
Special Topics on Algorithms

The Traveling Salesman Problem (TSP)

Vangelis Markakis – George Zois

2

Traveling Salesman Problem (TSP)

TSP

I: A complete directed weighted graph G=(V,E), integer B

Q (Decision): Is there a permutation of V, <v1,v2,…,vn>

such that Σi=1...n w(vi, vi mod n + 1)  B, i.e is there a TSP tour of

cost at most B ?

(Note: this is equivalent with asking if there is a Hamiltonian Cycle
in G (a tour) of cost  B ?)

Optimization: Find a tour of minimum cost

One of the most well studied problems in Computer Science,
Operations Research, ...

Brute force approach: O(n!) – No way!

3

Traveling Salesman Problem (TSP)

Some related problems:

HAMILTON CYCLE (HC) [or RUDRATA CYCLE]

I: A (possibly directed) graph G=(V,E)

Q: Is there a Hamiltonian cycle in G? (i.e., a cycle that goes through
all the vertices)

HAMILTON PATH (HP)

I: A (possibly directed) graph G=(V,E)

Q: Is there a Hamiltonian path in G?

Both HC and HP are NP-complete

4

HC ≤p TSP
G=(V,E)

G has a HC

All its edges have cost 1 in G'

 G' has a tour of cost B

G' = (V, E')

E' = V  V

1, if (u,v)  E

w(u,v) = w(v,u) =

2, otherwise

B= |V|

G' has a tour of cost  B

It uses only edges of cost 1 (cost = B)

G has a HC

{

NP-hardness

Some interesting special cases:
•∆-TSP: A special case of TSP where the triangle inequality holds,
 i.e., w(i,k) ≤ w(i,j) + w(j,k) 1  i, j, k  n
•TSP(1,2): all weights equal to 1 or 2
•And many others...

Most interesting cases turn out to be NP-complete as well

55

Coping with NP-complete problems

1. Small instances

2. Special cases

3. Exponential algorithms (Dynamic Programming, Branch and
Bound,...)

4. Approximation algorithms

5. Randomized algorithms

6. Heuristic algorithms

Recall:

6

DP for TSP

We need to identify first the subproblems we will solve

We will also make use of the TSP path problem, i.e., find a permutation of V,

<v1,v2,…,vn> such that Σi=1...n-1 w(vi, vi + 1)  B.

Optimal Substructure Property:

 Assume w.l.o.g. that we start the TSP Tour at node 1

Assume that 1 ->…S1 …->i->…S2 …-> 1 is an optimal TSP tour

Then the path i->…S2 …-> 1 must be an optimal TSP Path in V\S1

i 1
S1

1 S2

7

DP for TSP

Let g(i,S) = the cost of the shortest path i-> …….. -> 1, going from node i to
node 1, using all the nodes of S (i.e., the minimum TSP path starting from i, in
the graph induced by S  {i, 1}, S  V)

j
1

i

S

S – {j}

}}){,(),({min),(jSjgjiwSig
Sj

−+=


8

DP for TSP
Our aim is to find

How ?

By finding g(k, V-{1,k}) for all choices of k

This can be done by using the optimal substructure for g(i, S)

})},1{,(),1({min})1{,1(
2

kVkgkwVg
nk

−+=−


})}{,(),({min),(jSjgjiwSig
Sj

−+=


k 1
S = V – {1,k}

1

9

DP for TSP
Obviously, g(i, ) = w(i, 1)

 We can find g(i, S) for all sets S, with |S| = 1

 Then find g(i, S) for all sets S, with |S| = 2

 ...

 and then find g(i, S) for all sets S, with |S| =n-2

 Finally: g(1, V-{1}) --- |S| =n-1

 We need to compute g(i,S)

 for EVERY set S of EACH possible size |S|= 1,2,…,n-2,

 and for all i  V - (S  {1})

10

DP for TSP

1

4 3

2



















0988

120136

10905

2015100

:w

Example

11

DP for TSP
|S|=0: g(2,)=5, g(3,)=6, g(4,)=8

|S|=1: g(2,{3}) = w23 + g(3,) = 9 + 6 = 15

 g(4,{3}) = 15

 g(2,{4}) = 18

 g(3,{4}) = 20

 g(3,{2}) = 18

 g(4,{2}) = 13

|S|=2: g(2,{3,4}) = min{ w23 + g(3,{4}), w24 + g(4,{3}) } = 25 S={3,4}

 g(3,{2,4}) = min{ w32 + g(2,{4}), w34 + g(4,{2}) } = 25 S={2,4}

 g(4,{2,3}) = min{ w42 + g(2,{3}), w43 + g(3,{2}) } =23 S={2,3}

g(1,{2,3,4}) = min{ w12 + g(2,{3,4}), S={2,3,4}

 w13 + g(3,{2,4}),

 w14 + g(4,{2,3}) } =

 = min{35, 40, 43} = 35

S = {2}}

}

}

S = {4}

S = {3}

12

DP for TSP

for i = 2 to n do g(i,) = w(i,1) ;

for k = 1 to n–2 do // for all sizes of S

for each S  V–{1} s.t. |S|=k do // for all possible sets of size k

for each i  V–(S  {1})

g(i,S):= min{w(i,j) + g(j,S–{j})};
 jS

find g(1, V–{1});

13

Complexity:

N = # of g(i,S) computations

For each value of |S| there are ≤ n – 1 choices for i

The number of sets S with |S| = k not including 1 and i is

T(n) = N ∙ [time to compute g(i,S) by taking the min over g(j,S-{j}) = N ∙ O(n)

 T(n) = O(n22n), better than n!, but still, appropriate only for small instances

N = (n-1)
n- 2

k

æ

è
ç

ö

ø
÷

k=0

n-2

å = (n-1)2n-2

DP for TSP








 −

k

n 2

1414

Coping with NP-complete problems

1. Small instances

2. Special cases

3. Exponential algorithms (Dynamic Programming, Branch and
Bound,...)

4. Approximation algorithms

5. Randomized algorithms

6. Heuristic algorithms

15

Branch-and-Bound

A different lower bound on the optimal solution:

• the half of the sum of minimum elements of each row and each column

• For every node one edge of the tour has to come towards i and one has to
leave from i

}){min}{min(
2

1
,

1
, ij

ij

n

i
ji

ij

ww
= 

+

A B C D

A x 3 2 7 2

B 4 x 3 6 3

C 1 1 x 3 1

D 1 6 6 x 1

1 1 2 3 LB = 14/2 = 7

Σ0

A B

C D

3
4

667

1

3

6

2
1

3

1

16

Branch-and-Bound

A B C D

A x x 2 x 2

B 4 x x 6 4

C x 1 x 3 1

D 1 6 x x 1

1 1 2 3 LB = 15/2 = 7.5

A B C D

A x 3 x 7 3

B 4 x 3 6 3

C 1 1 x 3 1

D 1 6 6 x 1

1 1 3 3 LB = 16/2 = 8

Σ2

Branch 1: edge AC in the tour ➔ CA, AB, AD, BC, DC not in
tour (why ?)

Σ1

Branch 2: AC not in tour

Σ0

Σ2Σ1

7

87.5

AC

__

AC

A B

C D

4

66

1

3

6

2

1

17

Branch-and-Bound

A B C D

A x x 2 x 2

B x x x 6 6

C x 1 x x 1

D 1 x x x 1

1 1 2 6 LB = 20/2 = 10

A B C D

A x x 2 x 2

B 4 x x 6 4

C x x x 3 3

D 1 6 x x 1

1 6 2 3 LB = 22/2 = 11

Σ4

AC in tour ➔ CA, AB, AD, BC, DC not in tour

CB in tour ➔ CD, DB, BA not in tour Σ3

AC in tour ➔ CA, AB, AD, BC, DC not in tour

CB not in tour

and so on …

A B

C D

6

1

2

1

A feasible Solution

18

Branch-and-Bound

Σ0

Σ2Σ1

7

87.5

AC __

AC

Σ4Σ3 1110

CB

__

CB

Σ6Σ5 911.5

AB
__

AB

Σ8Σ7 13.510

BC

__

BC
solution ACBDA

cost = 10

solution ABCDA

cost = 10

No need to
explore this more

19

Branch-and-Bound

Parameters

▪ Maintain a set S of active states

▪ Initially S = {Σ0} (nothing has been expanded yet)

▪ In each step extract state Σ from S (Σ is the state to be expanded)

▪ UB is a global upper bound of the optimum solution
– For minimization problems we initially set UB = +

▪ LB(Σ) is a lower bound on all solutions represented by state Σ (i.e. from
all solutions that can arise after expanding Σ)

▪ Whenever we reach a terminal node with LB(Σ) ≤ UB, then we can
update our current UB

▪ During the process, we do not need to examine any further the nodes
where their LB is higher than UB!

20

Branch-and-Bound

Algorithm Branch and Bound

{ S = {Σ0};

 UB = +

 while S   do

 { get a node Σ from S;

 //which node ? FIFO/LIFO/Best LB

 S:= S - {Σ};

 for all possible “1-step” extensions Σj of Σ do

 { create Σj and find LB(Σj);

 if LB(Σj)  UB then

 if Σj is terminal then

 { UB:= LB(Σj);

 optimum:= Σj }

 else add Σj to S } } }

21

Branch-and-Bound

 See Chapter 9 (Section 9.1.2) in DPV book, for a different
branch and bound algorithm for TSP.

2222

Coping with NP-complete problems

1. Small instances

2. Special cases

3. Exponential algorithms

4. Approximation algorithms

5. Randomized algorithms

6. Heuristic algorithms

23

Approximability of TSP

Is there any f(n)-approximation algorithm for TSP ? NO !

Theorem: For any (polynomial time computable) function f(n) (with f(n) ≥ 1 for all n),

TSP cannot be approximated within a factor of f(n), unless P=NP.

Proof:

Claim: If there is an f(n)-approximation algorithm A for TSP,

 then, there is a poly-time algorithm for HC, i.e., we can decide the HC problem in
polynomial time, and thus P=NP!

Reduction from Hamilton Cycle (HC) to TSP:

Consider an instance of HC, i.e., a graph G=(V,E), with |V| = n

Construct a complete weighted graph G' = (V, E'), E' = all possible edges

with weights

 1, if (u,v)  E

 w(u,v) =

 n f(n), otherwise
{

24

Approximability of TSP
Proof (cont.):

Running A on G' returns a tour of cost C

a) if the original graph G is Hamiltonian,
– Optimal TSP tour in G’ has C* = n,

– Algorithm A will return a tour with cost C ≤ nf(n) (because we assumed
A is a f(n)-approximation algorithm)

b) if the original graph G is not Hamiltonian
– The optimal TSP tour in G’ must contain at least one edge of cost nf(n):

• Hence, C*  nf(n) + (n-1) > n f(n)

– Algorithm A will return a tour C ≥ C* > nf(n) (since C*=OPT should be
less than the solution of A)

 Hence: if we had a f(n)-approximation for TSP, we could solve the HC
problem.

25

TSP with triangle inequality

• Recall: ∆-TSP = special case of TSP where the triangle inequality holds,

 i.e., w(i,k) ≤ w(i,j) + w(j,k), 1  i, j, k  n

• A very natural special case, satisfied by many distance functions

Theorem: There exists a 2-approximation algorithm for Δ-TSP

• How do we start with designing an approximation algorithm?
• First and most important step: we need a lower bound on the cost of the

optimal solution
• Consider an instance I of TSP
• Claim: OPT(I)  MST(I)
• Proof: delete one edge e from an optimal solution, what remains is a

spanning tree F

 OPT(I) = w(e) + C(F)  w(e) + MST(I)  MST(I)

Δ-TSP: A 2-approximation

26

Step 1: Find a minimum spanning tree, T, of G, of cost C(T)

Step 2: Double the edges of T and let T’ be the obtained (multi)graph

All vertices of T’ are of even degree

Recall from graph theory:
•Euler cycle: A tour that visits all the edges exactly once
•A graph is Eulerian (i.e., has an Euler cycle) iff every vertex has an even degree

In the example: Euler cycle W: 1, 2, 3, 2, 4, 6, 5, 7, 5, 6, 8, 10, 9, 10, 8, 6, 4, 2, 1

3

64

2

1 5
7

8 10

9

3

64

1 5
7

8 10

92

27

Δ-TSP: A 2-approximation

Step 3: Find an Euler cycle W in T’

 Note: W traverses each edge of T twice: C(W) = 2 C(T)  2 OPT

Step 4: Find a tour H by “shortcutting” W:

 1, 2, 3, 2, 4, 6, 5, 7, 5, 6, 8, 10, 9, 10, 8, 6, 4, 2, 1

Final solution H = 1, 2, 3, 4, 6, 5, 7, 8, 10, 9, 1

3 8 10

64

2

1 5
7

9

3

64

2

1 5
7

8 10

9

28

Δ-TSP: A 2-approximation

 C(H)  C(W) , because of the triangle inequality

 Hence: C(H)  C(W)  2 OPT

 QUESTION: What is the complexity of this algorithm ?

3 8 10

64

2

1 5
7

9

3

64

2

1 5
7

8 10

9

Δ-TSP: Tightness of 2-approximation

29

Complete graph Kn

Red edges: w = 2
Other edges: w=1 (union of a star + cycle)

Example

Optimal tour

OPT = n

Δ-TSP: Tightness of 2-approximation

30

Minimum MST Solution

C(H) = (n-2)*2 + 2*1 = 2n-2

Hence, C(H) / OPT = (2n-2) / n = 2 – (2/n) → 2

31

Δ-TSP: improvement to ρ = 1.5

Theorem: There is a 1.5-approximation algorithm for Δ-TSP [Chistofides 1976]

Step 1: Start again by finding a minimum spanning tree, T, of cost C(T)

• We cannot now just double the edges, this will not avoid a loss of 2

• But we would still like to create an Eulerian graph starting from T

• What makes T non-Eulerian?

• Problematic vertices: vertices of odd degree

• Claim: The number of odd-degree vertices is even (why?)

32

Δ-TSP: improvement to ρ = 1.5

Detour on matchings

Consider a graph G = (V, E)

Definition: A matching M is a collection of edges M  E, such that no 2 edges

share a common vertex

Given a matching M, a vertex u is called matched if there exists an

edge eM such that e has u as one of its endpoints

33

Δ-TSP: improvement to ρ = 1.5

Detour on matchings

Types of matchings we are interested in:

• Maximal matching: find a matching where no more edges can be added

• Maximum matching: find a matching with the maximum possible number
of edges

• Perfect matching: find a matching where every vertex is matched (if one
exists)

• Maximum weight matching: given a weighted graph, find a matching with
maximum possible total weight

• Minimum weight perfect matching: given a weighted graph, find a perfect
matching with minimum cost

All the above problems can be solved in polynomial time (several algorithms
and publications over the last decades)

Δ-TSP: improvement to ρ = 1.5

34

3

64

2

1 5
7

8 10

9

Step 2:
•Find the set of vertices of T of odd degree, say S
•S contains an even number of vertices
•Consider the graph GS induced by S
•Find a minimum weight perfect matching, M, in GS

3

64

1 5
7

8 10

9

Δ-TSP: improvement to ρ = 1.5

35

odd degree vertices

H*

• Let H* be an optimal TSP tour
• Shortcut the tour to vertices of S
• This leads to a tour over S
• By triangle inequality, cost of S-tour ≤ C(H*) = OPT(I)
• S-tour can be decomposed into 2 perfect matchings of S
 (the red (M1), and the black (M2))

Then C(H*) ≥ C(M1) + C(M2) ≥ C(M) + C(M),
since M is a minimum weight perfect matching

Hence, C(M) ≤ C(H*) / 2 = OPT(I)/2

Why is a minimum cost
perfect matching useful?

36

Δ-TSP: improvement to ρ = 1.5

3

64

2

1 5
7

8 10

9

3

64

2

1 5
7

8 10

9

Step 3:
•Add the edges of M to T and let T’ be the obtained (multi)graph
•All vertices of T’ are of even degree now, hence T’ is Eulerian
•Find an Euler cycle, W, in T’

Euler cycle W: 1, 2, 3, 6, 8, 10, 9, 7, 5, 6, 4, 2, 1

 C(W) = C(T) + C(M)  C(H*) + C(H*) / 2 = 1.5 C(H*)

37

Δ-TSP: improvement to ρ = 1.5
7

3

6

4
2

1 5

8 10

9

3

6

4
2

1 5
7

8 10

9

Step 4:

Find a tour H by shortcutting the Euler tour W:

 H: 1, 2, 3, 6, 8, 10, 9, 7, 5, 6, 4, 2, 1

 C(H)  C(W), by use of the triangle inequality

 Hence, overall: SOL(I) = C(H)  C(W)  1.5 C(H*) = 1.5 OPT(I)

 QUESTION: What is the complexity of this algorithm ?

38

Δ-TSP: Tightness of 1.5-approximation

...
1 1

1a1
a2 an

b1 b2 b3 bn

an-1

bn-1

an+1
a3

C(H)=n+n+n=3n

...

a2 an

b1 b2 b3 bn

an-1

bn-1

an+1
a3

...

For the optimal tour H*

C(H*) = n + (n-1) + 2 = 2n+1

a1

C(H) / C(H*) → 3/2

• All edges with cost 1,
apart from the red edge
of cost n

• Shortcutting may pick
the red edge and the
zig-zag MST

39

Asymmetric Δ-TSP

• So far we assumed the graph is undirected

• For directed graphs the problem is more difficult (non-symmetric)

• [Frieze, Galbiati, Maffioli 1982]: O(logn)-approximation

• Relatively simple algorithm

• [Asadpour, Goemans, Madry, Oveis Gharan, Saberi, 2011]:
O(logn/loglogn)- approximation

• Way more involved algorithm, based on Linear
Programming and LP-rounding techniques

• Randomized algorithm

• It produces a solution with cost at most O(logn/loglogn)
OPT(I) with high probability (approaching 1)

• More Recent, [Svensson, Tarnawski, Végh 2017]: constant
approximation algorithm.

40

Back to symmetric Δ-TSP

• Inspired by the ideas for the progress on asymmetric TSP

• An interesting special case: graphic TSP: given a weighted graph G
= (V, E), for edges that are not present, the weight is given by the
shortest path

• Also referred to as shortest path metrics

• [Asadpour, Goemans, Madry, Oveis Gharan, Saberi, 2011]: A
randomized approximation of 3/2 – ε, where ε ≈ 10-12

• [Momke, Svensson, 2011]: ≈ 1.461-approximation

• [Mucha, 2012]: 13/9 ≈ 1.444-approximation

• Conjecture: 4/3

	Slide 1: Special Topics on Algorithms
	Slide 2: Traveling Salesman Problem (TSP)
	Slide 3: Traveling Salesman Problem (TSP)
	Slide 4: HC ≤p TSP
	Slide 5: Coping with NP-complete problems
	Slide 6: DP for TSP
	Slide 7: DP for TSP
	Slide 8: DP for TSP
	Slide 9: DP for TSP
	Slide 10: DP for TSP
	Slide 11: DP for TSP
	Slide 12: DP for TSP
	Slide 13: DP for TSP
	Slide 14: Coping with NP-complete problems
	Slide 15: Branch-and-Bound
	Slide 16: Branch-and-Bound
	Slide 17: Branch-and-Bound
	Slide 18: Branch-and-Bound
	Slide 19: Branch-and-Bound
	Slide 20: Branch-and-Bound
	Slide 21: Branch-and-Bound
	Slide 22: Coping with NP-complete problems
	Slide 23: Approximability of TSP
	Slide 24: Approximability of TSP
	Slide 25: TSP with triangle inequality
	Slide 26: Δ-TSP: A 2-approximation
	Slide 27: Δ-TSP: A 2-approximation
	Slide 28: Δ-TSP: A 2-approximation
	Slide 29: Δ-TSP: Tightness of 2-approximation
	Slide 30: Δ-TSP: Tightness of 2-approximation
	Slide 31: Δ-TSP: improvement to ρ = 1.5
	Slide 32: Δ-TSP: improvement to ρ = 1.5
	Slide 33: Δ-TSP: improvement to ρ = 1.5
	Slide 34: Δ-TSP: improvement to ρ = 1.5
	Slide 35: Δ-TSP: improvement to ρ = 1.5
	Slide 36: Δ-TSP: improvement to ρ = 1.5
	Slide 37: Δ-TSP: improvement to ρ = 1.5
	Slide 38: Δ-TSP: Tightness of 1.5-approximation
	Slide 39: Asymmetric Δ-TSP
	Slide 40: Back to symmetric Δ-TSP

