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The maximum flow problem
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Maximum Flow and Minimum Cut

Max flow and min cut.

Two very rich algorithmic problems.

Cornerstone problems in combinatorial optimization.

Beautiful mathematical duality.

Nontrivial applications / reductions.

Data mining.

Project selection.

Airline scheduling.

Bipartite matching.

Image segmentation.

Network connectivity.

Network reliability.

Distributed computing.

Security of statistical data.

Many many more . . .
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Abstraction for material flowing through the edges.

G = (V, E) = directed graph, no parallel edges.

Two distinguished nodes:  s = source, t = sink.

c(e) = capacity of edge e.

Flow network
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The max flow problem

A feasible flow is an assignment of a flow f(e) to every edge 
so that
1.f(e) ≤ c(e) (capacity constraints)
2.For every node other than source and sink: 
        incoming flow = outgoing flow (preservation of flow)

Goal: find a feasible flow so as to maximize the total amount 
of flow coming out of s (or equivalently going into t)

Flow going out of s: v(f) =  f (s,u)
(s,u)ÎE

å

By preservation of flow this equals: f (u, t)
(u,t )ÎE

å
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Constraints:

For each e  E:     (capacity)

For each v  V – {s, t}:                   (conservation)

The value of a flow f is:       

Flows
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Constraints:

For each e  E:     (capacity)

For each v  V – {s, t}:                   (conservation)

The value of a flow f is:       

Flows
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Optimal flow: 28 units of flow from s to t

The Maximum Flow Problem
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Def.  An s-t cut is a partition (A, B) of V with s  A and t  B.

Def. The capacity of a cut (A, B) is:

Cuts
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Cuts

Def.  An s-t cut is a partition (A, B) of V with s  A and t  B.

Def. The capacity of a cut (A, B) is: cap(A , B ) = c (e )
e  out of A

å

Capacity = 9 + 15 + 8 + 30
              = 62
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Min s-t cut problem.  Find an s-t cut of minimum capacity.

The Minimum Cut Problem
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Lemma 1. Let f be any flow, and let (A, B) be any s-t cut.  Then, the net 

flow sent across the cut is equal to the amount leaving s.

Flow and Cut Properties
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Lemma 1.  Let f be any flow, and let (A, B) be any s-t cut.  Then, the net 

flow sent across the cut is equal to the amount leaving s.

Flow and Cut Properties
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Lemma 1.  Let f be any flow, and let (A, B) be any s-t cut.  Then, the net 

flow sent across the cut is equal to the amount leaving s.

Flow and Cut Properties
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Flow and Cut Properties

Lemma 1.  Let f be any flow, and let (A, B) be any s-t cut.  Then, the net 

flow sent across the cut is equal to the amount leaving s.

Pf.   

 

v ( f ) = f (e )
e  out of  s

å

=
v ÎA

å f (e )
e  out of  v

å  - f (e )
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å
æ

è
ç

ö

ø
÷
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by flow conservation, all terms
except v = s are 0
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Flow and Cut Properties

Lemma 2.  Let f be any flow, and let (A, B) be any s-t cut.  Then the value 

of the flow is at most the capacity of the cut.

Cut capacity = 30       Flow value  30 
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Lemma 2.  Let f be any flow.  Then, for any s-t cut (A, B) we have

v(f)  cap(A, B).

Pf.

   

Flow and Cut Properties
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Certificate of Optimality

Corollary 1. Max flow is at most equal to the capacity of the min cut (i.e., 

max flow is a lower bound to min cut)

Corollary 2. Let f be any flow, and let (A, B) be any cut.

If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.

Value of flow = Cut capacity  = 28       Flow value  28
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Towards a Max Flow Algorithm

Greedy algorithm.

Start with f(e) = 0 for every edge e  E.

Find an s-t path P where each edge has f(e) < c(e).

Augment flow along path P.

Repeat until you get stuck.
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Towards a Max Flow Algorithm

Greedy algorithm.

Start with f(e) = 0 for every edge e  E.

Find an s-t path P where each edge has f(e) < c(e).

Augment flow along path P.

Repeat until you get stuck.
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Towards a Max Flow Algorithm

Greedy algorithm.

Start with f(e) = 0 for every edge e  E.

Find an s-t path P where each edge has f(e) < c(e).

Augment flow along path P.

Repeat until you get stuck.
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Towards a Max Flow Algorithm

We need an algorithm with more flexibility
Desired operations:

Push flow forward along a non-saturated path

Push flow backwards (i.e., undo some units of flow when necessary)

–  in order to to divert flow to a different direction

The residual graph:
Given the initial graph G, and a fesible flow f, the residual graph Gf  has

the same set of nodes as G

forward edges: for every edge e = (u, v) of G with f(e) < c(e), we include 

the same edge in Gf with residual capacity  c(e) – f(e)

backward edges: for every edge e = (u, v) of G with f(e) > 0, we include the 

edge (v, u) in Gf with residual capacity f(e)
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Towards a Max Flow Algorithm

Simple Facts: 
Given G and f, the graph Gf can be constructed 

efficiently

Gf has at most twice as many edges as G

Capacities in Gf are strictly positive
u v17

6

Capacity

Flow

u v11

Residual capacity

6

Residual capacity
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Residual Graph and Augmenting Paths

Residual graph:  Gf = (V, Ef ).

Ef = {e : f(e) < c(e)}    {eR : f(e) > 0}.
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Augmenting Path

Augmenting path = path in residual graph

Allows to undo some flow units from current solution

And produce a flow of higher value
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Augmenting Path

Augmenting path = path in residual graph.

Max flow    no augmenting paths ???
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Augmenting Path Algorithm

Augment(f, c, P) {

   b  bottleneck(P) 

   foreach e  P {

      if (e  E) f(e)  f(e) + b

      else       f(eR)  f(e) - b

   }

   return f

}

Ford-Fulkerson(G, s, t, c) {

   foreach e  E  f(e)  0

   Gf  residual graph

   while (there exists augmenting path P) {

      f  Augment(f, c, P)

      update Gf
   }

   return f

}

forward edge

reverse edge

Bottleneck is the minimum 
residual capacity of any edge in P
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Max flow - Min cut

[Ford, Fulkerson ’56]:
Theorem 1 (algorithm correctness): A feasible flow is optimal if 
and only if there is no augmenting path (i.e., no s-t path in the 
residual graph) 

Theorem 2 (the max-flow min-cut theorem): For any flow graph 
G = (V, E) with capacities on its edges, 

value of max flow = capacity of min s-t cut

We will prove both theorems together
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Max flow - Min cut

Proof sketch:
Let f be a feasible flow computed by the algorithm. We prove 
that the following are equivalent:
(i) The flow f is optimal
(ii) There is no augmenting path with respect to f (i.e., no s-t 

path in the residual graph) 
(iii) There exists a cut (A, B) such that v(f) = cap(A, B) 



31

Max flow - Min cut

Proof sketch:
(i)    (ii) 
trivial, if there was an augmenting path, we would increase the flow and f 

would not be optimal

(ii)      (iii)
Let f be a flow with no augmenting paths

Let A be the set of vertices reachable from s in the residual graph Gf

Let B := V \ A

By definition of A, s  A 

By our assumption on f (no augmenting paths), t  A

Hence (A, B) is a valid s-t cut
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Max flow - Min cut

Proof sketch:
(ii)    (iii)  cont’d

Claim 1: for an edge e = (u, v) with u  A and v  B, f(e) = c(e)

– Otherwise, v is reachable in Gf from s (since u  A)

Claim 2: for an edge e = (u, v) with u  B and v  A, f(e) = 0

– Otherwise, there is a backward edge (v, u) in Gf, and hence u is reachable from s

   

v( f ) = f (e)
e out of A

å - f (e)
e in to A

å

= c(e)
e out of A

å

= cap(A, B)

(From Lemma 1)

(iii)    (i) 
follows by the Corollary 2 on certificates of optimality
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Running time

Assumption: Assume all capacities are integers

Claim 1: All flow values and residual capacities are integers throughout the 

execution of the algorithm

Claim 2:  In every iteration of the while loop, the flow increases by at least 1 

unit

Claim 3: Let C =                   . Then max flow ≤ C

Total running time: O((m+n) C )   pseudopolynomial algorithm

Corollary: If all capacities are 0 or 1, then running time is O(mn)

 important special case in some applications 

c(s,u)
(s,u)ÎE

å
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Improving the running time

Worst case scenarios: 
With integer capacities, the algorithm may need to do C augmentations

• If capacities are irrational, algorithm not even guaranteed to terminate!

Some improvements
[Edmonds-Karp 1972, Dinitz 1970]:
Choose augmenting paths with:

Max bottleneck capacity

Sufficiently large bottleneck capacity

Fewest number of edges



Capacity Scaling

Intuition: Choosing a path with the highest bottleneck capacity 
increases flow by max possible amount.

Actually, don't worry about finding the exact highest bottleneck path (this 

may slow down the algorithm)

Maintain a scaling parameter .

Let Gf () be the subgraph of the residual graph consisting only of arcs 

with capacity at least 
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Capacity Scaling

Scaling-Max-Flow(G, s, t, c) {

   foreach e  E  f(e)  0

     smallest power of 2 less than or equal to C

   Gf  residual graph

   while (  1) {

      Gf()  -residual graph

      while (there exists an augmenting path P in Gf()) {

         f  augment(f, c, P)

         update Gf()

      }

         / 2 

   }

   return f

}
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Correctness and running time

Assume integer capacities

Correctness:
Eventually, when  = 1    Gf()  = Gf

Hence the algorithm stops when there are no s-t paths in Gf

The flow must be optimal by the correctness analysis of Ford-Fulkerson

Running time analysis
Lemma 1: The outer while loop runs for 1 + log2 C iterations

Proof: Initially C   < 2C.   decreases by a factor of 2 in each iteration of the 

outer while loop
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Correctness and running time

Assume integer capacities

Running time analysis (cont’d)
Lemma 2: Let f be the flow at the end of a -scaling phase. Then the value of 

the maximum flow is at most v(f) + m 

Proof: do it as an exercise

Lemma 3: There are at most 2m augmentations per scaling phase

Proof: Consider the beginning of a scaling phase with parameter Δ

Let f be the flow at the end of the previous scaling phase

Lemma 2    v(f*)    v(f) + m (2) [previous is twice the current Δ]

Each augmentation in a -phase increases v(f) by at least 

Theorem: The capacity scaling max-flow algorithm finds a max flow in O(m 

log C) augmentations.  It can be implemented to run in O(m2 log C) time
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Application to Matching 

problems
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Matching Problems

Consider an undirected graph G = (V, E)

Definition: A matching M is a collection of edges M   E, such that no 2 edges 

share a common vertex

Given a matching M, a vertex u is called matched if there exists an 

edge eM such that e has u as one of its endpoints
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Matching Problems

Examples

v8 v9

a matching in a 
bipartite graph

A matching in 
general graphs 
(vertex v8 is 
unmatched)
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Matching Problems

Types of matching problems that arise in optimization:

Maximal matching: find a matching where no more edges can be added

Maximum matching: find a matching with the maximum possible number of 

edges

Perfect matching: find a matching where every vertex is matched (if one 

exists)

Maximum weight matching: given a weighted graph, find a matching with 

maximum possible total weight

Minimum weight perfect matching: given a weighted graph, find a perfect 

matching with minimum cost

All the above problems can be solved in polynomial time (several algorithms 

and publications over the last decades)
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Matching Problems

Trivial algorithm for maximal matching: 
Start from the empty set of edges

Keep adding edges that do not have common endpoints to the current 

solution

Stop when it is not possible to add an edge that does not have any 

common endpoint with the edges already picked

The selected set of edges forms a maximal matching

More sophisticated algorithms are required for maximum 
matching and perfect matching

[Edmonds ’65]: first algorithm for maximum matching in general 
graphs
Also first mention of polynomial time solvability as a measure of efficiency
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Matching in Bipartite Graphs

An interesting special case for matching problems:
A graph G = (V, E) is called bipartite if V can be partitioned into 2 sets V1, V2 

such that all edges connect a vertex from V1 with a vertex from V2

Q: How can we find a maximum matching in a bipartite 
graph?
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Matching in Bipartite Graphs

We can reduce this to a max-flow problem

• Orient all edges from left to right
• Add a source node s, connect it to all of V1

• Add a sink node t, connect all of V2 to t
• Capacities: set them to 1 for all edges
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Matching in Bipartite Graphs

Hence:

- a maximum matching for bipartite graphs can be computed in polynomial 

time

- The graph has a perfect matching if and only if the max flow in the modified 

graph equals n

But wait a minute...
- What if the max flow assigns a flow of 0.65 to an edge?

- Fortunately this can be avoided

Theorem: If all the capacities of a graph are integral, then there is 
an integral optimal flow and our algorithms compute such an 
integral optimal flow
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