
1

Special Topics on Algorithms

Algorithms for flows and matchings

Vangelis Markakis – George Zois

2

Contents

 The maximum flow problem

 The minimum cut problem

 The max-flow min-cut theorem

 Augmenting path algorithms

 Applications to matching problems

33

The maximum flow problem

4

Maximum Flow and Minimum Cut

Max flow and min cut.

Two very rich algorithmic problems.

Cornerstone problems in combinatorial optimization.

Beautiful mathematical duality.

Nontrivial applications / reductions.

Data mining.

Project selection.

Airline scheduling.

Bipartite matching.

Image segmentation.

Network connectivity.

Network reliability.

Distributed computing.

Security of statistical data.

Many many more . . .

5

Abstraction for material flowing through the edges.

G = (V, E) = directed graph, no parallel edges.

Two distinguished nodes: s = source, t = sink.

c(e) = capacity of edge e.

Flow network

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

capacity

source sink

6

The max flow problem

A feasible flow is an assignment of a flow f(e) to every edge
so that
1.f(e) ≤ c(e) (capacity constraints)
2.For every node other than source and sink:
 incoming flow = outgoing flow (preservation of flow)

Goal: find a feasible flow so as to maximize the total amount
of flow coming out of s (or equivalently going into t)

Flow going out of s: v(f) = f (s,u)
(s,u)ÎE

å

By preservation of flow this equals: f (u, t)
(u,t)ÎE

å

7

Constraints:

For each e  E: (capacity)

For each v  V – {s, t}: (conservation)

The value of a flow f is:

Flows

4

0

0

0

0 0

0 4 4

0

0

0

Value = 4
0

f (e)
e in to v

å = f (e)
e out of v

å
0 £ f (e) £ c(e)

capacity

flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

v (f) = f (e)
e out of s

å .

4

8

Constraints:

For each e  E: (capacity)

For each v  V – {s, t}: (conservation)

The value of a flow f is:

Flows

10

6

6

11

1 10

3 8 8

0

0

0

11

capacity

flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

Value = 24

4

f (e)
e in to v

å = f (e)
e out of v

å
0 £ f (e) £ c(e)

v (f) = f (e)
e out of s

å .

9

Optimal flow: 28 units of flow from s to t

The Maximum Flow Problem

10

9

9

14

4 10

4 8 9

1

0 0

0

14

capacity

flow

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

Value = 28

10

Def. An s-t cut is a partition (A, B) of V with s  A and t  B.

Def. The capacity of a cut (A, B) is:

Cuts

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

Capacity = 10 + 5 + 15
 = 30

A

cap(A , B) = c (e)
e out of A

å

11

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
A

Cuts

Def. An s-t cut is a partition (A, B) of V with s  A and t  B.

Def. The capacity of a cut (A, B) is: cap(A , B) = c (e)
e out of A

å

Capacity = 9 + 15 + 8 + 30
 = 62

12

Min s-t cut problem. Find an s-t cut of minimum capacity.

The Minimum Cut Problem

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4
A

Capacity = 10 + 8 + 10
 = 28

13

Lemma 1. Let f be any flow, and let (A, B) be any s-t cut. Then, the net

flow sent across the cut is equal to the amount leaving s.

Flow and Cut Properties

10

6

6

11

1 10

3 8 8

0

0

0

11

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

Value = 24

f (e)
e out of A

å - f (e)
e in to A

å = v (f)

4

A

14

Lemma 1. Let f be any flow, and let (A, B) be any s-t cut. Then, the net

flow sent across the cut is equal to the amount leaving s.

Flow and Cut Properties

10

6

6

1 10

3 8 8

0

0

0

11

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

Value = 6 + 0 + 8 - 1 + 11
 = 24

4

11

A

f (e)
e out of A

å - f (e)
e in to A

å = v (f)

15

Lemma 1. Let f be any flow, and let (A, B) be any s-t cut. Then, the net

flow sent across the cut is equal to the amount leaving s.

Flow and Cut Properties

10

6

6

11

1 10

3 8 8

0

0

0

11

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0

Value = 10 - 4 + 8 - 0 + 10
 = 24

4

A

f (e)
e out of A

å - f (e)
e in to A

å = v (f)

16

Flow and Cut Properties

Lemma 1. Let f be any flow, and let (A, B) be any s-t cut. Then, the net

flow sent across the cut is equal to the amount leaving s.

Pf.

v (f) = f (e)
e out of s

å

=
v ÎA

å f (e)
e out of v

å - f (e)
e in to v

å
æ

è
ç

ö

ø
÷

= f (e)
e out of A

å - f (e).
e in to A

å

by flow conservation, all terms
except v = s are 0

f (e)
e out of A

å - f (e)
e in to A

å = v (f)

17

Flow and Cut Properties

Lemma 2. Let f be any flow, and let (A, B) be any s-t cut. Then the value

of the flow is at most the capacity of the cut.

Cut capacity = 30  Flow value  30

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4

Capacity = 30

A

18

Lemma 2. Let f be any flow. Then, for any s-t cut (A, B) we have

v(f)  cap(A, B).

Pf.

Flow and Cut Properties

v (f) = f (e)
e out of A

å - f (e)
e in to A

å

£ f (e)
e out of A

å

£ c (e)
e out of A

å

= cap(A , B)

s

t

A B

7

6

8

4

19

Certificate of Optimality

Corollary 1. Max flow is at most equal to the capacity of the min cut (i.e.,

max flow is a lower bound to min cut)

Corollary 2. Let f be any flow, and let (A, B) be any cut.

If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

Value of flow = Cut capacity = 28  Flow value  28

10

9

9

14

4 10

4 8 9

1

0 0

0

14

s

2

3

4

5

6

7

t

15

5

30

15

10

8

15

9

6 10

10

10154

4 0A

20

Towards a Max Flow Algorithm

Greedy algorithm.

Start with f(e) = 0 for every edge e  E.

Find an s-t path P where each edge has f(e) < c(e).

Augment flow along path P.

Repeat until you get stuck.

s

1

2

t

10

10

0 0

0 0

0

20

20

30

Flow value = 0

21

Towards a Max Flow Algorithm

Greedy algorithm.

Start with f(e) = 0 for every edge e  E.

Find an s-t path P where each edge has f(e) < c(e).

Augment flow along path P.

Repeat until you get stuck.

s

1

2

t

20

Flow value = 20

10

10 20

30

0 0

0 0

0

X

X

X

20

20

20

22

Towards a Max Flow Algorithm

Greedy algorithm.

Start with f(e) = 0 for every edge e  E.

Find an s-t path P where each edge has f(e) < c(e).

Augment flow along path P.

Repeat until you get stuck.

greedy = 20

s

1

2

t

20 10

10 20

30

20 0

0

20

20

opt = 30

s

1

2

t

20 10

10 20

30

20 10

10

10

20

locally optimality  global optimality

23

Towards a Max Flow Algorithm

We need an algorithm with more flexibility
Desired operations:

Push flow forward along a non-saturated path

Push flow backwards (i.e., undo some units of flow when necessary)

– in order to to divert flow to a different direction

The residual graph:
Given the initial graph G, and a fesible flow f, the residual graph Gf has

the same set of nodes as G

forward edges: for every edge e = (u, v) of G with f(e) < c(e), we include

the same edge in Gf with residual capacity c(e) – f(e)

backward edges: for every edge e = (u, v) of G with f(e) > 0, we include the

edge (v, u) in Gf with residual capacity f(e)

24

Towards a Max Flow Algorithm

Simple Facts:
Given G and f, the graph Gf can be constructed

efficiently

Gf has at most twice as many edges as G

Capacities in Gf are strictly positive
u v17

6

Capacity

Flow

u v11

Residual capacity

6

Residual capacity

25

Residual Graph and Augmenting Paths

Residual graph: Gf = (V, Ef).

Ef = {e : f(e) < c(e)}  {eR : f(e) > 0}.

s

4

2

5

3 t10 13 10

4

0 0

10 10 10

0

4
0

4
4

s

4

2

5

3 t10 10 10

4

4

4
4

3

c
f
(e) =

c (e) - f (e) if e Î E

f(e) if e R Î E

ì

í
ï

îï

G

Gf

26

Augmenting Path

Augmenting path = path in residual graph

Allows to undo some flow units from current solution

And produce a flow of higher value

s

4

2

5

3 t10 13 10

4

0 0

10 10 10

0

4
0

4
4

s

4

2

5

3 t10 10 10

4

4

4
4

3

G

Gf

4 4

6

4

4

X

X

X

X

X

27

Augmenting Path

Augmenting path = path in residual graph.

Max flow  no augmenting paths ???

s

4

2

5

3 t10 13 10

4

4 4

10 6 10

4

4
4

4
4

s

4

2

5

3 t10 6 10

4

4

4
4

7

Flow value = 14

G

Gf

28

Augmenting Path Algorithm

Augment(f, c, P) {

 b  bottleneck(P)

 foreach e  P {

 if (e  E) f(e)  f(e) + b

 else f(eR)  f(e) - b

 }

 return f

}

Ford-Fulkerson(G, s, t, c) {

 foreach e  E f(e)  0

 Gf  residual graph

 while (there exists augmenting path P) {

 f  Augment(f, c, P)

 update Gf
 }

 return f

}

forward edge

reverse edge

Bottleneck is the minimum
residual capacity of any edge in P

29

Max flow - Min cut

[Ford, Fulkerson ’56]:
Theorem 1 (algorithm correctness): A feasible flow is optimal if
and only if there is no augmenting path (i.e., no s-t path in the
residual graph)

Theorem 2 (the max-flow min-cut theorem): For any flow graph
G = (V, E) with capacities on its edges,

value of max flow = capacity of min s-t cut

We will prove both theorems together

30

Max flow - Min cut

Proof sketch:
Let f be a feasible flow computed by the algorithm. We prove
that the following are equivalent:
(i) The flow f is optimal
(ii) There is no augmenting path with respect to f (i.e., no s-t

path in the residual graph)
(iii) There exists a cut (A, B) such that v(f) = cap(A, B)

31

Max flow - Min cut

Proof sketch:
(i)  (ii)
trivial, if there was an augmenting path, we would increase the flow and f

would not be optimal

(ii)  (iii)
Let f be a flow with no augmenting paths

Let A be the set of vertices reachable from s in the residual graph Gf

Let B := V \ A

By definition of A, s  A

By our assumption on f (no augmenting paths), t  A

Hence (A, B) is a valid s-t cut

32

Max flow - Min cut

Proof sketch:
(ii)  (iii) cont’d

Claim 1: for an edge e = (u, v) with u  A and v  B, f(e) = c(e)

– Otherwise, v is reachable in Gf from s (since u  A)

Claim 2: for an edge e = (u, v) with u  B and v  A, f(e) = 0

– Otherwise, there is a backward edge (v, u) in Gf, and hence u is reachable from s

v(f) = f (e)
e out of A

å - f (e)
e in to A

å

= c(e)
e out of A

å

= cap(A, B)

(From Lemma 1)

(iii)  (i)
follows by the Corollary 2 on certificates of optimality

33

Running time

Assumption: Assume all capacities are integers

Claim 1: All flow values and residual capacities are integers throughout the

execution of the algorithm

Claim 2: In every iteration of the while loop, the flow increases by at least 1

unit

Claim 3: Let C = . Then max flow ≤ C

Total running time: O((m+n) C) pseudopolynomial algorithm

Corollary: If all capacities are 0 or 1, then running time is O(mn)

 important special case in some applications

c(s,u)
(s,u)ÎE

å

34

Improving the running time

Worst case scenarios:
With integer capacities, the algorithm may need to do C augmentations

• If capacities are irrational, algorithm not even guaranteed to terminate!

Some improvements
[Edmonds-Karp 1972, Dinitz 1970]:
Choose augmenting paths with:

Max bottleneck capacity

Sufficiently large bottleneck capacity

Fewest number of edges

Capacity Scaling

Intuition: Choosing a path with the highest bottleneck capacity
increases flow by max possible amount.

Actually, don't worry about finding the exact highest bottleneck path (this

may slow down the algorithm)

Maintain a scaling parameter .

Let Gf () be the subgraph of the residual graph consisting only of arcs

with capacity at least 

110

s

2

3

t1

170

102

122

Gf

110

s

2

3

t

170

102

122

Gf (100)

Capacity Scaling

Scaling-Max-Flow(G, s, t, c) {

 foreach e  E f(e)  0

   smallest power of 2 less than or equal to C

 Gf  residual graph

 while (  1) {

 Gf()  -residual graph

 while (there exists an augmenting path P in Gf()) {

 f  augment(f, c, P)

 update Gf()

 }

    / 2

 }

 return f

}

37

Correctness and running time

Assume integer capacities

Correctness:
Eventually, when  = 1  Gf() = Gf

Hence the algorithm stops when there are no s-t paths in Gf

The flow must be optimal by the correctness analysis of Ford-Fulkerson

Running time analysis
Lemma 1: The outer while loop runs for 1 + log2 C iterations

Proof: Initially C   < 2C.  decreases by a factor of 2 in each iteration of the

outer while loop

38

Correctness and running time

Assume integer capacities

Running time analysis (cont’d)
Lemma 2: Let f be the flow at the end of a -scaling phase. Then the value of

the maximum flow is at most v(f) + m 

Proof: do it as an exercise

Lemma 3: There are at most 2m augmentations per scaling phase

Proof: Consider the beginning of a scaling phase with parameter Δ

Let f be the flow at the end of the previous scaling phase

Lemma 2  v(f*)  v(f) + m (2) [previous is twice the current Δ]

Each augmentation in a -phase increases v(f) by at least 

Theorem: The capacity scaling max-flow algorithm finds a max flow in O(m

log C) augmentations. It can be implemented to run in O(m2 log C) time

3939

Application to Matching

problems

40

Matching Problems

Consider an undirected graph G = (V, E)

Definition: A matching M is a collection of edges M  E, such that no 2 edges

share a common vertex

Given a matching M, a vertex u is called matched if there exists an

edge eM such that e has u as one of its endpoints

41

Matching Problems

Examples

v8 v9

a matching in a
bipartite graph

A matching in
general graphs
(vertex v8 is
unmatched)

42

Matching Problems

Types of matching problems that arise in optimization:

Maximal matching: find a matching where no more edges can be added

Maximum matching: find a matching with the maximum possible number of

edges

Perfect matching: find a matching where every vertex is matched (if one

exists)

Maximum weight matching: given a weighted graph, find a matching with

maximum possible total weight

Minimum weight perfect matching: given a weighted graph, find a perfect

matching with minimum cost

All the above problems can be solved in polynomial time (several algorithms

and publications over the last decades)

43

Matching Problems

Trivial algorithm for maximal matching:
Start from the empty set of edges

Keep adding edges that do not have common endpoints to the current

solution

Stop when it is not possible to add an edge that does not have any

common endpoint with the edges already picked

The selected set of edges forms a maximal matching

More sophisticated algorithms are required for maximum
matching and perfect matching

[Edmonds ’65]: first algorithm for maximum matching in general
graphs
Also first mention of polynomial time solvability as a measure of efficiency

44

Matching in Bipartite Graphs

An interesting special case for matching problems:
A graph G = (V, E) is called bipartite if V can be partitioned into 2 sets V1, V2

such that all edges connect a vertex from V1 with a vertex from V2

Q: How can we find a maximum matching in a bipartite
graph?

45

Matching in Bipartite Graphs

We can reduce this to a max-flow problem

• Orient all edges from left to right
• Add a source node s, connect it to all of V1

• Add a sink node t, connect all of V2 to t
• Capacities: set them to 1 for all edges

46

Matching in Bipartite Graphs

Hence:

- a maximum matching for bipartite graphs can be computed in polynomial

time

- The graph has a perfect matching if and only if the max flow in the modified

graph equals n

But wait a minute...
- What if the max flow assigns a flow of 0.65 to an edge?

- Fortunately this can be avoided

Theorem: If all the capacities of a graph are integral, then there is
an integral optimal flow and our algorithms compute such an
integral optimal flow

	Slide 1
	Slide 2: Contents
	Slide 3
	Slide 4: Maximum Flow and Minimum Cut
	Slide 5: Flow network
	Slide 6: The max flow problem
	Slide 7: Flows
	Slide 8: Flows
	Slide 9: The Maximum Flow Problem
	Slide 10: Cuts
	Slide 11: Cuts
	Slide 12: The Minimum Cut Problem
	Slide 13: Flow and Cut Properties
	Slide 14: Flow and Cut Properties
	Slide 15: Flow and Cut Properties
	Slide 16: Flow and Cut Properties
	Slide 17: Flow and Cut Properties
	Slide 18: Flow and Cut Properties
	Slide 19: Certificate of Optimality
	Slide 20: Towards a Max Flow Algorithm
	Slide 21: Towards a Max Flow Algorithm
	Slide 22: Towards a Max Flow Algorithm
	Slide 23: Towards a Max Flow Algorithm
	Slide 24: Towards a Max Flow Algorithm
	Slide 25: Residual Graph and Augmenting Paths
	Slide 26: Augmenting Path
	Slide 27: Augmenting Path
	Slide 28: Augmenting Path Algorithm
	Slide 29: Max flow - Min cut
	Slide 30: Max flow - Min cut
	Slide 31: Max flow - Min cut
	Slide 32: Max flow - Min cut
	Slide 33: Running time
	Slide 34: Improving the running time
	Slide 35: Capacity Scaling
	Slide 36: Capacity Scaling
	Slide 37: Correctness and running time
	Slide 38: Correctness and running time
	Slide 39
	Slide 40: Matching Problems
	Slide 41: Matching Problems
	Slide 42: Matching Problems
	Slide 43: Matching Problems
	Slide 44: Matching in Bipartite Graphs
	Slide 45: Matching in Bipartite Graphs
	Slide 46: Matching in Bipartite Graphs

