

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Special Topics on AlgorithmsIntroduction

Vangelis Markakis

Special Topics on Algorithms

- A continuation of the Algorithms course
- Emphasis on topics not covered during the Algorithms course and also on some more modern topics and applications
- You can take this course during your 3rd year or later
- Prerequisites:
 - You have passed the Algorithms course
 - You liked the Algorithms course

Content – Topics to be covered

Introduction

- Some basic concepts
- Distinction between polynomial, pseudopolynomial and exponential time algorithms

Problems on numbers

- Exponentiation/Fibonacci/Euclid's Algorithm for GCD
- Modular arithmetic, prime numbers, primality testing
- Applications: public key cryptosystems, RSA and digital signatures

Content – Topics to be covered

- Average case analysis
 - Sorting: Insertionsort, Quicksort
 - Binary Search Trees, hashing
- Coping with NP-completeness Approximation algorithms
 - Greedy and other combinatorial algorithms
 - Vertex Cover, Set Cover, TSP
 - Knapsack, Job Scheduling, Bin Packing
- Flows and Matchings
 - Algorithms for the Maximum Flow in a network graph and the Maximum Matching in bipartite graphs.

Content – Topics to be covered

- Randomized Algorithms
 - Max Cut, Min Cut, Max k-SAT
- Linear and Integer Programming
 - Applications and LP based Approximation Algorithms
 - LP duality
- Pattern matching and string processingRandomized Algorithms
 - The Knuth-Morris-Pratt algorithm
- Invited lectures
 - We may have 1 or 2 lectures by other faculty members and collaborators on some application areas

Bibliography

- [DPV] S. Dasgupta, C. H. Papadimitriou, U. V. Vazirani: "Algorithms"
- [CLRS] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein: "Introduction to Algorithms"
- [KT] J. Kleinberg, E. Tardos: "Algorithm Design"
- ...
- and many resources on the WWW

Communication

- Office hours:
 - Tuesdays: 12:00 14:00
 - Thursdays: 14:00 15:00
- You can always email me regarding questions
 - If I do not reply within 3 days, send it again
- Eclass: Ειδικά Θέματα Αλγορίθμων
 - Please check the announcements there at least once per week

Tutorials

- Teaching Assistant: Panagiotis Tsamopoulos
- Office hours for the TA to be announced soon
- Tutorials start next week

Grading

Final exam	75%
Midterm exam Individual Assignments (x2)	20%
	15%

Note: The midterm is used only if it helps your final grade, otherwise the final exam will count as 95%

Final grade = $max\{0.95*final, 0.75*final + 0.2*midterm\} + assignments$

Introductory concepts: Polynomial, Pseudo-Polynomial and Exponential Algorithms

What are we interested in?

Problems to be solved by a machine: precisely defined; no ambiguities

- We want to transform appropriately the input data (problem instances) to output data
- Problems can be classified as decision (output = YES/NO), search (find an object with desired properties or calculate some quantity) or optimization (optimize a given objective function) problems.

COMPUTATIONAL PROBLEM

A problem where we are given **input** instances and some computational question and we want to find an answer/**output**:

E.g., given a graph we wish to compute the set of vertices of odd degree, or to compute a set of k vertices where every pair of them is connected by an edge.

Examples of Problems

EXP(onentiation)

FIBONACCI NUMBERS

I: positive integers a,n

Q: calculate aⁿ

I: a positive integer n

Q: calculate the n-th Fibonacci number F_n

SUBSET SUM

I: a set $S=\{a_1, a_2, ..., a_n\}$ of n positive integers and an integer B

Q: is there a subset $A \subseteq S$ s. t. $\sum_{i \in A} a_i = B$?

SAT(isfiability)

I: a boolean formula φ

Q: Is ϕ satisfiable?

(is there a value assignment to its variables making ϕ TRUE ? = truth assignment)

Algorithms

Three crucial questions about any algorithm for any problem:

- 1. Is it correct?
 - Does it always terminate?
 - Does it give a correct answer for any instance of the problem?
- 2. How much time/space does it take, as a function of its input?
 - "time" = number of steps / "space" = number of bits in memory
 - "time" independent of language/implementation/machine
 - We mostly focus on time, expressed as a function T(n), where n is the size of the instance we try to solve
 - Interested in asymptotic behavior of T(n)
 - Notation: O, Ω, Θ, ο, ω
- 3. Can we do better?

Time Complexity of an algorithm

There are many instances of the same size
How does the algorithm work over all these instances?

Best-case complexity

- The minimum number of steps taken on any instance of size n
- Not useful, too optimistic

Worst-case complexity

- The maximum number of steps taken on any instance of size n
- An upper bound on the complexity of the problem
- The most usual analysis

Average case complexity

- The average number of steps taken on any instance of size n
- Depends on the distribution of instances (use of probabilities)

Time Complexity of a problem and lower bounds

Complexity of a problem Π : $T_{\Pi}(n)$

The (worst case) complexity of the best (known) algorithm A

$$T_{\Pi}(n) = \min_{A} \left\{ T_{A}(n) \right\}$$

Obtaining a lower bound on a problem's complexity $L_{\Pi}(n)$:

- By proving that there is no algorithm with $T_A(n) < L_{\Pi}(n)$
- Rare results (e.g., log(n!) for sorting), very difficult to prove lower bounds on the required time for a given problem!

Optimal algorithm

- An algorithm A, for which $T_A(n) = L_{\Pi}(n)$
- For many problems we still do not know if we have found an optimal algorithm
- Even for well-studied problems, new improvements arise over the years

Algorithm Analysis

- Evaluation of time complexity
 - Average, worst, best case
- Appropriate solution depending on the application requirements

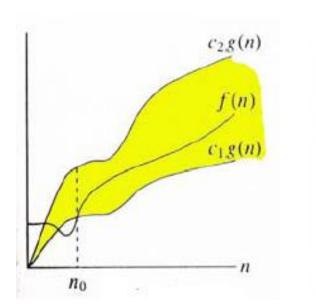
Benefits of theoretical analysis:

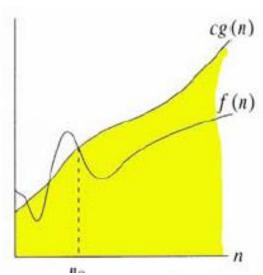
- Do not require experimental evaluation but only concrete description of the algorithm
- Results into general conclusions easy to verify, by considering all input instances, determining the time complexity as a function of the input size

Mathematical background: discrete math (graphs, recurrence relations, combinatorics), mathematical logic, induction in all its forms (simple, strong, structural)

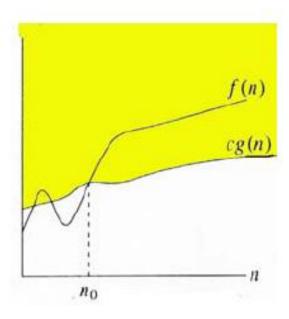
Asymptotic Notation

In pictures:





$$f(n) = O(g(n))$$



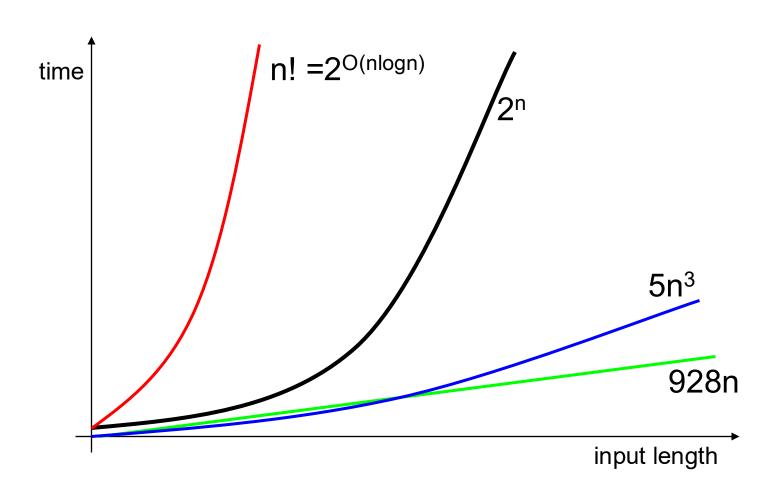
$$f(n) = \Omega(g(n))$$

Asymptotic Notation

More formally:

- A function f(n) is O(g(n)) if there exist positive constants c_0 and n_0 such that $f(n) \le c_0 g(n)$ for every $n \ge n_0$
 - The constant c₀ might be large (but still constant, independent of n)
 - Examples:
 - 2n + 10 is O(n). It suffices to set $c_0 = 3$ and $n_0 = 10$
 - 4nlogn + 150n + 3000sqrt(logn) = O(nlogn). Set $c_0 = 3154$, $n_0 = 1$
- A function f(n) is $\Omega(g(n))$ if there exist positive constants c_0 and n_0 such that $f(n) \ge c_0 g(n)$ for every $n \ge n_0$
- A function f(n) is $\Theta(g(n))$ if f(n) is O(g(n)) and f(n) is $\Omega(g(n))$

Growth of various functions



Size of instance and complexity

Consider the description of an instance (i.e., of all the parameters and constraints)

||| = length of encoded instance/input

|| = # of digits of the encoded input

```
Integer n: Decimal Binary Unary # bits : \lfloor \log_{10} n \rfloor + 1 \lfloor \log_2 n \rfloor + 1 n
```

Size of instance and complexity

- We typically use the binary encoding
 - but there are reasons to consider other encodings too in complexity theory
- Hence, unless otherwise stated, || = # of bits of the encoded input
- Let also N(I) = the largest number in the input
 - Applicable only for problems that have numeric parameters in their input, like Knapsack
- Classification of algorithms
 - Polynomial algorithms: running time O(poly(|I|)
 - Exponential algorithms: running time Θ(exp(|I|)
 - Pseudo-Polynomial algorithms: $\Theta(\text{poly}(N(I)), \text{ which in worst case is }\Theta(\exp(|I|))$
 - We can say that they are O(poly(|I|)) if we consider I encoded in unary! (i.e, polynomial when N(I) not too large)
 - Example: Knapsack admits a dynamic programming algorithm with running time $O(n^2 v_{max})$, where v_{max} is max value in the instance
 - Only relevant for problems with numeric parameters!
 - Not relevant for SAT

Analyzing Recurrence Relations

The Master Theorem

- How do we analyze recurrence relations?
- There are various methods
- The substitution method:
 - Keep substituting until you guess the solution
 - We can use induction to prove it formally

```
Example: T(n) = T(n-1) + n, T(1) = 1
```

- T(n) = T(n-1) + n
- = (T(n-2) + n-1) + n
- = T(n-2) + n + n-1
- = (T(n-3) + n-2) + n + n-1
- = ...
- = $n + n-1 + n-2 + ... + 2 + 1 = O(n^2)$

Is there a general result that could be applicable to the recurrence relations we will encounter?

The Master Theorem

If $T(n) = aT(\lceil n/b \rceil) + O(n^d)$ for some constants a > 0, b > 1, $d \ge 0$, then

$$T(n) = \begin{cases} \Theta(n^d), & \text{if } d > \log_b a & (b^d > a) \\ \Theta(n^d \log_b n), & \text{if } d = \log_b a & (b^d = a) \\ \Theta(n^{\log_b a}), & \text{if } d < \log_b a & (b^d < a) \end{cases}$$

- Usually convenient to think of n as a power of b, so that n/b is an integer.
- In many cases of interest, b = 2
- More general versions of this theorem are available as well

The Master Theorem - Examples

- Naive integer multiplication (by divide and conquer)
 - T(n) = 4T(n/2) + O(n)
 - -a = 4, b = 2, $log_b a = log_2 4 = 2$
 - $d = 1 < 2 = log_b a$
 - Case (iii) applies: $T(n) = \Theta(n^{\log_b a}) = \Theta(n^2)$
- Karatsuba's algorithm for integer multiplication
 - T(n) = 3T(n/2) + O(n)
 - -a = 3, b = 2, $log_b a = log_2 3 = 1.59$
 - $d = 1 < log_b a$
 - Case (iii) applies again: $T(n) = \Theta(n^{\log_b a}) = \Theta(n^{1.59})$

The Master Theorem - Examples

• $T(n) = 5T(n/25) + O(n^2)$ -a = 5, b = 25, $log_b a = log_{25} 5 = 0.5$ $- d = 2 > 0.5 = log_h a$ - case (i) applies: $T(n) = \Theta(n^d) = \Theta(n^2)$ • T(n) = T(2n/3) + O(1)- a = 1, b = 3/2, $\log_b a = \log_{3/2} 1 = 0$ $- d = 0 = log_b a$ - case (ii) applies: $T(n) = \Theta(n^0 \log_{3/2} n) = \Theta(\log n)$ • T(n) = 9T(n/3) + O(n)-a = 9, b = 3, $\log_b a = \log_3 9 = 2$ $- d = 1 < 2 = log_h a$ - case (iii) applies: $T(n) = \Theta(n^{\log_b a}) = \Theta(n^2)$