ATHENS UNIVERSITY
CF EGQONOMICS
AND BUSINESS

OIKONOMIKO
MANEMNIETHMIO
AOHNAON

Special Topics on Algorithms
Introduction

Vangelis Markakis

Special Topics on Algorithms

A continuation of the Algorithms course

Emphasis on topics not covered during the Algorithms
course and also on some more modern topics and
applications

You can take this course during your 3™ year or later

Prerequisites:

— You have passed the Algorithms course

— You liked the Algorithms course

Content — Topics to be covered

e Introduction

— Some basic concepts

— Distinction between polynomial, pseudopolynomial and
exponential time algorithms

e Problems on numbers
— Exponentiation/Fibonacci/Euclid’s Algorithm for GCD
— Modular arithmetic, prime numbers, primality testing

— Applications: public key cryptosystems, RSA and digital
signatures

Content — Topics to be covered

e Average case analysis
— Sorting: Insertionsort, Quicksort
— Binary Search Trees, hashing

e Coping with NP-completeness — Approximation
algorithms

— Greedy and other combinatorial algorithms

e Vertex Cover, Set Cover, TSP

e Knapsack, Job Scheduling, Bin Packing

e Flows and Matchings

— Algorithms for the Maximum Flow in a network graph and the
Maximum Matching in bipartite graphs.

Content — Topics to be covered

Randomized Algorithms

— Max Cut, Min Cut, Max k-SAT
Linear and Integer Programming

— Applications and LP based Approximation Algorithms

— LP duality

Pattern matching and string processingRandomized
Algorithms

— The Knuth-Morris-Pratt algorithm

Invited lectures

— We may have 1 or 2 lectures by other faculty members and
collaborators on some application areas

Bibliography

[DPV] S. Dasgupta, C. H. Papadimitriou, U. V. Vazirani :
“Algorithms”

[CLRS] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein:
“Introduction to Algorithms”

[KT] J. Kleinberg, E. Tardos: “Algorithm Design”

and many resources on the WWW

Communication

e Office hours:
— Tuesdays: 12:00 - 14:00
— Thursdays: 14:00 — 15:00

e You can always email me regarding questions
— If I do not reply within 3 days, send it again

e Eclass: Eldka Ocpata AAyopiBuwyv

— Please check the announcements there at least once per
week

Tutorials

e Teaching Assistant: Panagiotis Tsamopoulos
e Office hours for the TA to be announced soon

e Tutorials start next week

Grading

Final exam 75%
Midterm exam 20%
Individual Assighments (x2) 15%

Note: The midterm is used only if it helps your final
grade, otherwise the final exam will count as 95%

Final grade = max{0.95*final, 0.75*final + 0.2*midterm} + assignments

Introductory concepts:
Polynomial, Pseudo-Polynomial and
Exponential Algorithms

10

What are we interested in?

Problems to be solved by a machine: precisely defined; no ambiguities

e We want to transform appropriately the input data (problem instances) to
output data

e Problems can be classified as decision (output = YES/NO), search (find an
object with desired properties or calculate some quantity) or optimization
(optimize a given objective function) problems.

COMPUTATIONAL PROBLEM

A problem where we are given input instances and some computational
question and we want to find an answer/output:

E.g., given a graph we wish to compute the set of vertices of

odd degree, or to compute a set of k vertices where every pair of them is
connected by an edge.

11

Examples of Problems

EXP(onentiation) FIBONACCI NUMBERS

|: positive integers a,n |: a positive integer n

Q: calculate a" Q: calculate the n-th Fibonacci number F,
SUBSET SUM

I: a set S={a,, a,, ..., a,} of n positive integers and an integer B
Q:is there a subset Ac S s. t. ZieA a,=B"
SAT(isfiability)
|: a boolean formula ¢
Q: Is ¢ satisfiable ?
(is there a value assighment to its variables making ¢ TRUE ?
= truth assignment)

12

Algorithms

Three crucial questions about any algorithm for any problem:
Is it correct ?

1.

Does it always terminate?
Does it give a correct answer for any instance of the problem ?

How much time/space does it take, as a function of its
input?

“time” = number of steps / “space” = number of bits in memory
“time” independent of language/implementation/machine

We mostly focus on time, expressed as a function T(n), where n is
the size of the instance we try to solve

Interested in asymptotic behavior of T(n)
Notation: O,), 0, o, w

Can we do better ?

13

Time Complexity of an algorithm

There are many instances of the same size
How does the algorithm work over all these instances?

Best-case complexity

e The minimum number of steps taken on any instance of size n
e Not useful, too optimistic

Worst-case complexity

e The maximum number of steps taken on any instance of size n
e An upper bound on the complexity of the problem
e The most usual analysis

Average case complexity

e The average number of steps taken on any instance of size n
e Depends on the distribution of instances (use of probabilities)

14

Time Complexity of a problem and

lower bounds
Complexity of a problem M: Ty(n)

The (worst case) complexity of the best (known) algorithm A

T, (n)= n}}n{TA(n)}
Obtaining a lower bound on a problem’s complexity L(n):

e By proving that there is no algorithm with T,(n) < Ly(n)

e Rareresults (e.g., log(n!) for sorting), very difficult to prove lower
bounds on the required time for a given problem!

Optimal algorithm

e Analgorithm A, for which T,(n) = Ly(n)

e For many problems we still do not know if we have found an
optimal algorithm

e Even for well-studied problems, new improvements arise over 5
the years

Algorithm Analysis

e Evaluation of time complexity
— Average, worst, best case
e Appropriate solution depending on the application requirements

Benefits of theoretical analysis:

e Do not require experimental evaluation but only concrete
description of the algorithm

e Results into general conclusions easy to verify, by considering all
input instances, determining the time complexity as a function of
the input size

Mathematical background: discrete math (graphs, recurrence relations,
combinatorics), mathematical logic, induction in all its forms (simple, strong,
structural)

17

Asymptotic Notation

In pictures:

ca8(n)
- .
/ j(n)
/ Z
.o
=

e 4

n
Hoy

f(n)=0(g(n))

n

f(n) =0(g(n))

no

f(n) =Q(g(n))

17

Asymptotic Notation

More formally:
e A function f(n) is O(g(n)) if there exist positive constants c, and
Ny such that f(n) < cy,g(n) for every n > n,

— The constant ¢, might be large (but still constant, independent of n)

— Examples:
e 2n+ 10is O(n). It suffices to set c;=3 and ny =10
e 4nlogn + 150n + 3000sqrt(logn) = O(nlogn). Set ¢, = 3154, ny=1

e A function f(n) is Q(g(n)) if there exist positive constants c, and
Ny such that f(n) > c,g(n) for every n > n,

e A function f(n) is ©(g(n)) if f(n) is O(g(n)) and f(n) is Q(g(n))

18

Growth of various functions

time

n! =20(nlogn)

5n3

input length]

19

Size of instance and complexity

Consider the description of an instance (i.e., of all the parameters and
constraints)

|| = length of encoded instance/input

encoding _
stance » encoded instance |

descﬂoed Inwords) e g. in decimal / binary / unary

|I| = # of digits of the encoded input

Integer n: Decimal Binary Unary
#bits |_10g10 nJ+1 Llog2 nj+1 n

Size of instance and complexity

We typically use the binary encoding

— but there are reasons to consider other encodings too in complexity theory
Hence, unless otherwise stated, |I| = # of bits of the encoded input
Let also N(I) = the largest number in the input

— Applicable only for problems that have numeric parameters in their input, like Knapsack

Classification of algorithms

» Polynomial algorithms: running time O(poly(|!|)

» Exponential algorithms: running time O(exp(|!|)

» Pseudo-Polynomial algorithms: ©(poly(N(l)), which in worst case is
O(exp(|1])

e We can say that they are O(poly(|!])) if we consider | encoded in
unary ! (i.e, polynomial when N(I) not too large)

e Example: Knapsack admits a dynamic programming algorithm with
running time O(n? v,,,,), where v, is max value in the instance

e Only relevant for problems with numeric parameters!
e Not relevant for SAT 21

Analyzing Recurrence
Relations

The Master Theorem

e How do we analyze recurrence relations?

e There are various methods

e The substitution method:
e Keep substituting until you guess the solution
 We can use induction to prove it formally

Example: T(n) =T(n-1) +n, T(1) =1
* T(n)=T(n-1)+n

* =(T(n-2)+n-1)+n

e =T(n-2)+n+n-1

e =(T(n-3)+n-2)+n+n-1

e =n+nl+n2+.+2+1=0(n?
Is there a general result that could be applicable to the

recurrence relations we will encounter?

23

The Master Theorem

If T(n) = aT(|_n/b_|) + O(nY) for some constantsa>0,b>1,d >0,

then

O(n?), if d>
T(n)=10(nlog, n), if d=

og,a (b" >a)

log,a (b =a)

O(n'®*), if d<

og,a (b’ <a)

e Usually convenient to think of n as a power of b, so that n/b

is an integer.
* |n many cases of interest, b =2

e More general versions of this theorem are available as well

24

The Master Theorem - Examples

e Naive integer multiplication (by divide and conquer)
— T(n) =4T(n/2) + O(n)
—a=4 b=2,log,a=log,4=2
—d=1<2=log, a
— Case (iii) applies: T(n) = @(nlogb“):®(n2)

e Karatsuba’s algorithm for integer multiplication
— T(n) =3T(n/2) + O(n)
—a=3, b=2,log,a=log,3=1.59
—d=1<log, a
— Case (iii) applies again: T'(n) = @(nl"gb"): O(n'"’)

25

The Master Theorem - Examples

e T(n)=5T(n/25) + O(n?)
— a=5, b=25,log,a=1log,:5=0.5
— d=2>05=log, a
— case (i) applies: T'(n) = @(nd): @(nz)

e T(n)=T(2n/3) + O(1)

- a=1, b=3/2,log,a=logs,1=0

— d=0=log, a

— case (ii) applies: T'(n) = @(no log,,, n)z O(logn)
e T(n)=9T(n/3) + O(n)

— a=9,b=3,log,a=log;9=2

- d=1<2=log, a

— case (iii) applies: T'(n) = @(nlogba)= @(nz)

26

	Slide 1: Special Topics on Algorithms Introduction Vangelis Markakis
	Slide 2: Special Topics on Algorithms
	Slide 3: Content – Topics to be covered
	Slide 4: Content – Topics to be covered
	Slide 5: Content – Topics to be covered
	Slide 6: Bibliography
	Slide 7: Communication
	Slide 8: Tutorials
	Slide 9: Grading
	Slide 10:
	Slide 11: What are we interested in?
	Slide 12: Examples of Problems
	Slide 13: Algorithms
	Slide 14: Time Complexity of an algorithm
	Slide 15
	Slide 16
	Slide 17: Asymptotic Notation
	Slide 18: Asymptotic Notation
	Slide 19: Growth of various functions
	Slide 20: Size of instance and complexity
	Slide 21: Size of instance and complexity
	Slide 22
	Slide 23: The Master Theorem
	Slide 24: The Master Theorem
	Slide 25: The Master Theorem - Examples
	Slide 26: The Master Theorem - Examples

