 

But: NOT  O(poly(|I|)),   

recall |I|= O(logn)

Fib3(n); 

if n<2 then return n 

a=0; b=1;

for i=2 to n do

 { f=b+a; a=b; 

b=f; }

Return f;}

Time: still Θ(n),  NOT  O(poly(|I|))

Space: Θ(1) (we only use 3 variables)

Save Space: No need for an array



Fibonacci Numbers / Closed Form Formula
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• To simplify a bit, let ε be:

• Relation to the golden ratio:



Fibonacci Numbers / Closed Form Formula
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Consequences:

1. Better lower bound for Fib1: 

• T(n) = T(n-1) + T(n-2) + O(1) ≥ Fn

• T(n) = Ω(φn) that is Ω(1.6n)

2. We can calculate Fn by using the 
Exponentiation algorithm, Exp2(φ,n)

Complexity: O(logn)

Fn is Θ(φn)

But we don’t like 
real (irrational) 

numbers!

Recall Fn is an integer number



Fibonacci Numbers / Exponentiation
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• We can work only with integer/rational arithmetic
• Use the Exponentiation algorithm again, but to an array this time!

Prove this by 
induction

Matrix representation:

(Cassini’s identity)

• Hence, just need to compute An

• Use the exponentiation algorithm
• Exactly as before but replacing number multiplication by 

matrix multiplication (multiplications of 2 x 2 matrices)
• All intermediate results in the run of the algorithm are integer 

numbers
• Complexity: O(logn)



Number theory - Divisibility

• Divisibility

– d | a : d divides a (d is a divisor of a)

– Hence, a = kd for some integer k 

• Every integer divides 0 

• If a > 0 and d | a, then |d| ≤ |a| 

– Every integer a (with a  0) has as trivial divisors 1 and a itself 

– The non-trivial divisors of a are called factors

• Factors of 20 : 2, 4, 5, and 10



Number theory - Divisibility

• Simple facts:

– a|b  a|bc for every integer c

– a|b  |a| ≤ |b| or b = 0

– a|b  b|c  a|c

– a|b  a|c  a|(b + c) and a|(b - c)

– a|b  a|c  a|(bx + cy) for all integers x, y

– a|b  b|a  |a| = |b|



Number theory - Divisibility

• Division theorem:

– For every pair of integers a, b with b0, there are unique 

integers q and r such that

a = qb + r (0 ≤ r < |b| ) 

– q = quotient = 

– r = a mod b = remainder

• Proof:

– Existence: either by induction or by looking into the smallest non-

negative integer in the sequence

….., a-3b, a-2b, a-b, a, a+b, a+2b, a+3b,…

– Uniqueness: by contradiction
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Number theory - Divisibility

• Common divisors

– If d I a, and d I b, then d is a common divisor of a

and b

• e.g., the divisors of 30 are 1, 2, 3, 5, 6, 10, 15, 30

• divisors of 24: 1, 2, 3, 4, 6, 8, 12, 24

• Common divisors of 24 and 30: 1, 2, 3, and 6 

• 1 is a common divisor for any 2 integers

– Every common divisor of a and b is at most

min (|a|, |b|)



Greatest Common Divisor (GCD) 
• Greatest common divisor

– gcd(a,b): The biggest among the common divisors (sometimes 

also written as (a, b)).

– If a  0, and b  0, then gcd(a, b) is an integer between 1 and

min(|a|, |b|)

– Convention:

• gcd(0, 0) = 0

– Simple properties:

• gcd(a,b) = gcd(b,a)

• gcd(a,b) = gcd(|a|, |b|)

• gcd(a,0) = |a|

• gcd(a, ak) = |a| for every k є Ζ

16



GCD

I: a, b  

Q: Find gcd(a,b)

A simple algorithm:

GCD (a,b)

while a≠b do

 if a>b then a=a-b

 else b=b-a

return a 

Greatest Common Divisor (GCD) 



Correctness of GCD(a,b)
Claim 1: if a > b then gcd(a,b) = gcd(a-b,b)
Proof:   
Let g = gcd(a,b), and g’ = gcd(a-b,b)

Then, a=gx and b=gy for some x, y  g | a-b  g’ ≥ g 

Also, a-b = g’z and b=g’w for some z, w  a = g’(z+w)  
g’ | a  g ≥ g’. Hence g = g’ 

Complexity of GCD(a,b)
Worst case (either a=1 or b=1): Complexity O(w), with 
w=max{a,b}
|I|=  O(loga + logb)  = O(logw)
O(w) is not O(poly|I|)!

Greatest Common Divisor (GCD) 



EUCLID (a,b) (with a>b)

if b=0 then return a

else return EUCLID(b, a mod b) 

Claim 2: if a > b then gcd(a,b) = gcd(b, a mod b)
Proof:  Apply repeatedly Claim 1

Correctness of EUCLID (a,b)

Euclid’s Algorithm 

Example
Around 300 B.C., Euclid’s elements, Book 7



Euclid’s Algorithm 

• a = 1742, b = 494

• 1742 = 3494 + 260

• 494 = 1260 + 234

• 260 = 1234 + 26

• 234 = 926

• gcd(1742, 494) = 26

• a = 132, b = 35

• 132 = 335 + 27

• 35 = 127 + 8

• 27 = 38 + 3

• 8 = 23 + 2

• 3 = 12 + 1

• 2 = 21

• gcd(132, 35) = 1

“We might call it the granddaddy of all algorithms because it is the 

oldest nontrivial algorithm that has survived to the present day”,  

(D. Knuth)

More examples:



Complexity of EUCLID(a,b)

•One of a and b is at least halved at every call

•Both a and b are at least halved after any two 
recursive calls

Claim 3: if ab then a mod b<a/2

Proof

Case 1: b ≤ a/2, then a mod b < b <a/2

Case 2: b > a/2 then a mod b = a-b < a/2

Time complexity: 

At most k = loga + logb calls, that is O(loga+logb)

Euclid Algorithm 



EUCLID(Fk+1,Fk) (=EUCLID(Fk, Fk+1 mod Fk))

EUCLID(Fk,Fk-1)

EUCLID(Fk-1,Fk-2)

…………………….

…………………….

EUCLID(F3,F2) ( =EUCLID(2,1) )

EUCLID(1,0) =1

=k-1 recursive calls 

Fk+1 mod Fk=
(Fk+Fk-1) mod Fk=

Fk mod Fk + Fk-1 mod Fk=
0+Fk-1 mod Fk = Fk-1 

How many Euclid calls for Fibonacci Numbers?

k-1 

k-2
.
.
..
.
2

1

Complexity: O(logFk+1+logFk)

Tight example on the complexity



Lemma: For  a>b>0, if EUCLID(a,b) performs k  1 
recursive calls, then a  Fk+2 and b  Fk+1

Proof: By induction on k

Induction base: for k=1 call:

b > 0  b  1 = F2    b  F2

a > b  a  2 = F3    a  F3 

Inductive hypothesis: suppose true for k-1 calls:

a  Fk+1,  b  Fk

b=0  k=0  calls
a=b  k=1  calls

EUCLID and Fibonacci numbers

If Euclid needs k calls, can we extract 
more information about a and b?



Inductive step: suppose the algorithm needed k calls

- k > 0  b > 0  EUCLID(a,b) calls EUCLID(b, a mod b)

- b = a’, a mod b = b’: EUCLID(a’, b’) performs k-1 calls

- By hypothesis

    a’  Fk+1  b  Fk+1   and  b’  Fk  a mod b  Fk

    Also, a > b and by the division theorem 

      a  b + (a mod b) 

      a  b + Fk  Fk+1 + Fk = Fk+2  a  Fk+2 

Corollary: Lame’s Theorem

For k  1, if a > b > 0, and b < Fk+1

EUCLID(a,b) performs at most k-1 recursive calls 

EUCLID and Fibonacci numbers



EUCLID and Fibonacci numbers
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• Hence, even better complexity than O(loga+logb)
• The smallest of the two numbers determines the number of calls



• Let a, b be “large” integers

• It is useful to understand further how gcd(a, b) looks 
like

• If someone claims that gcd(a, b) = d, how can we check 
this?

• It is not enough to check  if d|a and d|b !
• (this would show that d is a divisor of a and b, but not 

necessarily the greatest)

Extended Euclid’s Algorithm



Claim 3: If d|a, d|b and d = xa+yb, x,y  Z, then 

gcd(a,b) = d

Proof:

                         gcd(a,b)  d

   gcd(a,b)|xa+yb =d  gcd(a,b)  d 

Extended Euclid’s Algorithm

{                     }d|a and d|b  

Even further: 
Claim 4: gcd(a, b) is the smallest positive integer from the 
set {ax +by : x, y є Z} of the linear combinations of a and b

Useful in certain applications to compute these 
coefficients (e.g., cryptosystems)



Example: gcd(13,4) = 1, since 13*1 + 4*(-3) = 1

Εxistence of integer coefficients x, y such that gcd(a, b) = xa + yb, 
for every pair of integers a, b, a>b:

Proof by strong induction on b: 

Base: For b=0, we have that gcd(a,0) = a = a*x + 0*y, which holds 
for x=1 and every integer y

By induction hypothesis, assume that it holds for any integer <b:

let gcd(b, a mod b) = bx’ + (a mod b)y’

Extended Euclid’s Algorithm –Correctness
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Extended Euclid’s Algorithm - Examples

• a = 1742, b = 494

• 1742 = 3494 + 260

• 494 = 1260 + 234

• 260 = 1234 + 26

• 234 = 926

• (1742, 494) = 26

• 26 = 260 - 234

         = 260 - (494 - 260)

         = 2260 - 494

         = 2(1742- 3494) - 494

         = 21742 - 7494

• a = 132, b = 35

• 132 = 335 + 27

• 35 = 127 + 8

• 27 = 38 + 3

• 8 = 23 + 2

• 3 = 12 + 1

• 2 = 21

• (132, 35) = 1

• 1 = 3 - 2

        = 3 - (8 - 23)

        = 33 - 8

        = 3(27 - 38) - 8

        = 327 - 108

        = 327 - 10(35 - 27)

        = 1327 - 1035

        = 13(132 - 335) - 1035

        = 13132 - 4935

One way to think at it is to run Euclid backwards:



ExtEUCLID(a,b)

Input: a,b   ; a  b  0;

Output: x,y,d   : gcd(a,b)=d=ax+by

if b=0 then return (1,0,a)

else (x’,y’,d)=ExtEUCLID(b, a mod b);

return

Correctness: follows by the existence proof

Complexity: O(logb) as EUCLID(a,b) 

Extended Euclid’s Algorithm
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Example

ax + by = d

99(-11) + 78*14 = 

-1089+1092= 3

Extended Euclid’s Algorithm
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