
Special Topics on Algorithms

Introduction to Linear and Integer
Programming

Vangelis Markakis Ioannis Milis
George Zois

Introduction to Linear Programming

2

3

Linear Programming

• Nothing to do with programming!

• A particular way of formulating certain optimization problems
with linear constraints and a linear objective function

• One of the most useful tools in Algorithms and Operations
Research

• Extremely useful also in the design of approximation
algorithms

4

Linear Programming

Applications of Linear Programming: Too many to enumerate!

• Operations Research

• Theory of Algorithms and Combinatorial Optimization

• Game theory and Microeconomics

• Medicine

• And many more...

5

Linear Programming Examples

Example 1:

• A farmer possesses a land of 10 km2

• He wants to plant the land with wheat, or barley or a combination of
them

• The farmer has a limited amount of fertilizer, say 16 kgs

• And a limited amount of pesticide, say 18 kgs

• Each square km of wheat requires 1kg of fertilizer and 2 kgs of pesticide

• Each square km of barley requires 2kg of fertilizer and 1.2 kgs of pesticide

• Revenue to the farmer: 3 (thousand $) from each square km of wheat and
4 (thousand $) from each square km of barley

• Find out what the farmer should do (i.e., how many square km of barley
and how many of wheat he should plant) to maximize his revenue.

6

Linear Programming Examples

Formulation as a linear program:

First step: We need to define the decision variables of our
problem
• x1 = number of square km for wheat

• x2 = number of square km for barley

• Often multiple ways for doing this step

• Objective function: maximize 3x1 + 4x2

• Observe that: objective function is linear

7

Linear Programming Examples

Formulation as a linear program:

Second step: formulation of constraints on the variables x1, x2

•Area constraint: x1 + x2 ≤ 10

•Constraint for fertilizer: x1 + 2x2 ≤ 16

•Constraint for pesticide: 2x1 + 1.2x2 ≤ 18

•Nonnegativity constraints: x1 ≥ 0, x2 ≥ 0 (cannot plant an area with negative
surface)

•Observe: all constraints are also linear

Linear Programming Examples

8

Usual writing style:

max 3x1 + 4x2

s.t. x1 + x2 £10

 x1 + 2x2 £16

 2x1 +1.2x2 £18

 x1, x2 ³ 0

Objective function

constraints

• It can be either a minimization or a maximization problem
• Feasible space (or region): the set of all pairs (x1, x2) that satisfy the constraints
• In the example: the feasible region is a subset of R2

Linear Programming Examples

9

Geometrically:

10

10 x1

x2

x1 + x2 = 10

2x1 + 1.2x2 = 18

x1 + 2x2 = 16

Feasible
region

The feasible region is a
polyhedron in R2, where
n = number of variables

10

Linear Programming Examples

Example 2:

• A manufacturing company selling glass and aluminum products is trying to
invest in launching 2 new products

• The company has 3 plants
– Plant 1: for processing aluminum

– Plant 2: for processing glass

– Plant 3: for assembling and finalizing products

• Product 1 requires processing in Plant 1 and Plant 3

• Product 2 requires processing in Plant 2 and Plant 3

• Since the company processes other products as well, there are constraints
on the amount of time available in each plant.

11

Linear Programming Examples

• Goal: Decide how many batches of Product 1 and Product 2 to produce so
as

– Not to exceed the available time capacity in each plant

– Maximize total revenue from the batches produced

Plant

Time needed per batch (hours)
Total available
time per week
(hours)

Product

1 2

1 1 0 4

2 0 2 12

3 3 2 18

Profit per batch 3000 5000

12

Linear Programming Examples

Formulation as a linear program:

First step: determine the decision variables of our problem
•x1 = number of batches of product 1, produced per week

•x2 = number of batches of product 2, produced per week

Second step: formulation of constraints on the variables x1, x2

•Time constraints for Plant 1: x1 ≤ 4

•Time constraints for Plant 2: 2x2 ≤ 12

•Time constraints for Plant 3: 3x1 + 2x2 ≤ 18

•Nonnegativity constraints: x1 ≥ 0, x2 ≥ 0 (number of batches produced
cannot be negative)

Objective function: maximize 3x1 + 5x2

Linear Programming Examples

13

Hence:

max 3x1 + 5x2

s.t. x1 £ 4

 2x2 £12

 3x1 + 2x2 £18

 x1, x2 ³ 0

Objective function

constraints

Linear Programming Examples

14

Geometrically:

6

4 x1

x2

2x2 = 12

3x1 + 2x2 = 18

x1 = 4

Feasible
region

Again the feasible region
is a polyhedron in R2

-

-

-

- -

Linear Programming Examples

15

A more succinct notation (canonical form)

We can represent Example 2 as:

 c =
3

5

æ

è
ç

ö

ø
÷,b =

4

12

18

æ

è

ç
ç
ç

ö

ø

÷
÷
÷
,

max. cTx
s.t.

Ax ≤ b
x ≥ 0

A =

1 0

0 2

3 2

æ

è

ç
ç
ç

ö

ø

÷
÷
÷

where x =
x1

x2

æ

è
ç

ö

ø
÷,

Notation: x ≥ 0 for a vector x means that the inequality should hold
component-wise (for every coordinate)

16

General Form of Linear Programs

Given:

•c1, c2, ..., cn

•b1, b2, ..., bm

•The constraint matrix A = (aij) with 1 ≤ i ≤ m, 1 ≤ j ≤ n,

We want to:

17

General Form of Linear Programs

More concisely:

Where:
• c and x are n-dimensional vectors
• b is an m-dimensional vector
• n decision variables
• m inequality constraints
• n nonnegativity constraints

18

Linear Programming

Other forms of LPs we could encounter:

1. Minimization problem instead of maximization

2. >= inequalities in the constraints

3. Equality constraints

4. Absence of nonnegativity constraints

Claim: All these are equivalent forms, and can be reduced to one another

• If we have a minimization problem: revert the signs in the coefficients of
the objective function and maximize the new function.

• >= constraints: again revert signs to bring them to <= constraints

• Equality constraints: replace them by 2 constraints (one with >=, and one
with <=)

19

Geometry of Linear Programming

20

Geometry of Linear Programming

21

Geometry of Linear Programming

22

• Key property: The optimum is achieved at a vertex of

the feasible region

• The only exceptions are cases in which there is no optimum

1. The LP is infeasible

too tight constraints; impossible to satisfy all of them

e.g. x1≤1, x1≥2

2. The LP is unbounded;

too loose constraints; the feasible region is unbounded

e.g. arbitrarily high objective values

max x1 + x2

x1,x2 ≥0

Geometry of Linear Programming

23

The Graphical Method

• Applicable for linear programs with 2 or 3 decision variables

• It helps us understand how to think about solving problems in higher
dimensions

Solving Example 2:

• Step 1: Draw the feasible region

• Step 2: “Guess” a value Z for the objective function and draw the line 3x1 +
5x2 = Z

• If this line intersects the feasible region, it means we have at least one
feasible solution with value Z

• Trial and error: Keep doing this, increasing Z till the line gets out of the
feasible region

24

The Graphical Method
Solving Example 2:

•Step 1: Draw the feasible region

•Step 2: Trial and error: “Guess” a value Z for the objective function and draw
the line 3x1 + 5x2 = Z

6

4 x1

x2

2x2 = 12

3x1 + 2x2 = 18

x1 = 4

Feasible
region-

-

-

- -

3x1 + 5x2 = 10

• We could start with Z=0 since
there exists a feasible solution
with 0 value

• With Z=10, we see there are still
a lot of feasible solutions with
this value

25

The Graphical Method
Solving Example 2:

• We can now keep examining higher values for Z, until we get out of the
feasible region

6

4 x1

x2

2x2 = 12

3x1 + 2x2 = 18

x1 = 4

Feasible
region-

-

-

- -3x1 + 5x2 = 10

• We keep moving the dashed
line higher and higher

• All lines have the same slope,
since for every Z:

x2 = -3/5 x1 + 1/5 Z
• slope = -3/5
• Eventually, we stop at Z = 36

3x1 + 5x2 = 20

3x1 + 5x2 = 30

3x1 + 5x2 = 36

26

The Graphical Method

Observations:

• In 2 dimensions, the feasible region is a polygon

• We stop only when the dashed line intersects the feasible region in a
corner point of the polygon

– Or in degenerate cases, when the line coincides with one of the sides of the polygon

• How can we compute the values of x1, x2 when we stop?
– A corner point is the intersection of 2 sides, hence they satisfy 2 constraints with

equality

• In Example 2, we stop at Z=36

• The solution of
– 2x2 = 12

– 3x1 + 2x2 = 18

• Hence, x1 = 2, x2 = 6

27

The Graphical Method

Can the graphical method keep going without ever terminating?

• YES, when the polyhedron is unbounded

• But if this happens, the optimal solution is +

2 x1

x2

-x1 + 2x2 = 0

3x1 - x2 = 0

x1 = 2

Feasible
region

-

-

-

-

Example of an unbounded
feasible region:
max Z = 4x1 + 2x2

s.t.

x1 ≥ 2

3x1 – x2 ≥ 0

-x1 + 2x2 ≥ 0

x1, x2 ≥ 0

28

The Graphical Method

• Insights gained from the graphical method:

– If an optimal solution exists, it is attained at a corner point of the
polygon

• What about higher dimensions?

• Many real world problems have hundreds of variables
– In higher dimensions, the feasible region is still a polyhedron

– Again, it suffices to look at the corner points of the polyhedron

– Till 3 dimensions, we can do this geometrically

– When n ≥ 4, we should do it algebraically

• Idea for higher dimensional problems: Try to examine corner
points of the polyhedron till we reach the optimal one

29

The Graphical Method

• Q: What is a corner point in higher dimensions?
– Definition: A feasible solution of a linear program with n variables is a

corner point (or vertex) if it satisfies n linearly independent
inequalities with exact equality

• Q: Could we enumerate all corner point solutions and pick the
best one?
– Not an efficient algorithm, polyhedra can have exponentially many

corner points.

• BUT: We can try to think of a more clever way to search for
the best corner point
– Essentially what simplex does

The Simplex Method

• Designed by Dantzig (1947)

– One of the most important algorithms of the 20th

century

– An algorithm that behaves extremely well in practice

despite its exponential complexity in worst case

– The design of the algorithm and the quest for better

algorithms also contributed to building a rich theory

around linear programming

30

31

The Simplex Method

32

The Simplex Method

33

The Simplex Method

The Simplex Method
Why are we interested in checking only neighboring corner

points?

Optimality test for linear programs:

Consider an LP with at least one optimal solution. If a corner point

solution has no adjacent corner point solutions that are better,

according to the objective function, then it must be an optimal solution

34

• Hence, local optimality  global optimality

• Very important property for linear programming

- Also generalizes to continuous, convex functions

Complexity of Simplex

Extremely well-behaved in practice

• Empirically, number of iterations in simplex looks
proportional to number of constraints

• Can we have a good theoretical upper bound on the number
of iterations?

• NO! There are examples that need an exponential (2n)
number of iterations, discovered first by [Klee, Minty ’72]

• Despite that, it is still one of the preferred algorithms for
solving linear programs!

35

Other Algorithms

•The ellipsoid method: The first polynomial time algorithm
– By [Kachiyan ’79], however not well behaved in practice

•Interior point methods: also polynomial time algorithms
– First conceived by Karmarkar [1984]
– Main ideas:

• Again keep moving from a feasible solution to a better one
• But this time, we move along solutions in the interior of the polytope
• The current solution keeps getting closer and closer to a vertex of the polytope

36

6

4 x1

x2

2x2 = 12

3x1 + 2x2 = 18

x1 = 4-

-

-

- -(0, 0)









Simplex vs Interior Point Algorithms
• Comparisons

– In theory: interior point methods are polynomial time algorithms (for
any n and m), simplex may need exponential time

– In practice: average case complexity of simplex very low compared to
worst case

– One iteration of interior point methods needs much more
computation time than in simplex to decide the next feasible solution

– But: as the number of constraints increases, interior point methods do
not need much more iterations

• Interior point methods go through the internal part of the polytope
• Adding more constraints reduces the feasible region, by adding more constraint

boundaries

37

Integer Programming

38

39

What is an integer program?
• A way to model problems where some variables take integer values
• Also referred to as Integer Linear Program (ILP):
• Almost the same as Linear Programs

• Linear objective function
• Linear constraints

Applications:
• Comparable to applications of Linear Programming
• Operations Research
• Airline scheduling problems
• Medicine
• etc

Integer Programming

40

xi =
1, if item i is in the solution

0, otherwise

ì
í
ï

îï

• It is not always clear how to model a problem as an integer program
• The tricky part is how to express the objective function using integer

variables
• Usually: Assign a binary variable xi to a candidate object that can be

included in a solution
• Interpretation:

Integer Programming Formulations

41

Integer Programming Formulations

Examples:

0-1 KNAPSACK:

I: A set of objects S = {1,…,n}, each with a positive
integer weight wi, and a value vi, i=1,…,n, and a
positive integer W

Q: find A  S s.t. and is maximized

Equivalent IP formulation:
max Σi vi xi

s.t.

Σi wi xi ≤ W
xi  {0,1}  i  {1,...,n}

Ww

Ai

i 


42

Integer Programming Formulations

Examples:

Equivalent IP formulation:
min Σu xu

s.t.
xu + xv ≥ 1  (u, v)  E
xu  {0,1}  u  V

VERTEX COVER (VC):

I: A graph G = (V,E)

Q: Find S  V s.t.  (u, v)  E either uS or vS (or
both) and |S| is maximized

43

Integer Programming Formulations

Examples:

MAKESPAN (P||Cmax)

I: A set of objects S = {1,…,n}, each with a positive integer weight
wi, i = 1,…,n, and a positive integer M

Q: find a partition of S into A1, A2,…, AM s.t. is
minimized

44

Integer Programming Formulations

Examples:
MAKESPAN:
• Better to think of it as a job scheduling problem
• Items correspond to jobs that should be assigned to machines
• The weight corresponds to the processing time
• How do we model that a job j is assigned to machine i?

Equivalent IP formulation:
min t
s.t.

Σj wj xij ≤ t  i  {1,...,m} (The total processing time in each machine should be

less or equal than the makespan

Σi xij = 1  j  {1,...,n} (every job must be assigned to exactly one machine)
xij  {0,1}  j  {1,...,n}, i  {1,...,m}

Complexity of Integer Programming

• Modeling a problem as an integer program does not
provide any guarantee that we can solve it

Theorem: Integer Programming is NP-complete

• In fact many problems in discrete optimization are NP-
complete

• Partly due to the discrete nature
• All such problems can be reduced to SAT and vice versa

Is this the end of the world?

45

	Slide 1: Special Topics on Algorithms
	Slide 2:
	Slide 3: Linear Programming
	Slide 4: Linear Programming
	Slide 5: Linear Programming Examples
	Slide 6: Linear Programming Examples
	Slide 7: Linear Programming Examples
	Slide 8: Linear Programming Examples
	Slide 9: Linear Programming Examples
	Slide 10: Linear Programming Examples
	Slide 11: Linear Programming Examples
	Slide 12: Linear Programming Examples
	Slide 13: Linear Programming Examples
	Slide 14: Linear Programming Examples
	Slide 15: Linear Programming Examples
	Slide 16: General Form of Linear Programs
	Slide 17: General Form of Linear Programs
	Slide 18: Linear Programming
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23: The Graphical Method
	Slide 24: The Graphical Method
	Slide 25: The Graphical Method
	Slide 26: The Graphical Method
	Slide 27: The Graphical Method
	Slide 28: The Graphical Method
	Slide 29: The Graphical Method
	Slide 30: The Simplex Method
	Slide 31
	Slide 32
	Slide 33
	Slide 34: The Simplex Method
	Slide 35: Complexity of Simplex
	Slide 36: Other Algorithms
	Slide 37: Simplex vs Interior Point Algorithms
	Slide 38:
	Slide 39: Integer Programming
	Slide 40: Integer Programming Formulations
	Slide 41: Integer Programming Formulations
	Slide 42: Integer Programming Formulations
	Slide 43: Integer Programming Formulations
	Slide 44: Integer Programming Formulations
	Slide 45: Complexity of Integer Programming

