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Linear Programming

• Nothing to do with programming!

• A particular way of formulating certain optimization problems 
with linear constraints and a linear objective function

• One of the most useful tools in Algorithms and Operations 
Research

• Extremely useful also in the design of approximation 
algorithms
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Linear Programming

Applications of Linear Programming: Too many to enumerate!

• Operations Research

• Theory of Algorithms and Combinatorial Optimization

• Game theory and Microeconomics

• Medicine

• And many more...
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Linear Programming Examples

Example 1:

• A farmer possesses a land of 10 km2

• He wants to  plant the land with wheat, or barley or a combination of 
them

• The farmer has a limited amount of fertilizer, say 16 kgs

• And a limited amount of pesticide, say 18 kgs

• Each square km of wheat requires 1kg of fertilizer and 2 kgs of pesticide

• Each square km of barley requires 2kg of fertilizer and 1.2 kgs of pesticide

• Revenue to the farmer: 3 (thousand $) from each square km of wheat and 
4 (thousand $) from each square km of barley

• Find out what the farmer should do (i.e., how many square km of barley 
and how many of wheat he should plant) to maximize his revenue.
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Linear Programming Examples

Formulation as a linear program:

First step: We need to define the decision variables of our 
problem
• x1 = number of square km for wheat

• x2 = number of square km for barley

• Often multiple ways for doing this step

• Objective function: maximize 3x1 + 4x2

• Observe that: objective function is linear
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Linear Programming Examples

Formulation as a linear program:

Second step: formulation of constraints on the variables x1, x2

•Area constraint: x1 + x2 ≤ 10 

•Constraint for fertilizer: x1 + 2x2 ≤ 16 

•Constraint for pesticide: 2x1 + 1.2x2 ≤ 18

•Nonnegativity constraints: x1 ≥ 0, x2 ≥ 0 (cannot plant an area with negative 
surface)

•Observe: all constraints are also linear



Linear Programming Examples
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Usual writing style:

max  3x1 + 4x2

s.t.   x1 + x2 £10

       x1 + 2x2 £16

       2x1 +1.2x2 £18

       x1, x2 ³ 0

Objective function

constraints

• It can be either a minimization or a maximization problem
• Feasible space (or region): the set of all pairs (x1, x2) that satisfy the constraints
• In the example: the feasible region is a subset of R2



Linear Programming Examples
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Geometrically:

10

10 x1

x2

x1 + x2 = 10

2x1 + 1.2x2 = 18

x1 + 2x2 = 16

Feasible 
region

The feasible region is a 
polyhedron in R2, where 
n = number of variables
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Linear Programming Examples

Example 2:

• A manufacturing company selling glass and aluminum products is trying to 
invest in launching 2 new products

• The company has 3 plants
– Plant 1: for processing aluminum

– Plant 2: for processing glass

– Plant 3: for assembling and finalizing products

• Product 1 requires processing in Plant 1 and Plant 3

• Product 2 requires processing in Plant 2 and Plant 3

• Since the company processes other products as well, there are constraints 
on the amount of time available in each plant.
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Linear Programming Examples

• Goal: Decide how many batches of Product 1 and Product 2 to produce so 
as 

– Not to exceed the available time capacity  in each plant

– Maximize total revenue from the batches produced

Plant

Time needed per batch (hours)
Total available 
time per week 
(hours)

Product

1 2

1 1 0 4

2 0 2 12

3 3 2 18

Profit per batch 3000 5000
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Linear Programming Examples

Formulation as a linear program:

First step: determine the decision variables of our problem
•x1 = number of batches of product 1, produced per week

•x2 = number of batches of product 2, produced per week

Second step: formulation of constraints on the variables x1, x2

•Time constraints for Plant 1: x1 ≤ 4 

•Time constraints for Plant 2: 2x2 ≤ 12 

•Time constraints for Plant 3: 3x1 + 2x2 ≤ 18

•Nonnegativity constraints: x1 ≥ 0, x2 ≥ 0 (number of batches produced 
cannot be negative)

Objective function: maximize 3x1 + 5x2



Linear Programming Examples
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Hence:

max  3x1 + 5x2

s.t.   x1 £ 4

       2x2 £12

       3x1 + 2x2 £18

       x1, x2 ³ 0

Objective function

constraints
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Geometrically:

6

4 x1

x2

2x2 = 12

3x1 + 2x2 = 18

x1 = 4

Feasible 
region

Again the feasible region 
is a polyhedron in R2

-

-

-

- -
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A more succinct notation (canonical form)

We can represent Example 2 as:
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x1

x2
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ø
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Notation: x ≥ 0 for a vector x means that the inequality should hold 
component-wise (for every coordinate)
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General Form of Linear Programs

Given:

•c1, c2, ..., cn

•b1, b2, ..., bm

•The constraint matrix A = (aij) with 1 ≤ i ≤ m, 1 ≤ j ≤ n,  

We want to:
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General Form of Linear Programs

More concisely:

Where:
• c and x are n-dimensional vectors
• b is an m-dimensional vector
• n decision variables
• m inequality constraints
• n nonnegativity constraints 
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Linear Programming

Other forms of LPs we could encounter:

1. Minimization problem instead of maximization

2. >= inequalities in the constraints

3. Equality constraints

4. Absence of nonnegativity constraints

Claim: All these are equivalent forms, and can be reduced to one another

• If we have a minimization problem: revert the signs in the coefficients of 
the objective function and maximize the new function.

• >= constraints: again revert signs to bring them to <= constraints

• Equality constraints: replace them by 2 constraints (one with >=, and one 
with <=)
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Geometry of Linear Programming
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Geometry of Linear Programming
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Geometry of Linear Programming
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• Key property: The optimum is achieved at a vertex of 

the feasible region

• The only exceptions are cases in which there is no optimum

1. The LP is infeasible 

too tight constraints; impossible to satisfy all of them

e.g.  x1≤1, x1≥2

2. The LP is unbounded;

too loose constraints;  the feasible region is unbounded

e.g.   arbitrarily high objective values

max x1 + x2

x1,x2 ≥0 

Geometry of Linear Programming
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The Graphical Method

• Applicable for linear programs with 2 or 3 decision variables

• It helps us understand how to think about solving problems in higher 
dimensions

Solving Example 2:

• Step 1: Draw the feasible region

• Step 2: “Guess” a value Z for the objective function and draw the line 3x1 + 
5x2 = Z

• If this line intersects the feasible region, it means we have at least one 
feasible solution with value Z

• Trial and error: Keep doing this, increasing Z till the line gets out of the 
feasible region 
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The Graphical Method
Solving Example 2:

•Step 1: Draw the feasible region

•Step 2: Trial and error: “Guess” a value Z for the objective function and draw 
the line 3x1 + 5x2 = Z

6

4 x1

x2

2x2 = 12

3x1 + 2x2 = 18

x1 = 4

Feasible 
region-

-

-

- -

3x1 + 5x2 = 10

• We could start with Z=0 since 
there exists a feasible solution 
with 0 value

• With Z=10, we see there are still 
a lot of feasible solutions with 
this value 
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The Graphical Method
Solving Example 2:

• We can now keep examining higher values for Z, until we get out of the 
feasible region

6

4 x1

x2

2x2 = 12

3x1 + 2x2 = 18

x1 = 4

Feasible 
region-

-

-

- -3x1 + 5x2 = 10

• We keep moving the dashed 
line higher and higher

• All lines have the same slope, 
since for every Z:

x2 = -3/5 x1 + 1/5 Z
• slope = -3/5
• Eventually, we stop at Z = 36

3x1 + 5x2 = 20

3x1 + 5x2 = 30

3x1 + 5x2 = 36
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The Graphical Method

Observations:

• In 2 dimensions, the feasible region is a polygon

• We stop only when the dashed line intersects the feasible region in a 
corner point of the polygon

– Or in degenerate cases, when the line coincides with one of the sides of the polygon 

• How can we compute the values of x1, x2 when we stop?
– A corner point is the intersection of 2 sides, hence they satisfy 2 constraints with 

equality

• In Example 2, we stop at Z=36

• The solution of 
– 2x2 = 12

– 3x1 + 2x2 = 18

• Hence, x1 = 2, x2 = 6 
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The Graphical Method

Can the graphical method keep going without ever terminating? 

• YES, when the polyhedron is unbounded 

• But if this happens, the optimal solution is +

2 x1

x2

-x1 + 2x2 = 0

3x1 - x2 = 0

x1 = 2

Feasible 
region

-

-

-

-

Example of an unbounded 
feasible region:
max Z = 4x1 + 2x2

s.t.

x1 ≥ 2

3x1 – x2 ≥ 0

-x1 + 2x2 ≥ 0

x1, x2 ≥ 0
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The Graphical Method

• Insights gained from the graphical method:

– If an optimal solution exists, it is attained at a corner point of the 
polygon

• What about higher dimensions?

• Many real world problems have hundreds of variables
– In higher dimensions, the feasible region is still a polyhedron

– Again, it suffices to look at the corner points of the polyhedron

– Till 3 dimensions, we can do this geometrically

– When n ≥ 4, we should do it algebraically

• Idea for higher dimensional problems: Try to examine corner 
points of the polyhedron till we reach the optimal one
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The Graphical Method

• Q: What is a corner point in higher dimensions?
– Definition: A feasible solution of a linear program with n variables is a 

corner point (or vertex) if it satisfies n linearly independent 
inequalities with exact equality

• Q: Could we enumerate all corner point solutions and pick the 
best one?
– Not an efficient algorithm, polyhedra can have exponentially many 

corner points.

• BUT: We can try to think of a more clever way to search for 
the best corner point
– Essentially what simplex does



The Simplex Method

• Designed by Dantzig (1947)

– One of the most important algorithms of the 20th

century

– An algorithm that behaves extremely well in practice 

despite its exponential complexity in worst case

– The design of the algorithm  and the quest for better 

algorithms also contributed to building a rich theory 

around linear programming

30
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The Simplex Method
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The Simplex Method
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The Simplex Method



The Simplex Method
Why are we interested in checking only neighboring corner 

points?

Optimality test for linear programs:

Consider an LP with at least one optimal solution. If a corner point 

solution has no adjacent corner point solutions that are better, 

according to the objective function, then it must be an optimal solution

34

• Hence, local optimality  global optimality

• Very important property for linear programming

- Also generalizes to continuous, convex functions



Complexity of Simplex

Extremely well-behaved in practice

• Empirically, number of iterations in simplex looks 
proportional to number of constraints

• Can we have a good theoretical upper bound on the number 
of iterations?

• NO! There are examples that need an exponential (2n) 
number of iterations, discovered first by [Klee, Minty ’72]

• Despite that, it is still one of the preferred algorithms for 
solving linear programs!
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Other Algorithms

•The ellipsoid method: The first polynomial time algorithm
– By [Kachiyan ’79], however not well behaved in practice

•Interior point methods: also polynomial time algorithms
– First conceived by Karmarkar [1984]
– Main ideas: 

• Again keep moving from a feasible solution to a better one
• But this time, we move along solutions in the interior of the polytope
• The current solution keeps getting closer and closer to a vertex of the polytope

36

6

4 x1

x2

2x2 = 12

3x1 + 2x2 = 18

x1 = 4-

-

-

- -(0, 0)











Simplex vs Interior Point Algorithms
• Comparisons

– In theory: interior point methods are polynomial time algorithms (for 
any n and m), simplex may need exponential time

– In practice: average case complexity of simplex very low compared to 
worst case

– One iteration of interior point methods needs much more 
computation time than in simplex to decide the next feasible solution

– But: as the number of constraints increases, interior point methods do 
not need much more iterations

• Interior point methods go through the internal part of the polytope
• Adding more constraints reduces the feasible region, by adding more constraint 

boundaries

37



Integer Programming
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What is an integer program?
• A way to model problems where some variables take integer values
• Also referred to as Integer Linear Program (ILP):
• Almost the same as Linear Programs

• Linear objective function
• Linear constraints 

Applications:
• Comparable to applications of Linear Programming
• Operations Research
• Airline scheduling problems
• Medicine
• etc

Integer Programming
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xi =
1, if item i is in the solution 

0, otherwise                      

ì
í
ï

îï

• It is not always clear how to model a problem as an integer program
• The tricky part is how to express the objective function using integer 

variables
• Usually: Assign a binary variable xi to a candidate object that can be 

included in a solution  
• Interpretation:

Integer Programming Formulations
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Integer Programming Formulations

Examples:

0-1 KNAPSACK:

I: A set of objects S = {1,…,n}, each with a positive 
integer weight wi, and a value vi, i=1,…,n, and a 
positive integer W

Q: find A  S  s.t.                    and          is maximized

Equivalent IP formulation:
max   Σi vi xi

s.t.

Σi wi xi ≤ W   
xi  {0,1}      i  {1,...,n}

Ww

Ai

i 

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Integer Programming Formulations

Examples:

Equivalent IP formulation:
min   Σu xu

s.t.
xu + xv ≥ 1     (u, v)  E
xu  {0,1}      u  V

VERTEX COVER (VC):

I: A graph G = (V,E)

Q: Find S  V s.t.  (u, v)  E  either uS or vS (or 
both) and |S| is maximized
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Integer Programming Formulations

Examples:

MAKESPAN (P||Cmax ) 

I: A set of objects S = {1,…,n}, each with a positive integer weight 
wi, i = 1,…,n, and a positive integer M 

Q: find a partition of S into A1, A2,…, AM s.t.                         is 
minimized
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Integer Programming Formulations

Examples:
MAKESPAN:
• Better to think of it as a job scheduling problem
• Items correspond to jobs that should be assigned to machines
• The weight corresponds to the processing time
• How do we model that a job j is assigned to machine i? 

Equivalent IP formulation:
min   t
s.t.

Σj wj xij ≤ t     i  {1,...,m} (The total processing time in each machine should be 

less or equal than the makespan  

Σi xij = 1         j  {1,...,n}  (every job must be assigned to exactly one machine) 
xij  {0,1}      j  {1,...,n}, i  {1,...,m} 



Complexity of Integer Programming

• Modeling a problem as an integer program does not 
provide any guarantee that we can solve it

Theorem: Integer Programming is NP-complete

• In fact many problems in discrete optimization are NP-
complete

• Partly due to the discrete nature
• All such problems can be reduced to SAT and vice versa

Is this the end of the world?

45
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