OIKONOMIKO ATHENS UNIVERSITY
MANEMNIETHMIO CF EGQONOMICS
AOHNAQON AND BUSINESS

Special Topics on Algorithms

The Traveling Salesman Problem (TSP)

Vangelis Markakis — George Zois

Traveling Salesman Problem (TSP)

TSP
I: A complete directed weighted graph G=(V,E), integer B
Q (Decision): Is there a permutation of V, <v,,v,,...,v,>

such that Z_; , W(Vi, Vi modn+ 1) < B, 1.e Is there a TSP tour of
cost at most B ?

(Note: this is equivalent with asking if there is a Hamiltonian Cycle
in G (a tour) of cost <B ?)

Optimization: Find a tour of minimum cost

One of the most well studied problems in Computer Science,
Operations Research, ...

Brute force approach: O(n!) — No way! 2

Traveling Salesman Problem (TSP)

Some related problems:

HAMILTON CYCLE (HC) [or RUDRATA CYCLE]
I: A (possibly directed) graph G=(V,E)

Q: Is there a Hamiltonian cycle in G? (i.e., a cycle that goes through
all the vertices)

HAMILTON PATH (HP)
I: A (possibly directed) graph G=(V,E)
Q: Is there a Hamiltonian path in G?

Both HC and HP are NP-complete

NP-hardness
HC < TSP

=P
G=(V,E) G'=(V, E)
E'=VxV
G hasaHC 1,if (u,v) e E
All its edges have cost 1in G’ w(u,v) =w(v,u) :{
G' has a tour of cost B 2, otherwise
B=|V|

G' has atour of cost<B
It uses only edges of cost 1 (cost = B)
G hasa HC

Some interesting special cases:

*A-TSP: A special case of TSP where the triangle inequality holds,

i.e., w(i,k) <wf(i,j) + w(j,k) 1 <i,j, k<n
*TSP(1,2): all weights equal to 1 or 2
eAnd many others...

Most interesting cases turn out to be NP-complete as well

Coping with NP-complete problems

Recall:

1. Small instances
2. Special cases

3. Exponential algorithms (Dynamic Programming, Branch and
Bound,...)

4. Approximation algorithms
5. Randomized algorithms

6. Heuristic algorithms

DP for TSP

We need to identify first the subproblems we will solve

We will also make use of the TSP path problem, i.e., find a permutation of V,
<Vq,Vo,...,V,> sSuchthat 2, ., w(v, Vv, <B.

Optimal Substructure Property:
Assume w.l.o0.g. that we start the TSP Tour at node 1
Assume that 1->...S; ...->i->...5,...-> 1 is an optimal TSP tour
Then the path i->...S, ...-> 1 must be an optimal TSP Path in V\S,

DP for TSP

Let g(i,S) = the cost of the shortest path i-> -=> 1, going from node i to
node 1, using all the nodes of S (i.e., the minimum TSP path starting from i, in
the graph induced by SuU {i, 1}, ScV)

g(1,S) =ming w(i, J)+9(J,S—1J}H }

J€S

DP for TSP

Our aimis to find

gLV —{1}) = min{w(L, k) +g(k,V —{1,k})}

2<k<n

How ?
By finding g(k, V-{1,k}) for all choices of k

This can be done by using the optimal substructure for g(i, S)

g(1,5) =mi{w(i, J)+9(J, S b}

DP for TSP

Obviously, g(i, @) = w(i, 1)
We canfind g(i,S) forallsetsS, with |S| =1
Then find g(i, S) for all sets S, with |S| =2

and then find g(i, S) for all sets S, with |S| =n-2
Finally: g(1, v-{1}) -- |S| =n-1

We need to compute g(i,S)
for EVERY set S of EACH possible size |S|=1,2,...,n-2,
and forallie V-(Su{1})

DP for TSP

Example

0 10 15 20
5 0 9 10
16 13 0 12
8 8 9 0

DP for TSP

|S[=0: g(2,4)=5, g(3,9)=6, g(4,2)=8
|S]=1: 8(2,{3}) =wy; +8(3,0)=9+6=15 }
8@aBN=15 D ST
g(2,{4})=18 _
R S
g(3.{2})=18
g(4,{2}) = 13 } S=1{2}
ISI =2: g(zr{314}) = min{ W23 + g(3l{4})l W24 + g(4l{3}) } = 25 S={3r4}
g(3l{zl4}) = min{ W32 + g(21{4})l W34 + g(4l{2}) } = 25 S={2,4}
g(4I{ZI3}) = min{ W42 + g(zl{s})l W43 + g(sl{z}) } =23 S={2r3}
8(1,{2,3,4}) =min{ w,, +8(2,{3,4}), $={2,3,4}
W13 + g(3l{zl4})l
wy, +8(4,{2,3}) } =

= min{35, 40, 43} = 35

11

DP for TSP

for i 2 ton do g(i,d) = w(i,1) ;
for k = 1 to n-2 do //for all sizes of S
for each S ¢ V-{1} s.t. |S|=k do //for all possible sets of size k
for each i € V=-(S U {1})
g(i,8):= min{w(i,j) + g(3,8-{ih};
jes

find g(1, V-{1});

12

DP for TSP

Complexity:
N = # of g(i,S) computations

For each value of |S| there are £ n—1 choices for i
n-2
K

The number of sets S with |S| = k notincluding 1 and i is
n-2 _2
N=> (-1 ”k = (n-1)2"

T(n) = N - [time to compute g(i,S) by taking the min over g(j,5-{j}) = N - O(n)
T(n) = O(n%2"), better than n!, but still, appropriate only for small instances

13

Coping with NP-complete problems

. Small instances
. Special cases

. Exponential algorithms (Dynamic Programming, Branch and
Bound,...)

. Approximation algorithms
. Randomized algorithms

. Heuristic algorithms

14

Branch-and-Bound

A different lower bound on the optimal solution:
10, . _

—2 (mm {Wi,j}+ mln{W,—,i})

200 j=i j#i

e the half of the sum of minimum elements of each row and each column

e For every node one edge of the tour has to come towards i and one has to

5 leave from i
A B C D
A X 3 2 7 2
B 4 X 3 6 3
C 1 1 X 3 1
D 1 6 6 X 1
1 1 2 3 LB =14/2=7

15

Branch-and-Bound

Branch 1: edge AC in the tour = CA, AB, AD, BC, DC notin

Y tour (why ?)

A B C D
A X X 2 X 2
B 4 x x 6 |4 :>
C x 1 X 3 1
D 1 6 X X 1
1 1 2 3 LB =15/2=7.5

2, Branch 2: AC notin tour

A B C D
A X 3 X 7 3
B 4 x 3 6 |3
C 1 1 x 3 1
D 1 6 6 X 1
1 1 3 3 LB =16/2=8

Branch-and-Bound

ACin tour = CA, AB,AD, BC, DC not in tour A feasible Solution
Zs CB in tour = CD, DB, BA not in tour

A B C D
X X 2 X
X X 6

X
X 1 X X

P PO N

O O ®m >

1 X X X

1 1 2 6 LB =20/2=10

ACin tour = CA, AB, AD, BC, DC not in tour
z4 CB not in tour

A B C D
A X X 2 X 2
B 4 X X 6 4
C X X X 3 (3 10
D 1 6 X X 1

1 6 2 3 LB =22/2=11

and soon ...

17

Branch-and-Bound

solution ACBDA No need to
explore this more

cost=10
10 @ 13.5
solution ABCDA /

18
cost=10

Branch-and-Bound

Parameters

Maintain a set S of active states

Initially S = {2,} (nothing has been expanded yet)

In each step extract state Z from S (2 is the state to be expanded)
UB is a global upper bound of the optimum solution

— For minimization problems we initially set UB = +o0

LB(Z) is a lower bound on all solutions represented by state 2 (i.e. from
all solutions that can arise after expanding)

Whenever we reach a terminal node with LB(Z) < UB, then we can
update our current UB

During the process, we do not need to examine any further the nodes
where their LB is higher than UB!

19

Branch-and-Bound

Algorithm Branch and Bound
{ s = {%,};
UB = 400
while S # J do
{ get a node & from S;
//which node ? FIFO/LIFO/Best LB

S:=8S - {Z};
for all possible “l-step” extensions & of & do
{ create Z&; and find LB (Z;);

if LB(Z;) < UB then
if &; is terminal then
{ UB:= LB(Z;);
optimum:= I }
else add Z; to S } } }

20

Branch-and-Bound

See Chapter 9 (Section 9.1.2) in DPV book, for a different
branch and bound algorithm for TSP.

21

Coping with NP-complete problems

. Small instances

. Special cases

. Exponential algorithms

. Approximation algorithms
. Randomized algorithms

. Heuristic algorithms

22

Approximability of TSP

Is there any f(n)-approximation algorithm for TSP ? NO !

Theorem: For any (polynomial time computable) function f(n) (with f(n) > 1 for all n),
TSP cannot be approximated within a factor of f(n), unless P=NP.

Proof:
Claim: If there is an f(n)-approximation algorithm A for TSP,

then, there is a poly-time algorithm for HC, i.e., we can decide the HC problem in
polynomial time, and thus P=NP!

Reduction from Hamilton Cycle (HC) to TSP:

Consider an instance of HC, i.e., a graph G=(V,E), with |V| =n
Construct a complete weighted graph G' =(V, E'), E' = all possible edges
with weights

1, if (uv) € E
w(u,v) = {
n f(n), otherwise

23

Approximability of TSP

Proof (cont.):
Running A on G' returns a tour of cost C

a) if the original graph G is Hamiltonian,
— Optimal TSP tour in G’ has C* = n,

— Algorithm A will return a tour with cost C < nf(n) (because we assumed
A is a f(n)-approximation algorithm)

b) if the original graph G is not Hamiltonian
— The optimal TSP tour in G" must contain at least one edge of cost nf(n):

e Hence, C* > nf(n) + (n-1) > n f(n)
— Algorithm A will return a tour C> C* > nf(n) (since C*=0OPT should be
less than the solution of A)

Hence: if we had a f(n)-approximation for TSP, we could solve the HC

problem.
24

TSP with triangle inequality

e Recall: A-TSP = special case of TSP where the triangle inequality holds,
i.e., w(i,k) <wl(i,j) + w(j,k), 1<i, j, k<n
e A very natural special case, satisfied by many distance functions

Theorem: There exists a 2-approximation algorithm for A-TSP

* How do we start with designing an approximation algorithm?

* First and most important step: we need a lower bound on the cost of the
optimal solution

* Consider aninstance | of TSP

 Claim: OPT(l) > MST(l)

* Proof: delete one edge e from an optimal solution, what remains is a
spanning tree F

OPT(l) = w(e) + C(F) >wf(e) + MST(l) > MST(l)

25

A-TSP: A 2-approximation

1

> — 2

ININe

Step 1: Find a minimum spanning tree, T, of G, of cost C(T)
Step 2: Double the edges of T and let T' be the obtained (multi)graph
All vertices of T’ are of even degree

Recall from graph theory:
*Euler cycle: A tour that visits all the edges exactly once
*A graph is Eulerian (i.e., has an Euler cycle) iff every vertex has an even degree

In the example: Eulercycle W: 1, 2,3,2,4,6,5,7,5,6, 8,10,9, 10, 8,6,4, 2,1

26

A-TSP: A 2-approximation

Step 3: Find an Euler cycle Win T’
Note: W traverses each edge of T twice: C(W) =2 C(T)<2 OPT

Step 4: Find a tour H by “shortcutting” W:

1) 21 3) /ZI 4) 6) 5) 7)5) 6’ 8) 10) 9’ 1ﬂl %5) % 2/1

Final solutionH=1, 2,3,4,6,5,7,8, 10,9, 1

10

27

A-TSP: A 2-approximation

C(H) £ C(W), because of the triangle inequality

Hence: C(H) < C(W) <2 OPT

QUESTION: What is the complexity of this algorithm ?

10

28

A-TSP: Tightness of 2-approximation

Example

Complete graph K,
Red edges: w =2
Other edges: w=1 (union of a star + cycle)

Optimal tour
1,
OPT =n

29

A-TSP: Tightness of 2-approximation

Minimum MST

s %,

; 8
a b
; %,

&

Ey
&
®

o,
R
gt
o,

Solution

@3

C(H) = (n-2)*2 + 2*1 = 2n-2

Hence, C(H) /OPT=(2n-2)/n=2-(2/n) 2 2

30

A-TSP: improvementtop=1.5

Theorem: There is a 1.5-approximation algorithm for A-TSP [Chistofides 1576]
Step 1: Start again by finding a minimum spanning tree, T, of cost C(T)

e We cannot now just double the edges, this will not avoid a loss of 2

e But we would still like to create an Eulerian graph starting from T
e What makes T non-Eulerian?

e Problematic vertices: vertices of odd degree
e Claim: The number of odd-degree vertices is even (why?)

31

A-TSP: improvementtop=1.5
Detour on matchings
Consider agraph G =(V, E)

Definition: A matching M is a collection of edges M c E, such that no 2 edges
share a common vertex

Given a matching M, a vertex u is called matched if there exists an
edge eeM such that e has u as one of its endpoints

32

A-TSP: improvementtop=1.5

Detour on matchings
Types of matchings we are interested in:

e Maximal matching: find a matching where no more edges can be added

e Maximum matching: find a matching with the maximum possible number
of edges

e Perfect matching: find a matching where every vertex is matched (if one
exists)

e Maximum weight matching: given a weighted graph, find a matching with
maximum possible total weight

e Minimum weight perfect matching: given a weighted graph, find a perfect
matching with minimum cost

All the above problems can be solved in polynomial time (several algorithms 23
and publications over the last decades)

A-TSP: improvementtop=1.5

1o 5 7 5

O- -O 9 ‘

| 4 6 4 6

3 8 10 8 10
Step 2:

*Find the set of vertices of T of odd degree, say S

¢S contains an even number of vertices

eConsider the graph G induced by S

eFind a minimum weight perfect matching, M, in G

34

A-TSP: improvementtop=1.5

odd degree vertices

Why is @ minimum cost
H* perfect matching useful?

e Let H* be an optimal TSP tour

e Shortcut the tour to vertices of S

e This leads to a tour over S

e By triangle inequality, cost of S-tour < C(H*) = OPT(l)

e S-tour can be decomposed into 2 perfect matchings of S
(the red (M,), and the black (M,))

Then C(H*) > C(M,) + C(M,) = C(M) + C(M),
since M is a minimum weight perfect matching

Hence, C(M) < C(H*)/ 2 = OPT(l)/2

35

A-TSP: improvementtop=1.5

5 lo

4 6 % 4 6
3
Step 3:

eAdd the edges of M to T and let T’ be the obtained (multi)graph
eAll vertices of T’ are of even degree now, hence T’ is Eulerian
eFind an Eulercycle, W, inT’

Eulercycle W: 1,2, 3,6, 8, 10,9,7,5,6,4,2,1

C(W)=C(T) +C(M) < C(H*) + C(H*)/2=1.5C(H*)

36

A-TSP: improvementtop=1.5

Step 4:
Find a tour H by shortcutting the Euler tour W:

H:1,2,3,6,8,10,9,7,5,8,4,2,1

C(H) £ C(W), by use of the triangle inequality

Hence, overall: SOL(l) = C(H) < C(W) < 1.5 C(H*) = 1.5 OPT(l)

QUESTION: What is the complexity of this algorithm ?

7/
g e 3 l%
4
4
2 0 2
6 6

37

A-TSP: Tightness of 1.5-approximation

e All edges with cost 1,
1 apart from the red edge
\ of cost n
e Shortcutting may pick
a24_1 — a3 the red edge and the

zig-zag MST
C(H)=n+n+n=3n

o
o
0T
O

30-

For the optimal tour H*

C(H*)=n+(n-1)+ 2=2n+1

an—1 an an+1

C(H) / C(H*) > 3/2

38

Asymmetric A-TSP

So far we assumed the graph is undirected
For directed graphs the problem is more difficult (non-symmetric)
[Frieze, Galbiati, Maffioli 1982]: O(logn)-approximation

e Relatively simple algorithm

[Asadpour, Goemans, Madry, Oveis Gharan, Saberi, 2011]:
O(logn/loglogn)- approximation

* Way more involved algorithm, based on Linear
Programming and LP-rounding techniques

 Randomized algorithm

* It produces a solution with cost at most O(logn/loglogn)
OPT(l) with high probability (approaching 1)

More Recent, [Svensson, Tarnawski, Vegh 2017]: constant
approximation algorithm.

39

Back to symmetric A-TSP

Inspired by the ideas for the progress on asymmetric TSP

An interesting special case: graphic TSP: given a weighted graph G
= (V, E), for edges that are not present, the weight is given by the
shortest path

* Also referred to as shortest path metrics

[Asadpour, Goemans, Madry, Oveis Gharan, Saberi, 2011]: A
randomized approximation of 3/2 — g, where € = 1012

[Momke, Svensson, 2011]: = 1.461-approximation
[Mucha, 2012]: 13/9 = 1.444-approximation
Conjecture: 4/3

40

	Slide 1: Special Topics on Algorithms
	Slide 2: Traveling Salesman Problem (TSP)
	Slide 3: Traveling Salesman Problem (TSP)
	Slide 4: HC ≤p TSP
	Slide 5: Coping with NP-complete problems
	Slide 6: DP for TSP
	Slide 7: DP for TSP
	Slide 8: DP for TSP
	Slide 9: DP for TSP
	Slide 10: DP for TSP
	Slide 11: DP for TSP
	Slide 12: DP for TSP
	Slide 13: DP for TSP
	Slide 14: Coping with NP-complete problems
	Slide 15: Branch-and-Bound
	Slide 16: Branch-and-Bound
	Slide 17: Branch-and-Bound
	Slide 18: Branch-and-Bound
	Slide 19: Branch-and-Bound
	Slide 20: Branch-and-Bound
	Slide 21: Branch-and-Bound
	Slide 22: Coping with NP-complete problems
	Slide 23: Approximability of TSP
	Slide 24: Approximability of TSP
	Slide 25: TSP with triangle inequality
	Slide 26: Δ-TSP: A 2-approximation
	Slide 27: Δ-TSP: A 2-approximation
	Slide 28: Δ-TSP: A 2-approximation
	Slide 29: Δ-TSP: Tightness of 2-approximation
	Slide 30: Δ-TSP: Tightness of 2-approximation
	Slide 31: Δ-TSP: improvement to ρ = 1.5
	Slide 32: Δ-TSP: improvement to ρ = 1.5
	Slide 33: Δ-TSP: improvement to ρ = 1.5
	Slide 34: Δ-TSP: improvement to ρ = 1.5
	Slide 35: Δ-TSP: improvement to ρ = 1.5
	Slide 36: Δ-TSP: improvement to ρ = 1.5
	Slide 37: Δ-TSP: improvement to ρ = 1.5
	Slide 38: Δ-TSP: Tightness of 1.5-approximation
	Slide 39: Asymmetric Δ-TSP
	Slide 40: Back to symmetric Δ-TSP

