OIKONOMIKO ATHENS UNIVERSITY
MANEMNIETHMIO CF EGQONOMICS
AOHNAQON AND BUSINESS

Special Topics on Algorithms

Algorithms for flows and matchings

Vangelis Markakis — George Zois

]

O

Contents

The maximum flow problem

The minimum cut problem

The max-flow min-cut theorem

Augmenting path algorithms

Applications to matching problems

The maximum flow problem

Maximum Flow and Minimum Cut

Max flow and min cut.
» Two very rich algorithmic problems.
» Cornerstone problems in combinatorial optimization.
» Beautiful mathematical duality.

Nontrivial applications / reductions.
» Data mining. Network reliability.
» Project selection. » Distributed computing.
» Airline scheduling. Security of statistical data.
» Bipartite matching. Many many more. ..
» Image segmentation.
» Network connectivity.

]

o

[]

Flow network

» Abstraction for material flowing through the edges.
» G=(V, E) =directed graph, no parallel edges.

» Two distinguished nodes: s =source, t = sink.

c(e) = capacity of edge e.

o

6 15 10
capacity

2 15
source 5 % 8 \Q\:TL/ 10 sink
4

The max flow problem

A feasible flow is an assignment of a flow f(e) to every edge
so that

1.f(e) < c(e) (capacity constraints)
2.For every node other than source and sink:
incoming flow = outgoing flow (preservation of flow)

Goal: find a feasible flow so as to maximize the total amount
of flow coming out of s (or equivalently going into t)

O
Flow going out of s: v(f) = @ f(s,u)

(s,u)TE

O
By preservation of flow this equals: @ f (¢, 1)
(u,t)TE

Flows

Constraints:

. Foreache e E: 0f£ f(e) £cle) (capacity)
. Foreachv eV -—{s, t} é f(e) = é f(e) (conservation)
eintov e outof v

The value of aflowfis: v(f)= é_ f(e).

e outof s

0
@ 9 ®
4 0 0
10 4 4 15 15 0 10
0 4 4
® 5 ® 8 O, 10 ®
0 0
4 0 6 15 0 10

capacity — 15
flow — 0 0

@ 30 @

Value = 4

Flows

Constraints:

. Foreache e E: 0f£ f(e) £cle) (capacity)
. Foreachv eV -—{s, t} é f(e) = é f(e) (conservation)
eintov e outof v

The value of aflow fis: v(f)= é_ f(e).

e outof s

@ 9 ®
10 0 6
10 4 4 15 15 0 10
8 8

©
©
©)

©

capacity — 15
flow — 11 1

@ 30 @

Value = 24

The Maximum Flow Problem

Optimal flow: 28 units of flow from s to t

10
10

@ 5

capacity — 15
flow — 14

14
30

15

15

0

0

10
10

Value = 28

Cuts

Def. Ans-t cut is a partition (A, B) of Vwiths € Aand t € B.

Def. The capacity of a cut (A, B) is: cap(A4, B) = é c(e)

e out of 4

10
4 15 15 10

s 5 »(3) 8 (6) 10 ©)

4 6 15
15 10

\ Capacity = 10 + 5 + 15

@ 30 @ =30

10

Cuts

Def. Ans-t cut is a partition (A, B) of Vwiths € Aand t € B.

Def. The capacity of a cut (A, B) is: cap(4, B) = a c(e)

e out of 4

15 10

»(6) 10 ©)

10

Capacity =9 +15 + 8 + 30
30 > =62

1

The Minimum Cut Problem

Min s-t cut problem. Find an s-t cut of minimum capacity.

10

S

10

Capacity =10 + 8 + 10
=28

12

Flow and Cut Properties

Lemma 1. Let f be any flow, and let (A, B) be any s-t cut. Then, the net

flow sent across the cut is equal to the amount leaving s.

a fe) - a sre=vy

e out of 4 e into A

2l

10

4 4
3
s 5 —(@
A
4 0

15

e

11
30

15

15

0

0

10
10

Value = 24

13

Flow and Cut Properties

Lemma 1. Let f be any flow, and let (A, B) be any s-t cut. Then, the net

flow sent across the cut is equal to the amount leaving s.

a fe) - a sre=vy

e out of 4 e into A

10

10

10
10

®

Value=6+0+8-1+11
=24

14

Flow and Cut Properties

Lemma 1. Let f be any flow, and let (A, B) be any s-t cut. Then, the net
flow sent across the cut is equal to the amount leaving s.

a fe) - a sre=vy

e outof 4 e into A
6
z ; ®
10 0 6
10 4 4 15 15 0 10
3 v 8 8
5 — Qp————v 8 »(6) 10
A
\ 1 10
4 0O 6 15 0 10

15

11
11 v Value=10-4+8-0+10
30 (7 =24

15

Flow and Cut Properties

Lemma 1. Let f be any flow, and let (A, B) be any s-t cut. Then, the net
flow sent across the cut is equal to the amount leaving s.

a fe) - a sre=vy

e out of 4 e into A

Pt. v(f) = Y fle)

e outof s

by flow conservation, all terms . 2 (2 S 2 f(e)]

exceptv=sare0 v ed e out of v eintov

Yoofe)- 2 fle).

e out of 4 einto A

16

Flow and Cut Properties

Lemma 2. Let f be any flow, and let (A, B) be any s-t cut. Then the value
of the flow is at most the capacity of the cut.

Cut capacity =30 = Flow value <30

/@ ; ®

10 15 15 10

\@ 0 @ Capacity = 30

17

Flow and Cut Properties

Lemma 2. Let f be any flow. Then, for any s-t cut (A, B) we have
v(f) < cap(A, B).

Pf.
v(f) = é f (e)- a £ (e)
£ é f ()
£ | a cl)

e out of 4

cap(4, B)

18

Certificate of Optimality

Corollary 1. Max flow is at most equal to the capacity of the min cut (i.e.,
max flow is a lower bound to min cut)

Corollary 2. Let f be any flow, and let (A, B) be any cut.

If v(f) = cap(A, B), then fis a max flow and (A, B) is a min cut.

Value of flow = Cut capacigy =28 = Flow value<28

9 ®
10 1 9
10 4 0 15 15 0 10
4 8 9
5 8 >@ﬁ 10
A 4 0 15 0
15 6 10

14 14
30 »(7

19

Towards a Max Flow Algorithm

Greedy algorithm.
» Start with f(e) =0 for every edge e € E.

» Find an s-t path P where each edge has f(e) < c(e).
» Augment flow along path P.

» Repeat until you get stuck.

1
0 o)
20 10
30 0
10 20

0 \é/ 0 Flow value = 0

20

Towards a Max Flow Algorithm

Greedy algorithm.
» Start with f(e) =0 for every edge e € E.

» Find an s-t path P where each edge has f(e) < c(e).
» Augment flow along path P.

» Repeat until you get stuck.

1
20 X o)
20 10
30 B 20
10 20

0 \@/ X 20 Flow value = 20
4

21

Towards a Max Flow Algorithm

Greedy algorithm.
» Start with f(e) =0 for every edge e € E.

» Find an s-t path P where each edge has f(e) < c(e).
» Augment flow along path P.

» Repeat until you get stuck.

N\ locally optimality = global optimality

22

Towards a Max Flow Algorithm

We need an algorithm with more flexibility
Desired operations:
» Push flow forward along a non-saturated path
» Push flow backwards (i.e., undo some units of flow when necessary)
- in order to to divert flow to a different direction

The residual graph:
Given the initial graph G, and a fesible flow f, the residual graph G; has
» the same set of nodesas G
» forward edges: for every edge e = (u, v) of G with f(e) < c(e), we include
the same edge in G; with residual capacity c(e) —f(e)
» backward edges: for every edge e = (u, v) of G with f(e) >0, we include the
edge (v, u) in G; with residual capacity f(e)

23

Towards a Max Flow Algorithm

Simple Facts:
» Given G and f, the graph G; can be constructed

. . C i
efficiently / apacity
» G has at most twice as many edges as G
‘7 17 —>‘
» Capacities in G; are strictly positive ‘
TT— Flow

Residual capacity

C \411
6

v

\
\

Residual capacity

24

Residual Graph and Augmenting Paths

Residual graph: G;=(V, E;). cle)-f(e) ifeeck
» Er={e:f(e)<c(e)} U {e?:f(e)>0}. C, (e) = . R
f(e) if e" € E

4 4
10 10 10
@/ 0@ : \@

@ 13 ©) 10
/@\ 4 @\
6f 4 >< 4
4
@410 & 10 (3- 10\0
K 3 _/‘

6

O AN~ O

1-

25

Augmenting Path

Augmenting path = path in residual graph
- Allows to undo some flow units from current solution
» And produce a flow of higher value

4 X
4
G 48 4
4
10 M 6 10
s 10 =ff/ 13 »(3 \(D

26

Augmenting Path

Augmenting path = path in residual graph.
» Max flow < no augmenting paths ???

AD A D

N

D/ & 13 *©)

27

Augmenting Path Algorithm

Bottleneck is the minimum
residual capacity of any edge in P

forward edge
reverse edge

28

Max flow - Min cut

[Ford, Fulkerson '56]:
Theorem 1 (algorithm correctness): A feasible flow is optimal if

and only if there is no augmenting path (i.e., no s-t path in the
residual graph)

Theorem 2 (the max-flow min-cut theorem): For any flow graph

G = (V, E) with capacities on its edges,
value of max flow = capacity of min s-t cut

We will prove both theorems together

29

Max flow - Min cut

Proof sketch:

Let f be a feasible flow computed by the algorithm. We prove

that the following are equivalent:

i The flow fis optimal

@ Thereis no augmenting path with respect to f (i.e., no s-t
path in the residual graph)

@iy There exists a cut (A, B) such that v(f) = cap(A, B)

30

Max flow - Min cut

Proof sketch:

(i) = (ii)

trivial, if there was an augmenting path, we would increase the flow and f
would not be optimal

(i) = (iii)

u]

n]

u]

n]

Let f be a flow with no augmenting paths

Let A be the set of vertices reachable from s in the residual graph G;
letB:=V\A

By definition of A, s € A

By our assumption on f (no augmenting paths), t ¢ A

Hence (A, B) is a valid s-t cut

31

Max flow - Min cut

Proof sketch:
(i) = (iii) cont’d
» Claim 1: for an edge e =(u, v) withu € Aand v € B, f(e) = c(e)
— Otherwise, v is reachable in G; from s (since u € A)
» Claim 2: foranedgee=(u,v)withu e Bandv e A, f(e)=0

— Otherwise, there is a backward edge (v, u) in G¢, and hence u is reachable from s

vw(f) = a fle)- af(e) (FromlLemmal)
e out of 4 einto A
= a cle)
e out of 4
= cap(A4, B)

(iii) = (i)
» follows by the Corollary 2 on certificates of optimality

32

Running time

Assumption: Assume all capacities are integers

Claim 1: All flow values and residual capacities are integers throughout the
execution of the algorithm

Claim 2: In every iteration of the while loop, the flow increases by at least 1
unit

Claim 3: Let C =é c(s,u) . Then max flow < C

(s,u)TE

Total running time: O((m+n) C) pseudopolynomial algorithm
Corollary: If all capacities are 0 or 1, then running time is O(mn)
» important special case in some applications

33

Improving the running time

Worst case scenarios:

With integer capacities, the algorithm may need to do C augmentations
If capacities are irrational, algorithm not even guaranteed to terminate!

Some improvements
[Edmonds-Karp 1972, Dinitz 1970]:
Choose augmenting paths with:

Max bottleneck capacity

Sufficiently large bottleneck capacity

Fewest number of edges

34

Capacity Scaling

Intuition: Choosing a path with the highest bottleneck capacity
increases flow by max possible amount.

u]

Actually, don't worry about finding the exact highest bottleneck path (this
may slow down the algorithm)

Maintain a scaling parameter A.

Let G;(A) be the subgraph of the residual graph consisting only of arcs
with capacity at least A

AN A

110 102 110 102

122 170 122 170

e e

G G, (100)

Capacity Scaling

Scaling-Max-Flow(G, s, t, c) {
foreach e ¢ E f(e) « O
A < smallest power of 2 less than or equal to C
G¢ < residual graph

while (A =2 1) {
G:(A) « A-residual graph
while (there exists an augmenting path P in G:(A)) {
f <« augment(f, c, P)
update G;(A)
}
A A/ 2
}

return £

Correctness and running time

Assume integer capacities
Correctness:
Eventually, when A=1 = G{A) =G;
Hence the algorithm stops when there are no s-t pathsin G;
The flow must be optimal by the correctness analysis of Ford-Fulkerson

Running time analysis

Lemma 1: The outer while loop runs for 1 + |_Iog2 C | iterations

Proof: Initially C< A < 2C. A decreases by a factor of 2 in each iteration of the
outer while loop

37

Correctness and running time

Assume integer capacities

Running time analysis (cont’d)

Lemma 2: Let f be the flow at the end of a A-scaling phase. Then the value of
the maximum flow is at most v(f) + m A

Proof: do it as an exercise

Lemma 3: There are at most 2m augmentations per scaling phase
Proof: Consider the beginning of a scaling phase with parameter A
Let f be the flow at the end of the previous scaling phase

Lemma 2 = v(f*) < v(f) + m (2A) [previous is twice the current A]
.Each augmentation in a A-phase increases v(f) by at least A

Theorem: The capacity scaling max-flow algorithm finds a max flow in O(m
log C) augmentations. It can be implemented to run in O(m? log C) time

38

Application to Matching
problems

39

Matching Problems

Consider an undirected graph G=(V, E)

Definition: A matching M is a collection of edges M C E, such that no 2 edges
share a common vertex

Given a matching M, a vertex u is called matched if there exists an
edge ecM such that e has u as one of its endpoints

40

Matching Problems

Examples
¢ ® a matchingin a
: bipartite graph
v3
v4
A matching in
P vl v2 general graphs

= ~ " 9 (vertexv8is
unmatched)

V5

41
vA

Matching Problems

Types of matching problems that arise in optimization:

Maximal matching: find a matching where no more edges can be added

Maximum matching: find a matching with the maximum possible number of
edges

Perfect matching: find a matching where every vertex is matched (if one
exists)

Maximum weight matching: given a weighted graph, find a matching with
maximum possible total weight

Minimum weight perfect matching: given a weighted graph, find a perfect
matching with minimum cost

All the above problems can be solved in polynomial time (several algorithms
and publications over the last decades)

42

Matching Problems

Trivial algorithm for maximal matching:

n]

u]

Start from the empty set of edges
Keep adding edges that do not have common endpoints to the current

solution

Stop when it is not possible to add an edge that does not have any
common endpoint with the edges already picked

The selected set of edges forms a maximal matching

More sophisticated algorithms are required for maximum

matching and perfect matching

[Edmonds '65]: first algorithm for maximum matching in general

graphs

» Also first mention of polynomial time solvability as a measure of efficiency

43

Matching in Bipartite Graphs

An interesting special case for matching problems:

A graph G = (V, E) is called bipartite if V can be partitioned into 2 sets V,, V,
such that all edges connect a vertex from V, with a vertex from V,

BOYS GIRLS
Al Alice
Bob Beatrice
Chet Carol
Dan Danielle

Q: How can we find a maximum matching in a bipartite
graph?

44

Matching in Bipartite Graphs

We can reduce this to a max-flow problem

(ar; Alice

BD. @;atri_c_:e

Orient all edges from left to right
* Add a source node s, connect it to all of V,
* Addasink nodet, connectall of V, tot
Capacities: set them to 1 for all edges
45

Matching in Bipartite Graphs

Hence:

- a maximum matching for bipartite graphs can be computed in polynomial
time

- The graph has a perfect matching if and only if the max flow in the modified
graph equals n

But wait a minute...
- What if the max flow assigns a flow of 0.65 to an edge?

- Fortunately this can be avoided
Theorem: If all the capacities of a graph are integral, then there is

an integral optimal flow and our algorithms compute such an
integral optimal flow

46

	Slide 1
	Slide 2: Contents
	Slide 3
	Slide 4: Maximum Flow and Minimum Cut
	Slide 5: Flow network
	Slide 6: The max flow problem
	Slide 7: Flows
	Slide 8: Flows
	Slide 9: The Maximum Flow Problem
	Slide 10: Cuts
	Slide 11: Cuts
	Slide 12: The Minimum Cut Problem
	Slide 13: Flow and Cut Properties
	Slide 14: Flow and Cut Properties
	Slide 15: Flow and Cut Properties
	Slide 16: Flow and Cut Properties
	Slide 17: Flow and Cut Properties
	Slide 18: Flow and Cut Properties
	Slide 19: Certificate of Optimality
	Slide 20: Towards a Max Flow Algorithm
	Slide 21: Towards a Max Flow Algorithm
	Slide 22: Towards a Max Flow Algorithm
	Slide 23: Towards a Max Flow Algorithm
	Slide 24: Towards a Max Flow Algorithm
	Slide 25: Residual Graph and Augmenting Paths
	Slide 26: Augmenting Path
	Slide 27: Augmenting Path
	Slide 28: Augmenting Path Algorithm
	Slide 29: Max flow - Min cut
	Slide 30: Max flow - Min cut
	Slide 31: Max flow - Min cut
	Slide 32: Max flow - Min cut
	Slide 33: Running time
	Slide 34: Improving the running time
	Slide 35: Capacity Scaling
	Slide 36: Capacity Scaling
	Slide 37: Correctness and running time
	Slide 38: Correctness and running time
	Slide 39
	Slide 40: Matching Problems
	Slide 41: Matching Problems
	Slide 42: Matching Problems
	Slide 43: Matching Problems
	Slide 44: Matching in Bipartite Graphs
	Slide 45: Matching in Bipartite Graphs
	Slide 46: Matching in Bipartite Graphs

