



ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

## **Special Topics on Algorithms**

The Traveling Salesman Problem (TSP)

Vangelis Markakis – George Zois

# **Traveling Salesman Problem (TSP)**

### **TSP**

I: A complete directed weighted graph G=(V,E), integer B

Q (Decision): Is there a permutation of  $V_1, v_1, v_2, ..., v_n > 0$ 

such that  $\Sigma_{i=1...n}$  w(v<sub>i</sub>, v<sub>i mod n + 1</sub>)  $\leq$  B, i.e is there a TSP tour of cost at most B?

(Note: this is equivalent with asking if there is a Hamiltonian Cycle in G (a tour) of cost  $\leq$  B ?)

Optimization: Find a tour of minimum cost

One of the most well studied problems in Computer Science, Operations Research, ...

# **Traveling Salesman Problem (TSP)**

Some related problems:

### **HAMILTON CYCLE (HC)** [or **RUDRATA CYCLE**]

I: A (possibly directed) graph G=(V,E)

Q: Is there a Hamiltonian cycle in G? (i.e., a cycle that goes through all the vertices)

### **HAMILTON PATH (HP)**

I: A (possibly directed) graph G=(V,E)

Q: Is there a Hamiltonian path in G?

Both HC and HP are NP-complete

## **NP-hardness**

HC

 $\leq_{p}$ 

**TSP** 

**G=(V,E)** 

G has a HC
All its edges have cost 1 in G'
G' has a tour of cost B

G' = (V, E') $E' = V \times V$ 

 $w(u,v) = w(v,u) = \begin{cases} 1, & \text{if } (u,v) \in E \\ 2, & \text{otherwise} \end{cases}$ 

B= |V|

G' has a tour of cost ≤ B
It uses only edges of cost 1 (cost = B)
G has a HC

### Some interesting special cases:

- • $\Delta$ -TSP: A special case of TSP where the triangle inequality holds, i.e.,  $w(i,k) \le w(i,j) + w(j,k)$   $1 \le i, j, k \le n$
- •TSP(1,2): all weights equal to 1 or 2
- And many others...

# Coping with NP-complete problems

### Recall:

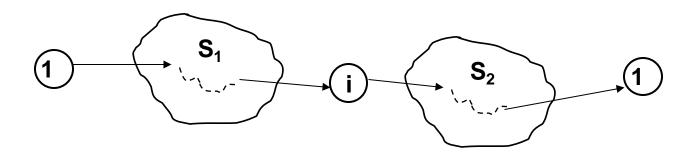
- 1. Small instances
- 2. Special cases
- 3. Exponential algorithms (Dynamic Programming, Branch and Bound,...)
- 4. Approximation algorithms
- 5. Randomized algorithms
- 6. Heuristic algorithms

### We need to identify first the subproblems we will solve

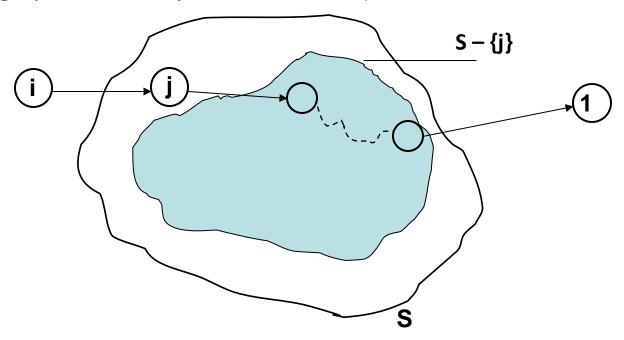
We will also make use of the TSP path problem, i.e., find a permutation of  $V_i$ ,  $v_1, v_2, ..., v_n >$  such that  $\Sigma_{i=1...n-1}$   $w(v_i, v_{i+1}) \leq B$ .

### **Optimal Substructure Property:**

Assume w.l.o.g. that we start the TSP Tour at node 1 Assume that  $1 -> ... S_1 ... -> i -> ... S_2 ... -> 1$  is an optimal TSP tour Then the path  $i -> ... S_2 ... -> 1$  must be an optimal TSP Path in  $V \setminus S_1$ 



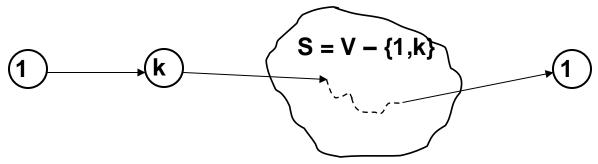
Let g(i,S) = the cost of the shortest path i-> ........ -> 1, going from node i to node 1, using all the nodes of S (i.e., the minimum TSP path starting from i, in the graph induced by  $S \cup \{i, 1\}$ ,  $S \subset V$ )



$$g(i,S) = \min_{j \in S} \{ w(i,j) + g(j,S - \{j\}) \}$$

#### Our aim is to find

$$g(1,V-\{1\}) = \min_{2 \le k \le n} \{w(1,k) + g(k,V-\{1,k\})\}$$



#### How?

By finding  $g(k, V-\{1,k\})$  for all choices of k

This can be done by using the optimal substructure for g(i, S)

$$g(i,S) = \min_{j \in S} \{ w(i,j) + g(j,S - \{j\}) \}$$

```
Obviously, g(i, \emptyset) = w(i, 1)

We can find g(i, S) for all sets S, with |S| = 1

Then find g(i, S) for all sets S, with |S| = 2

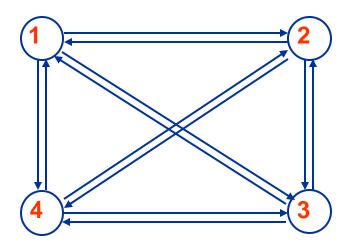
...

and then find g(i, S) for all sets S, with |S| = n-2

Finally: g(1, V-\{1\}) --- |S| = n-1
```

```
We need to compute g(i,S)  \text{for EVERY set S of EACH possible size } |S| = 1,2,...,n-2, \\ \text{and for all } i \in V - (S \cup \{1\})
```

### Example



|           | 7: 0 10 15<br>5 0 9<br>6 13 0<br>8 8 9 |    | 20 |    |
|-----------|----------------------------------------|----|----|----|
| <b></b> - | 5                                      | 0  | 9  | 10 |
| w:        | 6                                      | 13 | 0  | 12 |
|           | 8                                      | 8  | 9  | 0  |

```
|S|=0:
          g(2,\varnothing)=5, g(3,\varnothing)=6,
                                               g(4,\varnothing)=8
          g(2,{3}) = w_{23} + g(3,\emptyset) = 9 + 6 = 15
|S|=1:
                                                                                     g(4,{3}) = 15
           g(2,{4}) = 18
                                                                                       S = \{4\}
           g(3,{4}) = 20
           g(3,\{2\}) = 18
                                                                                         S = \{2\}
            g(4,{2}) = 13
|S|=2:
          g(2,{3,4}) = min{w<sub>23</sub> + g(3,{4}), w<sub>24</sub> + g(4,{3})} = 25
                                                                             S={3,4}
            g(3,\{2,4\}) = min\{ w_{32} + g(2,\{4\}), w_{34} + g(4,\{2\}) \} = 25
                                                                             S=\{2,4\}
            g(4,\{2,3\}) = min\{ w_{42} + g(2,\{3\}), w_{43} + g(3,\{2\}) \} = 23
                                                                              S=\{2,3\}
g(1,\{2,3,4\}) = min\{ w_{12} + g(2,\{3,4\}),
                                                                            S=\{2,3,4\}
                        W_{13} + g(3,\{2,4\}),
                        W_{14} + g(4,\{2,3\}) \} =
               = min{35, 40, 43} = 35
```

```
for i = 2 to n do g(i,\emptyset) = w(i,1);

for k = 1 to n-2 do /\!\!/ for all sizes of S

for each S \subseteq V-\{1\} s.t. |S|=k do /\!\!/ for all possible sets of size k

for each i \in V-(S \cup \{1\})

g(i,S) := \min_{j \in S} \left\{ w(i,j) + g(j,S-\{j\}) \right\};

find g(1, V-\{1\});
```

### Complexity:

N = # of g(i,S) computations

For each value of |S| there are  $\leq n-1$  choices for i

The number of sets S with |S| = k not including 1 and i is  $\binom{n-2}{k}$ 

$$N = \sum_{k=0}^{n-2} (n-1) \binom{n-2}{k} = (n-1)2^{n-2}$$

 $T(n) = N \cdot [time to compute g(i,S) by taking the min over g(j,S-{j}) = N \cdot O(n)$ 

 $T(n) = O(n^2 2^n)$ , better than n!, but still, appropriate only for small instances

# Coping with NP-complete problems

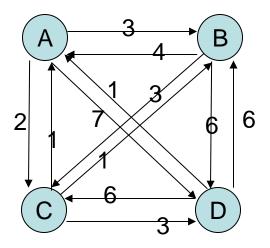
- 1. Small instances
- 2. Special cases
- 3. Exponential algorithms (Dynamic Programming, Branch and Bound,...)
- 4. Approximation algorithms
- 5. Randomized algorithms
- 6. Heuristic algorithms

A different lower bound on the optimal solution:

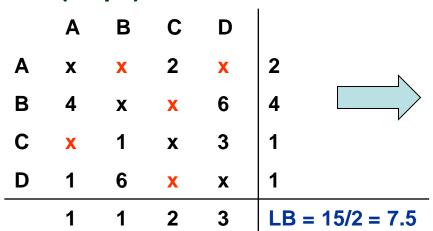
$$\frac{1}{2} \sum_{i=1}^{n} \left( \min_{j \neq i} \left\{ w_{i,j} \right\} + \min_{j \neq i} \left\{ w_{j,i} \right\} \right)$$

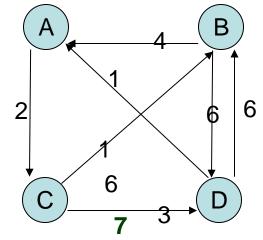
- the half of the sum of minimum elements of each row and each column
- For every node one edge of the tour has to come towards i and one has to
   leave from i

|   | Α | В | С | D<br>7<br>6<br>3<br>x |               |
|---|---|---|---|-----------------------|---------------|
| A | X | 3 | 2 | 7                     | 2             |
| В | 4 | X | 3 | 6                     | 3             |
| С | 1 | 1 | X | 3                     | 1             |
| D | 1 | 6 | 6 | X                     | 1             |
|   | 1 | 1 | 2 | 3                     | LB = 14/2 = 7 |



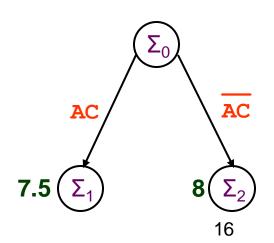
Branch 1: edge AC in the tour → CA, AB, AD, BC, DC not in tour (why?)





**Σ<sub>2</sub>** Branch 2: AC not in tour

|   | Α | В | C | D                     |   |
|---|---|---|---|-----------------------|---|
| Α | X | 3 | X | D<br>7<br>6<br>3<br>x | 3 |
| В | 4 | X | 3 | 6                     | 3 |
| С | 1 | 1 | X | 3                     | 1 |
| D | 1 | 6 | 6 | X                     | 1 |
|   | 1 |   |   | 3                     |   |



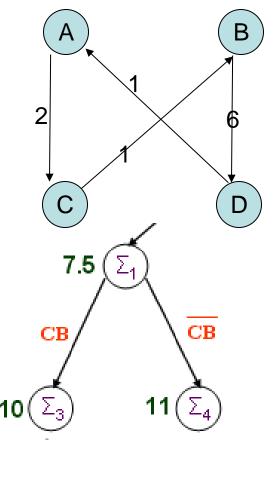
AC in tour → CA, AB, AD, BC, DC not in tour CB in tour → CD, DB, BA not in tour

|     | ^ | ^      |   | <u> </u> |
|-----|---|--------|---|----------|
| D 1 | X | X      | Y | 1        |
| C x | 1 | X      | X | 1        |
|     | x | X      | 6 | 6        |
| A x | x | 2      | X | 2        |
| A A | В | C, DB, | D |          |

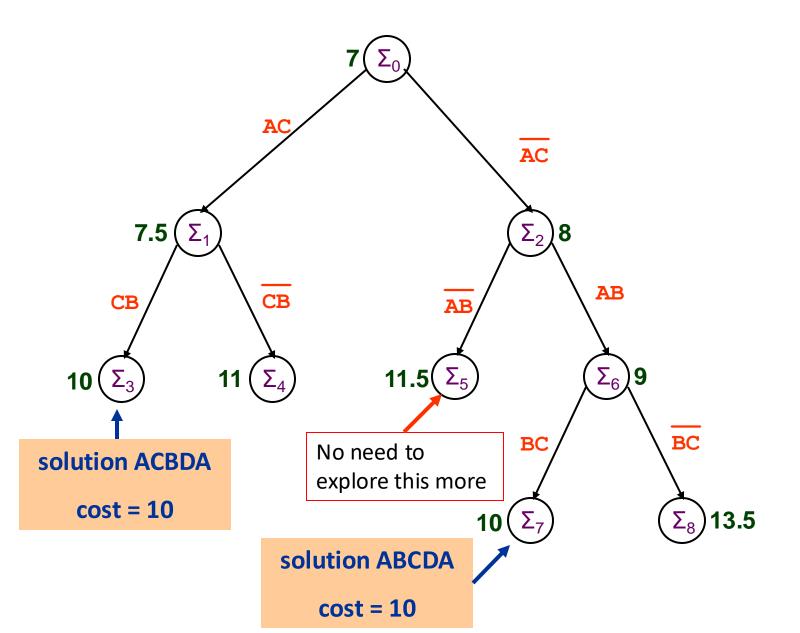
AC in tour → CA, AB, AD, BC, DC not in tour CB not in tour

|   | Α | В | С | D                     |                |
|---|---|---|---|-----------------------|----------------|
| Α | X | X | 2 | D<br>x<br>6<br>3<br>x | 2              |
| В | 4 | X | X | 6                     | 4              |
| С | X | X | X | 3                     | 3              |
| D | 1 | 6 | X | X                     | 1              |
|   | 1 | 6 | 2 | 3                     | LB = 22/2 = 11 |

A feasible Solution



and so on ...



#### **Parameters**

- Maintain a set S of active states
- Initially  $S = \{\Sigma_0\}$  (nothing has been expanded yet)
- In each step extract state  $\Sigma$  from S ( $\Sigma$  is the state to be expanded)
- UB is a global upper bound of the optimum solution
  - For minimization problems we initially set UB =  $+\infty$
- LB(Σ) is a lower bound on all solutions represented by state  $\Sigma$  (i.e. from all solutions that can arise after expanding  $\Sigma$ )
- Whenever we reach a terminal node with LB( $\Sigma$ ) ≤ UB, then we can update our current UB
- During the process, we do not need to examine any further the nodes where their LB is higher than UB!

```
Algorithm Branch and Bound
\{ S = \{\Sigma_0\};
   UB = +\infty
   while S \neq \emptyset do
   { get a node \Sigma from S;
        //which node ? FIFO/LIFO/Best LB
        S := S - \{\Sigma\};
        for all possible "1-step" extensions \Sigma_i of \Sigma do
              create \Sigma_i and find LB(\Sigma_i);
                 if LB(\Sigma_i) \leq UB then
                          if \Sigma_i is terminal then
                              { UB := LB(\Sigma_i);
                                  optimum:= \Sigma_{j} }
                          else add \Sigma_{j} to S }
```

See Chapter 9 (Section 9.1.2) in DPV book, for a different branch and bound algorithm for TSP.

# Coping with NP-complete problems

- 1. Small instances
- 2. Special cases
- 3. Exponential algorithms
- 4. Approximation algorithms
- 5. Randomized algorithms
- 6. Heuristic algorithms

# **Approximability of TSP**

Is there any f(n)-approximation algorithm for TSP? NO!

Theorem: For any (polynomial time computable) function f(n) (with  $f(n) \ge 1$  for all n), TSP cannot be approximated within a factor of f(n), unless P=NP.

#### **Proof:**

Claim: If there is an f(n)-approximation algorithm A for TSP, then, there is a poly-time algorithm for HC, i.e., we can decide the HC problem in polynomial time, and thus P=NP!

Reduction from Hamilton Cycle (HC) to TSP:

Consider an instance of HC, i.e., a graph G=(V,E), with |V|=nConstruct a complete weighted graph G'=(V,E'), E'=all possible edges with weights

$$w(u,v) = \begin{cases} 1, & \text{if } (u,v) \in E \\ \\ & \text{n f(n), otherwise} \end{cases}$$

# **Approximability of TSP**

### Proof (cont.):

Running A on G' returns a tour of cost C

- a) if the original graph G is Hamiltonian,
  - Optimal TSP tour in G' has  $C^* = n$ ,
  - Algorithm A will return a tour with cost C ≤ nf(n) (because we assumed
     A is a f(n)-approximation algorithm)
- b) if the original graph G is not Hamiltonian
  - The optimal TSP tour in G' must contain at least one edge of cost nf(n):
    - Hence,  $C^* \ge nf(n) + (n-1) > n f(n)$
  - Algorithm A will return a tour  $C \ge C^* > nf(n)$  (since  $C^*$ =OPT should be less than the solution of A)

Hence: if we had a f(n)-approximation for TSP, we could solve the HC problem.

# **TSP** with triangle inequality

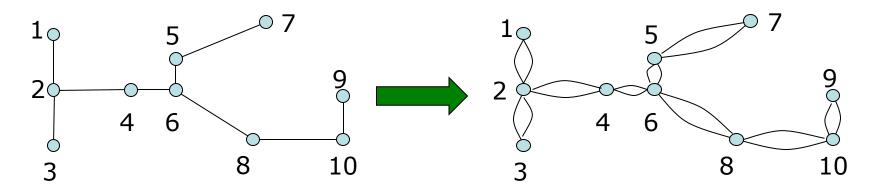
- Recall: Δ-TSP = special case of TSP where the triangle inequality holds,
   i.e., w(i,k) ≤ w(i,j) + w(j,k), 1 ≤ i, j, k ≤ n
- A very natural special case, satisfied by many distance functions

Theorem: There exists a 2-approximation algorithm for  $\Delta$ -TSP

- How do we start with designing an approximation algorithm?
- First and most important step: we need a lower bound on the cost of the optimal solution
- Consider an instance I of TSP
- Claim: OPT(I)  $\geq$  MST(I)
- Proof: delete one edge e from an optimal solution, what remains is a spanning tree F

$$OPT(I) = w(e) + C(F) \ge w(e) + MST(I) \ge MST(I)$$

# **Δ-TSP: A 2-approximation**



**Step 1:** Find a minimum spanning tree, T, of G, of cost C(T)

Step 2: Double the edges of T and let T' be the obtained (multi)graph

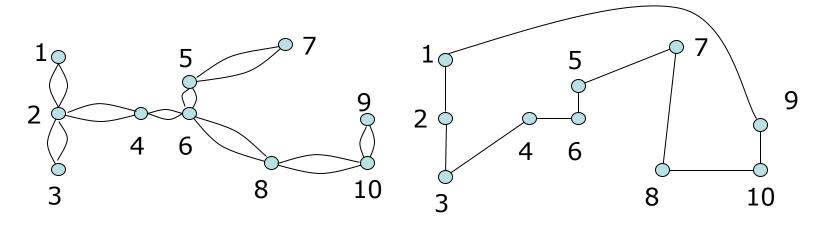
All vertices of T' are of even degree

#### Recall from graph theory:

- •Euler cycle: A tour that visits all the edges exactly once
- •A graph is Eulerian (i.e., has an Euler cycle) iff every vertex has an even degree

In the example: Euler cycle W: 1, 2, 3, 2, 4, 6, 5, 7, 5, 6, 8, 10, 9, 10, 8, 6, 4, 2, 1

# **Δ-TSP: A 2-approximation**



Step 3: Find an Euler cycle W in T'

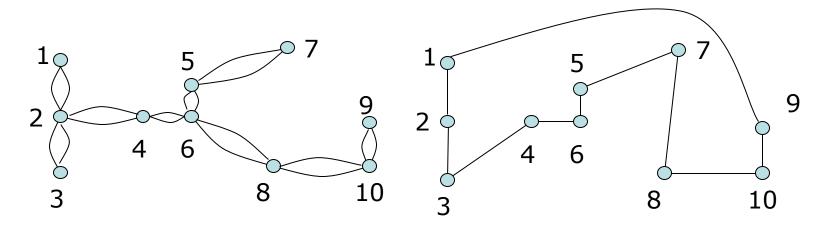
Note: W traverses each edge of T twice:  $C(W) = 2 C(T) \le 2 OPT$ 

**Step 4:** Find a tour H by "shortcutting" W:

1, 2, 3, 2, 4, 6, 5, 7, \$\infty\$, \$\infty\$, 8, 10, 9, 1\$\infty\$, \$\infty\$, \$

Final solution H = 1, 2, 3, 4, 6, 5, 7, 8, 10, 9, 1

# **Δ-TSP: A 2-approximation**



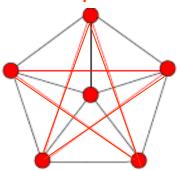
 $C(H) \le C(W)$ , because of the triangle inequality

Hence:  $C(H) \le C(W) \le 2 \text{ OPT}$ 

QUESTION: What is the complexity of this algorithm?

# **Δ-TSP: Tightness of 2-approximation**

### Example

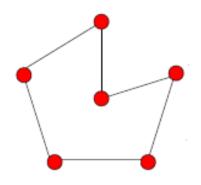


Complete graph K<sub>n</sub>

Red edges: w = 2

Other edges: w=1 (union of a star + cycle)

### **Optimal tour**



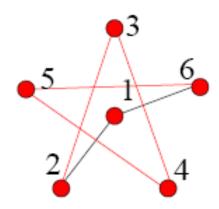
$$OPT = n$$

# **Δ-TSP: Tightness of 2-approximation**

#### Minimum MST



### Solution



$$C(H) = (n-2)*2 + 2*1 = 2n-2$$

Hence, C(H) / OPT = 
$$(2n-2)$$
 / n = 2 -  $(2/n) \rightarrow 2$ 

Theorem: There is a 1.5-approximation algorithm for  $\Delta$ -TSP [Chistofides 1976]

**Step 1:** Start again by finding a minimum spanning tree, T, of cost C(T)

- We cannot now just double the edges, this will not avoid a loss of 2
- But we would still like to create an Eulerian graph starting from T
- What makes T non-Eulerian?
- Problematic vertices: vertices of odd degree
- Claim: The number of odd-degree vertices is even (why?)

### **Detour on matchings**

Consider a graph G = (V, E)

Definition: A matching M is a collection of edges  $M \subseteq E$ , such that no 2 edges share a common vertex

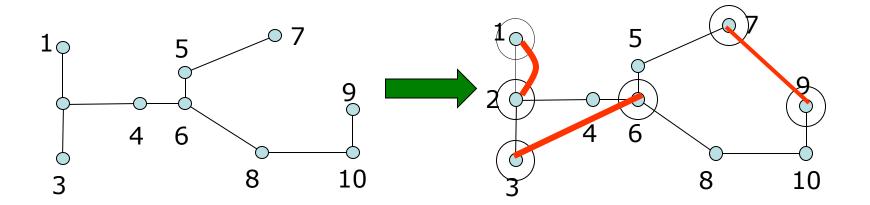
Given a matching M, a vertex u is called matched if there exists an edge  $e \in M$  such that e has u as one of its endpoints

### **Detour on matchings**

Types of matchings we are interested in:

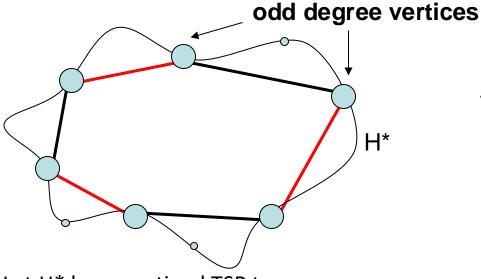
- Maximal matching: find a matching where no more edges can be added
- Maximum matching: find a matching with the maximum possible number of edges
- Perfect matching: find a matching where every vertex is matched (if one exists)
- Maximum weight matching: given a weighted graph, find a matching with maximum possible total weight
- Minimum weight perfect matching: given a weighted graph, find a perfect matching with minimum cost

All the above problems can be solved in polynomial time (several algorithms  $_{33}$  and publications over the last decades)



#### Step 2:

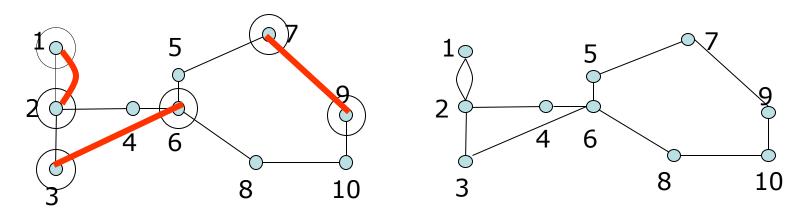
- •Find the set of vertices of T of odd degree, say S
- •S contains an even number of vertices
- •Consider the graph G<sub>S</sub> induced by S
- •Find a minimum weight perfect matching, M, in G<sub>S</sub>



Why is a minimum cost perfect matching useful?

- Let H\* be an optimal TSP tour
- Shortcut the tour to vertices of S
- This leads to a tour over S
- By triangle inequality, cost of S-tour ≤ C(H\*) = OPT(I)
- S-tour can be decomposed into 2 perfect matchings of S (the red (M<sub>1</sub>), and the black (M<sub>2</sub>))

Then  $C(H^*) \ge C(M_1) + C(M_2) \ge C(M) + C(M)$ , since M is a minimum weight perfect matching

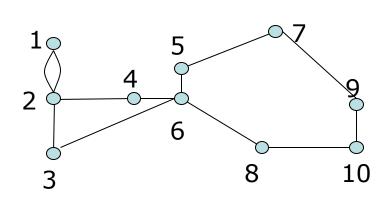


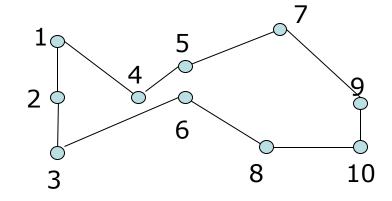
#### Step 3:

- •Add the edges of M to T and let T' be the obtained (multi)graph
- •All vertices of T' are of even degree now, hence T' is Eulerian
- •Find an Euler cycle, W, in T'

Euler cycle W: 1, 2, 3, 6, 8, 10, 9, 7, 5, 6, 4, 2, 1

$$C(W) = C(T) + C(M) \le C(H^*) + C(H^*) / 2 = 1.5 C(H^*)$$





### Step 4:

Find a tour H by shortcutting the Euler tour W:

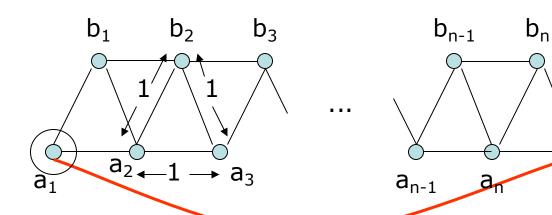
H: 1, 2, 3, 6, 8, 10, 9, 7, 5, 8, 4, 2, 1

 $C(H) \le C(W)$ , by use of the triangle inequality

Hence, overall:  $SOL(I) = C(H) \le C(W) \le 1.5 C(H^*) = 1.5 OPT(I)$ 

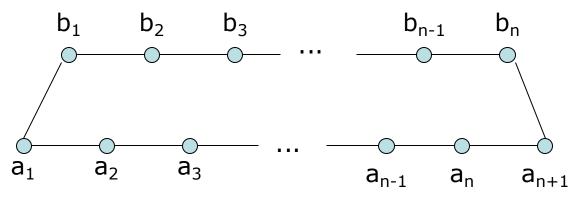
QUESTION: What is the complexity of this algorithm?

# **Δ-TSP: Tightness of 1.5-approximation**



- All edges with cost 1, apart from the red edge of cost n
- Shortcutting may pick the red edge and the zig-zag MST

$$C(H)=n+n+n=3n$$



For the optimal tour H\*

 $\widetilde{a_{n+1}}$ 

$$C(H^*) = n + (n-1) + 2 = 2n+1$$

 $C(H) / C(H^*) \rightarrow 3/2$ 

# **Asymmetric Δ-TSP**

- So far we assumed the graph is undirected
- For directed graphs the problem is more difficult (non-symmetric)
- [Frieze, Galbiati, Maffioli 1982]: O(logn)-approximation
  - Relatively simple algorithm
- [Asadpour, Goemans, Madry, Oveis Gharan, Saberi, 2011]:
   O(logn/loglogn)- approximation
  - Way more involved algorithm, based on Linear Programming and LP-rounding techniques
  - Randomized algorithm
  - It produces a solution with cost at most O(logn/loglogn)
     OPT(I) with high probability (approaching 1)
- More Recent, [Svensson, Tarnawski, Végh 2017]: constant approximation algorithm.

# Back to symmetric Δ-TSP

- Inspired by the ideas for the progress on asymmetric TSP
- An interesting special case: graphic TSP: given a weighted graph G
   = (V, E), for edges that are not present, the weight is given by the
   shortest path
  - Also referred to as shortest path metrics
- [Asadpour, Goemans, Madry, Oveis Gharan, Saberi, 2011]: A randomized approximation of  $3/2 \varepsilon$ , where  $\varepsilon \approx 10^{-12}$
- [Momke, Svensson, 2011]: ≈ 1.461-approximation
- [Mucha, 2012]: 13/9 ≈ 1.444-approximation
- Conjecture: 4/3