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Traveling Salesman Problem (TSP) 

TSP 

I: A complete directed weighted graph G=(V,E), integer B

Q (Decision): Is there a permutation of V, <v1,v2,…,vn>   

such that  Σi=1...n w(vi, vi mod n + 1)  B, i.e is there a TSP tour of 

cost at most B ? 

(Note: this is equivalent with asking if there is a Hamiltonian Cycle 
in G (a tour) of cost  B ?)

Optimization: Find a tour of  minimum cost

One of the most well studied problems in Computer Science, 
Operations Research, ...

Brute force approach: O(n!) – No way!
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Traveling Salesman Problem (TSP) 

Some related problems:

HAMILTON CYCLE (HC) [or RUDRATA CYCLE]

I: A (possibly directed) graph G=(V,E)

Q: Is there a Hamiltonian cycle in G? (i.e., a cycle that goes through 
all the vertices)

HAMILTON PATH (HP) 

I: A (possibly directed) graph G=(V,E)

Q: Is there a Hamiltonian path in G? 

Both HC and HP are NP-complete
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HC ≤p TSP 
G=(V,E)

G has a HC

All its edges have cost 1 in G'

 G' has a tour of cost B

G' = (V, E')

E' = V  V 

1, if  (u,v)  E   

w(u,v) = w(v,u) = 

2,  otherwise 

B= |V|  

    

G' has a tour of cost  B

It uses only edges of cost 1 (cost = B)

G has a HC

{

NP-hardness

Some interesting special cases:
•∆-TSP:  A special case of TSP where the triangle inequality holds,
               i.e., w(i,k) ≤ w(i,j) + w(j,k) 1  i, j, k  n
•TSP(1,2): all weights equal to 1 or 2
•And many others...

Most interesting cases turn out to be NP-complete as well
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Coping with NP-complete problems

1. Small instances

2. Special cases

3. Exponential algorithms (Dynamic Programming, Branch and 
Bound,...) 

4. Approximation algorithms

5. Randomized algorithms

6. Heuristic algorithms

Recall:
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DP for TSP

We need to identify first the subproblems we will solve

We will also make use of the TSP path problem, i.e., find a permutation of V, 

<v1,v2,…,vn>   such that  Σi=1...n-1 w(vi, vi + 1)  B.

Optimal Substructure Property:

   Assume w.l.o.g. that we start the TSP Tour at node 1

Assume that  1 ->…S1 …->i->…S2 …-> 1  is an optimal TSP tour

Then the path i->…S2 …-> 1 must be an optimal TSP Path in V\S1 

                                                                                

i 1
S1

1 S2
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DP for TSP

Let g(i,S) = the cost of the shortest path i-> …….. -> 1, going from node i to 
node 1, using all the nodes of S (i.e., the minimum TSP path starting from i, in 
the graph induced by S  {i, 1},  S  V)
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DP for TSP
Our aim is to find 

How ?

By finding  g(k, V-{1,k} ) for all choices of  k  

This  can be done by using the optimal substructure for g(i, S) 
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DP for TSP
Obviously, g(i, ) = w(i, 1)

        We can find    g(i, S)   for all sets S, with |S| = 1

        Then find         g(i, S) for all sets S, with |S| = 2

            ...

        and then find  g(i, S) for all sets S, with |S| =n-2

        Finally:              g(1, V-{1})   ---  |S| =n-1

 We need to compute g(i,S) 

 for  EVERY set S of EACH possible size |S|= 1,2,…,n-2, 

   and for all i  V - (S  {1})
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DP for TSP
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DP for TSP
|S|=0: g(2,)=5,         g(3,)=6,  g(4,)=8

|S|=1: g(2,{3}) = w23 + g(3,) = 9 + 6 = 15

  g(4,{3}) = 15

  g(2,{4}) = 18

  g(3,{4}) = 20

  g(3,{2}) = 18

  g(4,{2}) = 13

|S|=2: g(2,{3,4}) = min{ w23 + g(3,{4}), w24 + g(4,{3}) } = 25                 S={3,4}

  g(3,{2,4}) = min{ w32 + g(2,{4}), w34 + g(4,{2}) } = 25                 S={2,4}

  g(4,{2,3}) = min{ w42 + g(2,{3}), w43 + g(3,{2}) }  =23                 S={2,3}

g(1,{2,3,4}) = min{ w12 + g(2,{3,4}),                                                          S={2,3,4}

   w13 + g(3,{2,4}),

   w14 + g(4,{2,3}) } =

       = min{35, 40, 43} = 35

S = {2}}

}

}

S = {4}

S = {3}
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DP for TSP

for i = 2 to n do g(i,) = w(i,1) ;

for k = 1 to n–2 do // for all sizes of S

for each S  V–{1} s.t. |S|=k do // for all possible sets of size k

for each i  V–(S  {1})

g(i,S):= min{w(i,j) + g(j,S–{j})};
         jS

find g(1, V–{1});
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Complexity:

N = # of g(i,S) computations

For each value of |S| there are ≤ n – 1 choices for i

The number of sets S with |S| = k not including 1 and i is 

T(n) = N ∙ [time to compute g(i,S) by taking the min over g(j,S-{j})  = N ∙ O(n)

 T(n) = O(n22n ), better than n!, but still, appropriate only for small instances  

N = (n-1)
n- 2
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Coping with NP-complete problems

1. Small instances

2. Special cases

3. Exponential algorithms (Dynamic Programming, Branch and 
Bound,...) 

4. Approximation algorithms

5. Randomized algorithms

6. Heuristic algorithms
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Branch-and-Bound 

A different lower  bound on the optimal solution:           

• the half of the sum of minimum elements of each row and each column

• For every node one edge of the tour has to come towards i and one has to 
leave from i

}){min}{min(
2
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n
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ji

ij
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A B C D

A x 3 2 7 2

B 4 x 3 6 3

C 1 1 x 3 1

D 1 6 6 x 1

1 1 2 3 LB = 14/2 = 7 

Σ0

A B

C D

3
4

667

1

3

6

2
1

3

1
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Branch-and-Bound 

A B C D

A x x 2 x 2

B 4 x x 6 4

C x 1 x 3 1

D 1 6 x x 1

1 1 2 3 LB = 15/2 = 7.5 

A B C D

A x 3 x 7 3

B 4 x 3 6 3

C 1 1 x 3 1

D 1 6 6 x 1

1 1 3 3 LB = 16/2 = 8 

Σ2

Branch 1: edge AC in the tour ➔ CA, AB, AD, BC, DC  not in 
tour (why ?) 

Σ1

Branch 2: AC not in tour

Σ0

Σ2Σ1

7

87.5

AC

__

AC

A B

C D

4

66

1

3

6

2

1
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Branch-and-Bound 

A B C D

A x x 2 x 2

B x x x 6 6

C x 1 x x 1

D 1 x x x 1

1 1 2 6 LB = 20/2 = 10 

A B C D

A x x 2 x 2

B 4 x x 6 4

C x x x 3 3

D 1 6 x x 1

1 6 2 3 LB = 22/2 = 11 

Σ4

AC in tour ➔ CA, AB, AD, BC, DC  not in tour

CB in tour ➔ CD, DB, BA not in tour Σ3

AC in tour ➔ CA, AB, AD, BC, DC  not in tour

CB not in tour

and so on …

A B

C D

6

1

2

1

A feasible Solution
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Branch-and-Bound 

Σ0

Σ2Σ1

7

87.5

AC __

AC

Σ4Σ3 1110

CB

__

CB

Σ6Σ5 911.5

AB
__

AB

Σ8Σ7 13.510

BC

__

BC
solution ACBDA

cost = 10

solution ABCDA

cost = 10

No need to 
explore this more
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Branch-and-Bound 

Parameters

▪ Maintain a set S of active states

▪ Initially S = {Σ0} (nothing has been expanded yet)

▪ In each step extract state Σ from S (Σ is the state to be expanded)

▪ UB is a global upper bound of the optimum solution 
– For minimization problems we initially set UB = +

▪ LB(Σ) is a lower bound on all solutions represented by state Σ (i.e. from 
all solutions that can arise after expanding Σ)

▪ Whenever we reach a terminal node with LB(Σ) ≤ UB, then we can 
update our current UB 

▪ During the process, we do not need to examine any further the nodes 
where their LB is higher than UB!
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Branch-and-Bound 

Algorithm Branch and Bound

{ S = {Σ0};

 UB = +

 while S   do

 { get a node Σ from S;   

       //which node ? FIFO/LIFO/Best LB

  S:= S - {Σ};

  for all possible “1-step” extensions Σj of Σ do

  { create Σj and find LB(Σj);

   if LB(Σj)  UB then 

    if Σj is terminal then 

       {  UB:= LB(Σj);

          optimum:= Σj }

    else add Σj to S } } }
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Branch-and-Bound 

     See Chapter 9 (Section 9.1.2) in DPV book, for a different 
branch and bound  algorithm for TSP.
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Coping with NP-complete problems

1. Small instances

2. Special cases

3. Exponential algorithms 

4. Approximation algorithms

5. Randomized algorithms

6. Heuristic algorithms
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Approximability of TSP

Is there any f(n)-approximation algorithm for TSP ?  NO !

Theorem: For any (polynomial time computable) function f(n) (with f(n) ≥ 1 for all n), 

TSP cannot be approximated within a factor of f(n), unless P=NP.

Proof:

Claim: If there is an f(n)-approximation algorithm A for TSP,  

 then, there is a poly-time algorithm for HC, i.e., we can decide the HC problem in 
polynomial time, and thus P=NP!

Reduction from Hamilton Cycle (HC) to TSP:

Consider an instance of HC, i.e., a graph G=(V,E), with |V| = n

Construct a complete weighted graph G' = (V, E'),  E' = all possible edges 

with weights 

     1,          if (u,v)  E   

   w(u,v)  = 

     n f(n),  otherwise 
{
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Approximability of TSP
Proof (cont.):

Running A on G' returns a tour of cost C

a) if the original graph G is Hamiltonian, 
– Optimal TSP tour in G’ has C* = n, 

– Algorithm A will return a tour with cost C ≤ nf(n) (because we assumed 
A is a f(n)-approximation algorithm)

b) if the original graph G is not Hamiltonian
– The optimal TSP tour in G’ must contain at least one edge of cost nf(n):

• Hence, C*  nf(n) + (n-1) > n f(n)

– Algorithm A will return a tour  C ≥ C* > nf(n) (since C*=OPT should be 
less than the solution of A)

 Hence: if we had a f(n)-approximation for TSP, we could solve the HC 
problem.
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TSP with triangle inequality

• Recall: ∆-TSP = special case of TSP where the triangle inequality holds,

               i.e., w(i,k) ≤ w(i,j) + w(j,k), 1  i, j, k  n

• A very natural special case, satisfied by many distance functions

Theorem: There exists a 2-approximation algorithm for Δ-TSP

• How do we start with designing an approximation algorithm?
• First and most important step: we need a lower bound on the cost of the 

optimal solution
• Consider an instance I of TSP
• Claim: OPT(I)  MST(I)
• Proof: delete one edge e from an optimal solution, what remains is a 

spanning tree F

 OPT(I) = w(e) + C(F)   w(e) + MST(I)   MST(I)



Δ-TSP: A 2-approximation
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Step 1: Find a minimum spanning tree, T, of  G, of cost C(T)

Step 2: Double the edges of T and let T’ be  the obtained (multi)graph

All vertices of T’ are of even degree

Recall from graph theory:
•Euler cycle: A tour that visits all the edges exactly once
•A graph is Eulerian (i.e., has an Euler cycle) iff every vertex has an even degree 
 
In the example: Euler cycle W:  1, 2, 3, 2, 4, 6, 5, 7, 5, 6, 8, 10, 9, 10, 8, 6, 4, 2, 1

        

3

64

2

1 5
7

8 10

9

3

64

1 5
7

8 10

92
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Δ-TSP: A 2-approximation

Step 3: Find an Euler cycle W in T’

  Note: W traverses each edge of T twice:  C(W) = 2 C(T)  2 OPT

Step 4: Find a tour H by “shortcutting”  W:

        1, 2, 3, 2, 4, 6, 5, 7, 5, 6, 8, 10, 9, 10, 8, 6, 4, 2, 1

Final solution H = 1, 2, 3, 4, 6, 5, 7, 8, 10, 9, 1

3 8 10

64

2

1 5
7

9

3

64

2

1 5
7

8 10

9
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Δ-TSP: A 2-approximation

 C(H)  C(W) , because of the triangle inequality

 Hence: C(H)  C(W)  2 OPT

 QUESTION:  What is the complexity of this  algorithm ?

3 8 10

64

2

1 5
7

9

3

64

2

1 5
7

8 10

9



Δ-TSP: Tightness of 2-approximation
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Complete graph Kn    

Red edges: w = 2 
Other edges: w=1 (union of a star + cycle)

Example

Optimal tour 

OPT = n



Δ-TSP: Tightness of 2-approximation
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Minimum MST Solution 

C(H) = (n-2)*2 + 2*1 = 2n-2

Hence, C(H) / OPT = (2n-2) / n = 2 – (2/n) → 2
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Δ-TSP: improvement to ρ = 1.5

Theorem: There is a 1.5-approximation algorithm for Δ-TSP [Chistofides 1976] 

Step 1: Start again by finding a minimum spanning  tree, T, of cost C(T)

• We cannot now just double the edges, this will not avoid a loss of 2

• But we would still like to create an Eulerian graph starting from T

• What makes T non-Eulerian?

• Problematic vertices: vertices of odd degree 

• Claim: The number of odd-degree vertices is even (why?)
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Δ-TSP: improvement to ρ = 1.5

Detour on matchings

Consider a graph G = (V, E)

Definition: A matching M is a collection of edges M   E, such that no 2 edges 

share a common vertex

Given a matching M, a vertex u is called matched if there exists an 

edge eM such that e has u as one of its endpoints
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Δ-TSP: improvement to ρ = 1.5

Detour on matchings

Types of matchings we are interested in:

• Maximal matching: find a matching where no more edges can be added

• Maximum matching: find a matching with the maximum possible number 
of edges

• Perfect matching: find a matching where every vertex is matched (if one 
exists)

• Maximum weight matching: given a weighted graph, find a matching with 
maximum possible total weight

• Minimum weight perfect matching: given a weighted graph, find a perfect 
matching with minimum cost

All the above problems can be solved in polynomial time (several algorithms 
and publications over the last decades)



Δ-TSP: improvement to ρ = 1.5
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7

8 10

9

Step 2: 
•Find the set of vertices of T of odd degree, say S
•S contains  an even number of vertices
•Consider the graph GS induced by S 
•Find a minimum weight perfect matching, M,  in GS

3

64

1 5
7

8 10

9



Δ-TSP: improvement to ρ = 1.5

35

 

 

odd degree vertices

H*

• Let H* be an optimal TSP tour
• Shortcut the tour to vertices of S
• This leads to a tour over S 
• By triangle inequality, cost of S-tour ≤ C(H*) = OPT(I) 
• S-tour can be decomposed into 2 perfect matchings of S
 (the red (M1), and the black (M2))

Then C(H*) ≥ C(M1) + C(M2) ≥   C(M) + C(M),  
since M is a minimum weight perfect matching 

Hence, C(M) ≤ C(H*) / 2 = OPT(I)/2

Why is a minimum cost 
perfect matching useful?
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Δ-TSP: improvement to ρ = 1.5
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Step 3: 
•Add the edges of M to T and let T’ be  the obtained (multi)graph
•All vertices of T’ are of even degree now, hence T’ is Eulerian
•Find  an  Euler cycle, W,  in T’ 

Euler cycle W:  1, 2, 3, 6, 8, 10, 9, 7, 5, 6, 4, 2, 1

   C(W) = C(T) + C(M)    C(H*) + C(H*) / 2 = 1.5 C(H*)



37

Δ-TSP: improvement to ρ = 1.5
7

3
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2

1 5

8 10

9

3

6

4
2

1 5
7

8 10

9

Step 4:  

Find a tour H by shortcutting the Euler tour  W:

  H:  1, 2, 3, 6, 8, 10, 9, 7, 5, 6, 4, 2, 1

 

 C(H)  C(W), by  use of the triangle inequality

       Hence, overall: SOL(I) = C(H)  C(W)  1.5 C(H*) = 1.5 OPT(I) 

 QUESTION:  What is the complexity of this  algorithm ?
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Δ-TSP: Tightness of 1.5-approximation

...
1 1

1a1
a2 an

b1 b2 b3 bn

an-1

bn-1

an+1
a3

C(H)=n+n+n=3n

...

a2 an

b1 b2 b3 bn

an-1

bn-1

an+1
a3

...

For the optimal tour H* 

C(H*) = n + (n-1) + 2 = 2n+1

a1

C(H) / C(H*) → 3/2 

• All edges with cost 1, 
apart from the red edge 
of cost n

• Shortcutting may pick 
the red edge and the 
zig-zag MST
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Asymmetric Δ-TSP

• So far we assumed the graph is undirected

• For directed graphs the problem is more difficult (non-symmetric)

• [Frieze, Galbiati, Maffioli 1982]: O(logn)-approximation

• Relatively simple algorithm

• [Asadpour, Goemans, Madry, Oveis Gharan, Saberi, 2011]: 
O(logn/loglogn)- approximation

• Way more involved algorithm, based on Linear 
Programming and LP-rounding techniques

• Randomized algorithm

• It produces a solution with cost at most O(logn/loglogn) 
OPT(I) with high probability (approaching 1)

• More Recent, [Svensson, Tarnawski, Végh 2017]: constant 
approximation algorithm.
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Back to symmetric Δ-TSP

• Inspired by the ideas for the progress on asymmetric TSP

• An interesting special case: graphic TSP: given a weighted graph G 
= (V, E), for edges that are not present, the weight is given by the 
shortest path

• Also referred to as shortest path metrics

• [Asadpour, Goemans, Madry, Oveis Gharan, Saberi, 2011]: A
randomized approximation of 3/2 – ε, where ε ≈ 10-12

• [Momke, Svensson, 2011]: ≈ 1.461-approximation

• [Mucha, 2012]: 13/9 ≈ 1.444-approximation

• Conjecture: 4/3
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