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Introduction to Linear Programming



Linear Programming

Nothing to do with programming!

A particular way of formulating certain optimization problems
with linear constraints and a linear objective function

One of the most useful tools in Algorithms and Operations
Research

Extremely useful also in the design of approximation
algorithms



Linear Programming

Applications of Linear Programming: Too many to enumerate!

e QOperations Research

e Theory of Algorithms and Combinatorial Optimization
e Game theory and Microeconomics

e Medicine

e And many more...



Linear Programming Examples

Example 1:

A farmer possesses a land of 10 km?

He wants to plant the land with wheat, or barley or a combination of
them

The farmer has a limited amount of fertilizer, say 16 kgs

And a limited amount of pesticide, say 18 kgs

Each square km of wheat requires 1kg of fertilizer and 2 kgs of pesticide
Each square km of barley requires 2kg of fertilizer and 1.2 kgs of pesticide

Revenue to the farmer: 3 (thousand S) from each square km of wheat and
4 (thousand S) from each square km of barley

Find out what the farmer should do (i.e., how many square km of barley
and how many of wheat he should plant) to maximize his revenue.



Linear Programming Examples

Formulation as a linear program:

First step: We need to define the decision variables of our
problem

e X, =nhumber of square km for wheat

e X, =hnumber of square km for barley

e Often multiple ways for doing this step

e Objective function: maximize 3x, + 4x,

e Observe that: objective function is linear



Linear Programming Examples

Formulation as a linear program:

Second step: formulation of constraints on the variables x, x,
eArea constraint: x; + x, <10

eConstraint for fertilizer: x; + 2x, £ 16

eConstraint for pesticide: 2x, + 1.2x, < 18

eNonnegativity constraints: x, 20, x, 2 0 (cannot plant an area with negative
surface)

eObserve: all constraints are also linear



Linear Programming Examples

Usual writing style:

max 3)61 + 4x2 <€ Objective function
s.t. x,+x,£10
x,+2x,£16 |
constraints
2x, +1.2x, £18
X, %, 30

* [t can be either a minimization or a maximization problem
e Feasible space (or region): the set of all pairs (x4, x,) that satisfy the constraints
e Inthe example: the feasible region is a subset of R?



Linear Programming Examples

Geometrically:

A
X2 The feasible region is a
polyhedron in R%, where
104 X *%=10 n = number of variables

.....

Feasible /le +1.2x, =18
region X

*
*
*
*
*
*
.
%o
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Linear Programming Examples

Example 2:

e A manufacturing company selling glass and aluminum products is trying to
invest in launching 2 new products

e The company has 3 plants
— Plant 1: for processing aluminum
— Plant 2: for processing glass
— Plant 3: for assembling and finalizing products

e Product 1 requires processing in Plant 1 and Plant 3
e Product 2 requires processing in Plant 2 and Plant 3

e Since the company processes other products as well, there are constraints
on the amount of time available in each plant.
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Linear Programming Examples

time per week

Time needed per batch (hours) )
Total available

1 ) (hours)
1 1 0 4
2 0 2 12
3 3 2 18
Profit per batch 3000 5000

Goal: Decide how many batches of Product 1 and Product 2 to produce so
as
— Not to exceed the available time capacity in each plant

— Maximize total revenue from the batches produced

11



Linear Programming Examples

Formulation as a linear program:
First step: determine the decision variables of our problem

ex, = number of batches of product 1, produced per week
*Xx, = hnumber of batches of product 2, produced per week

Second step: formulation of constraints on the variables x, x,
eTime constraints for Plant 1: x, <4

eTime constraints for Plant 2: 2x, <12

eTime constraints for Plant 3: 3x, + 2x, < 18

eNonnegativity constraints: x, 20, x, 2 0 (number of batches produced
cannot be negative)

Objective function: maximize 3x; + 5x,

12



Hence:

Linear Programming Examples

max 3x1 + 5x2 <€ Objective function
st. x, £4
2x, £12

constraints

3x,+2x, £18

3
x,x, 30
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Linear Programming Examples

Geometrically:

X3

A

Again the feasible region

2= 12 is a polyhedron in R?

Feasible
region
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Linear Programming Examples

A more succinct notation (canonical form)
We can represent Example 2 as:

max. Cc'x
S.t.
Ax<b
x=0

(4 ) 1 0)

X, 3

where x = c=| |b=1|121|, 4A=|0 2
X, S|

\18) 3 2 )

Notation: x = 0 for a vector x means that the inequality should hold
component-wise (for every coordinate)




General Form of Linear Programs

Given:

®Cy, Cy, ey C,

b, b, ..., b,

*The constraint matrix A= (g;) with1<i<m,1<j<n,
We want to:

maximize /£ = ciT1 + coxo + ... + Ty
subject to:
a11r1 +a19T9 + ...+ @1 < by
a9 r1 + asexrs + ...+ Aoy < by

Iy :_}[}:IEEDV"?TH:_}[}
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General Form of Linear Programs

More concisely:

max: Z = ¢! -x
s.
A-xz<b
x>0

Where:

 cand x are n-dimensional vectors
* b isan m-dimensional vector
 ndecision variables

* minequality constraints

* n nonnegativity constraints

17



Linear Programming

Other forms of LPs we could encounter:

1. Minimization problem instead of maximization
2. >= inequalities in the constraints

3. Equality constraints

4. Absence of nonnegativity constraints

Claim: All these are equivalent forms, and can be reduced to one another

e |f we have a minimization problem: revert the signs in the coefficients of
the objective function and maximize the new function.

e >= constraints: again revert signs to bring them to <= constraints
e Equality constraints: replace them by 2 constraints (one with >=, and one
with <=)

18



Geometry of Linear Programming

Objective function max x; + 69

Constraints r1 < 200
Il + T2 i-: 400
x1, 19 = 0
To To
|
400 k . 400
| Optimum point
' / Profit = $1900
300/ Niaiaiai aalaeiadelets 300
200 200F -~ _ _ ST T e= 1500
T e=1200
100 100F - - _ _
\ e =600
k €T T
0 100 200 300 400 0 100 200 300 400

Feasible region Profits



Geometry of Linear Programming

In 3 dimensions:

max xq1 + 6xo + 13x3
r1 < 200
ro < 300
1 + xo + 13 < 400
To + 3xg < 600
x1,xo,xr3 = 0

Optimum

Each constraint corresponds
to a face of the polyhedron

20



Geometry of Linear Programming

max xj + 6xo + 13x3
1 < 200
T < 300
T, + x9 + x3 < 400
9 + 33 < 600
z1 20
o >0
I3 2 0

QEPO®®®OE

21



Geometry of Linear Programming

« Key property: The optimum is achieved at a vertex of
the feasible region

« The only exceptions are cases in which there is no optimum

1. The LP isinfeasible
too tight constraints; impossible to satisfy all of them
e.g. X;<1, x;=2

2. The LP is unbounded;
too loose constraints; the feasible region is unbounded
e.g. arbitrarily high objective values
max X; + X,
X1,X5 =20
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The Graphical Method

e Applicable for linear programs with 2 or 3 decision variables

e |t helps us understand how to think about solving problems in higher
dimensions

Solving Example 2:

e Step 1: Draw the feasible region

e Step 2: “Guess” a value Z for the objective function and draw the line 3x, +
5%, =2

e |f this line intersects the feasible region, it means we have at least one
feasible solution with value Z

e Trial and error: Keep doing this, increasing Z till the line gets out of the
feasible region

23



The Graphical Method

Solving Example 2:
eStep 1: Draw the feasible region

eStep 2: Trial and error: “Guess” a value Z for the objective function and draw
the line 3x, + 5x, =Z

A
X3
2X2 = 12
e We could start with Z=0 since
6 there exists a feasible solution
3, + 2x; =18 with 0 value
«— e With Z=10, we see there are still
a lot of feasible solutions with
. Feasible this value
~- 1
/ q \reg|on X, =4
h u ~ /
3X1 + 5X2 = 10 i - )




The Graphical Method

Solving Example 2:

e We can now keep examining higher values for Z, until we get out of the
feasible region

A
X)
2X2 =12
~
/\ ~
3X; + 95X, = 3 6
~
/ - 3X1 + 2X2 = 18
3X,; + 5x, =30 ~
' ? ~ </<
~ ~
/ - ~ )
~
3X; + 5%, =20 S o S o
= Feasible
- ~
~- i
/7 ~ \re\g|on ~__ xu=4

We keep moving the dashed

line higher and higher

All lines have the same slope,

since for every Z:
X,=-3/5%x,+1/5Z

slope =-3/5

Eventually, we stop at Z =36
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The Graphical Method

Observations:

In 2 dimensions, the feasible region is a polygon

We stop only when the dashed line intersects the feasible regionin a
corner point of the polygon

— Orin degenerate cases, when the line coincides with one of the sides of the polygon

How can we compute the values of x;, x, when we stop?

— A corner point is the intersection of 2 sides, hence they satisfy 2 constraints with
equality

In Example 2, we stop at Z=36

The solution of
— 2%,=12
— 3%, +2x,=18

Hence,x;=2,%X,=6
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The Graphical Method

Can the graphical method keep going without ever terminating?

e YES, when the polyhedron is unbounded

e But if this happens, the optimal solution is +o

X, M

3X;-%X,=0

Feasible
region

Example of an unbounded
feasible region:

max Z = 4x, + 2x,

s.t.

X, 22

Xy, X, 20




The Graphical Method

Insights gained from the graphical method:

— If an optimal solution exists, it is attained at a corner point of the
polygon

What about higher dimensions?

Many real world problems have hundreds of variables
— In higher dimensions, the feasible region is still a polyhedron
— Again, it suffices to look at the corner points of the polyhedron
— Till 3 dimensions, we can do this geometrically
— When n 24, we should do it algebraically

|Idea for higher dimensional problems: Try to examine corner
points of the polyhedron till we reach the optimal one

28



The Graphical Method

e Q:Whatis a corner point in higher dimensions?

— Definition: A feasible solution of a linear program with n variablesis a
corner point (or vertex) if it satisfies n linearly independent
inequalities with exact equality

e (Q: Could we enumerate all corner point solutions and pick the
best one?

— Not an efficient algorithm, polyhedra can have exponentially many
corner points.

e BUT: We can try to think of a more clever way to search for
the best corner point

— Essentially what simplex does

29



The Simplex Method

e Designed by Dantzig (1947)

— One of the most important algorithms of the 20t
century

— An algorithm that behaves extremely well in practice
despite its exponential complexity in worst case

— The design of the algorithm and the quest for better
algorithms also contributed to building a rich theory
around linear programming

30



The Simplex Method

Objective function max x| + 6ao

e Starts at a vertex, say (0, 0) Constraints 1 = 200
. xo < 300
e Repeatedly looks for an adjacent vertex = 400
X TXe
of better objective value 1_1_ _: -0
L]y L2 =
e Halts upon reaching a vertex that has
no better neighboring vertices and declares *
it as optimal Profit $1900
300
Does hill-climbing on the vertices of the polygon, $140(
from neighbor to neighbor so as to steadily 200
increase profit along the way (Local Search)
100 A
$0 e - ¢ $200
0 100 200



The Simplex Method

In 3 dimensions:

It would again move from vertex to vertex,
along edges of the polyhedron,
increasing profit steadily.
max x1 + 6xo + 1313
x1 < 200
ro < 300
x1 + xo + x3 < 400
xo + 3xz < 600
xy1,To,x3 > 0

A possible trajectory
Vertices: (0,0,0) — (200,0,0) — (200,200,0) — (200,0,200) — (0,300,100)

32



The Simplex Method

max x1 + 6xo + 133
1 < 200
9 < 300
T, + x9 + x3 < 400
2 + 3x3 < 600
r1 >0
9 >0
I3 2 0

QEO®®EOE

A possible trajectory

Vertices: (0,0,0) — (200,0,0) — (200,200,0) — (200,0,200) — (0,300,100)
33



The Simplex Method

Why are we interested in checking only neighboring corner
points?

Optimality test for linear programs:

Consider an LP with at least one optimal solution. If a corner point
solution has no adjacent corner point solutions that are better,
according to the objective function, then it must be an optimal solution

e Hence, local optimality = global optimality
e \eryimportant property for linear programming

- Also generalizes to continuous, convex functions

34



Complexity of Simplex

Extremely well-behaved in practice

e Empirically, number of iterations in simplex looks
proportional to number of constraints

e Can we have a good theoretical upper bound on the number
of iterations?

e NO! There are examples that need an exponential (2")
number of iterations, discovered first by [Klee, Minty '72]

e Despite that, it is still one of the preferred algorithms for
solving linear programs!

35



Other Algorithms

*The ellipsoid method: The first polynomial time algorithm
— By [Kachiyan "79], however not well behaved in practice
eInterior point methods: also polynomial time algorithms

— First conceived by Karmarkar [1984]
— Main ideas:

A e Again keep moving from a feasible solution to a better one
X, e But this time, we move along solutions in the interior of the polytope

5 12 e The current solution keeps getting closer and closer to a vertex of the polytope
X2 =

3X; + 2X, = 18

/ 36




Simplex vs Interior Point Algorithms

e Comparisons

— In theory: interior point methods are polynomial time algorithms (for

any n and m), simplex may need exponential time

— |In practice: average case complexity of simplex very low compared to

worst case

— One iteration of interior point methods needs much more
computation time than in simplex to decide the next feasible solution

— But: as the number of constraints increases, interior point methods do

not need much more iterations

e Interior point methods go through the internal part of the polytope
e Adding more constraints reduces the feasible region, by adding more constraint

boundaries
Method | Typical cost | Worst case cost
Simplex O(n*m) Very bad
Ellipsoid O(n®) O(n®)

Everything vou need to know about solving linear programs
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Integer Programming

38



Integer Programming

What is an integer program?
* A way to model problems where some variables take integer values
» Also referred to as Integer Linear Program (ILP):
e Almost the same as Linear Programs
* Linear objective function
* Linear constraints

Applications:

* Comparable to applications of Linear Programming
e QOperations Research

e Airline scheduling problems

* Medicine

e etc

39



Integer Programming Formulations

It is not always clear how to model a problem as an integer program
The tricky part is how to express the objective function using integer
variables

Usually: Assign a binary variable x; to a candidate object that can be

included in a solution

Interpretation:

.= 1, if item i is in the solution
" | 0, otherwise

40



Integer Programming Formulations

Examples:

0-1 KNAPSACK:

I: A set of objects S ={1,...,,n}, each with a positive
integer weight w;,, and a value v,, i=1,...,n, and a
positive integer W

Q: find AcS s.t ZWi <W and Zv;— is maximized

ieA icd

Equivalent IP formulation:
max 2V, X
s.t.

2 W, x. < W

x, €{0,1} Viel{l,..n}

41



Integer Programming Formulations

Examples:

VERTEX COVER (VC):
I: A graph G = (V,E)

Q:FindSc Vs.t. V (u,v) € E eitherueSorveS (or
both) and |S| is maximized

Equivalent IP formulation:
min 2, X,
s.t.
X,+x,21 V(u,v)ekE
x,€{0,1} VYueV

42



Integer Programming Formulations

Examples:
MAKESPAN (P]|C,..x)

I: A set of objects S ={1,...,,n}, each with a positive integer weight
w;, i =1,...,n, and a positive integer M

Q: find a partition of Sinto A, A,,..., Ay s.t. m {M{Z Wit is
minimized te4;

43



Integer Programming Formulations

Examples:

MAKESPAN:

e Better to think of it as a job scheduling problem

* |tems correspond to jobs that should be assigned to machines
e The weight corresponds to the processing time

e How do we model that a job j is assigned to machine i?

Equivalent IP formulation:
min t
s.t.

2, w;x; £t Vie{l,.,m}(The total processing time in each machine should be
less or equal than the makespan

2 x;=1 Vje{l,..n} (every job must be assigned to exactly one machine)

XIJ € {0,1} Vj € {1,...,n}, i S {1""’m} 4



Complexity of Integer Programming

* Modeling a problem as an integer program does not
provide any guarantee that we can solve it

Theorem: Integer Programming is NP-complete

* In fact many problems in discrete optimization are NP-
complete

* Partly due to the discrete nature

* Allsuch problems can be reduced to SAT and vice versa

Is this the end of the world?
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