OIKONOMIKO ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

Special Topics on Algorithms

Algorithms for flows and matchings

Vangelis Markakis – George Zois

Contents

The maximum flow problem

The minimum cut problem

The max-flow min-cut theorem

Augmenting path algorithms

Applications to matching problems

The maximum flow problem

Maximum Flow and Minimum Cut

Max flow and min cut.

- Two very rich algorithmic problems.
- Cornerstone problems in combinatorial optimization.
- Beautiful mathematical duality.

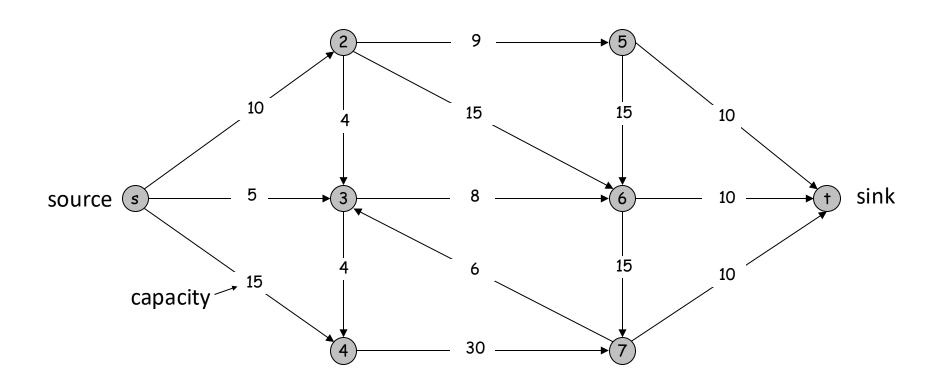
Nontrivial applications / reductions.

- Data mining.
- Project selection.
- Airline scheduling.
- Bipartite matching.
- Image segmentation.
- Network connectivity.

- Network reliability.
- Distributed computing.
- Security of statistical data.
- Many many more . . .

Flow network

- Abstraction for material flowing through the edges.
- $_{\square}$ G = (V, E) = directed graph, no parallel edges.
- Two distinguished nodes: s = source, t = sink.
- c(e) = capacity of edge e.



The max flow problem

A feasible flow is an assignment of a flow f(e) to every edge so that

- $1.f(e) \le c(e)$ (capacity constraints)
- 2.For every node other than source and sink: incoming flow = outgoing flow (preservation of flow)

Goal: find a feasible flow so as to maximize the total amount of flow coming out of s (or equivalently going into t)

Flow going out of s:
$$v(f) = \mathop{a}_{(s,u)}^{\circ} f(s,u)$$

By preservation of flow this equals: $\mathring{\mathbf{a}}_{(u,t)\hat{\mathsf{I}}} f(u,t)$

Flows

Constraints:

- For each $e \in E$: $0 \notin f(e) \notin c(e)$ (capacity)

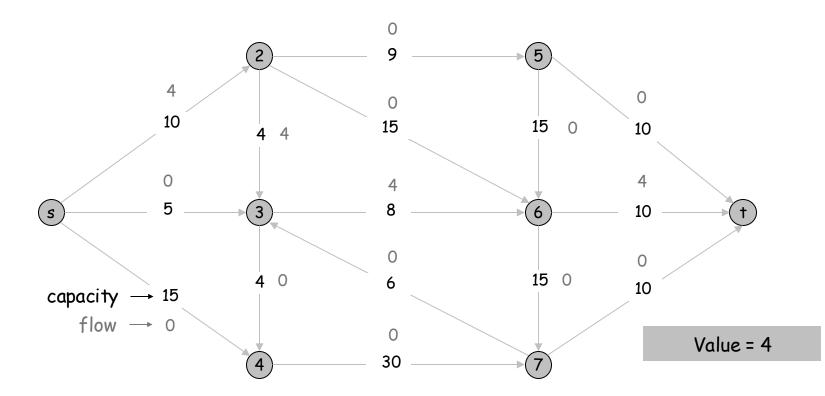
- For each $v \in V \{s, t\}$: $\mathring{a} f(e) = \mathring{a} f(e)$ (conservation)

e out of v

The value of a flow f is: $v(f) = \mathring{a} f(e)$.

$$v(f) = \mathop{\text{a}}_{e \text{ out of } s} f(e)$$
.

e in to v



Flows

Constraints:

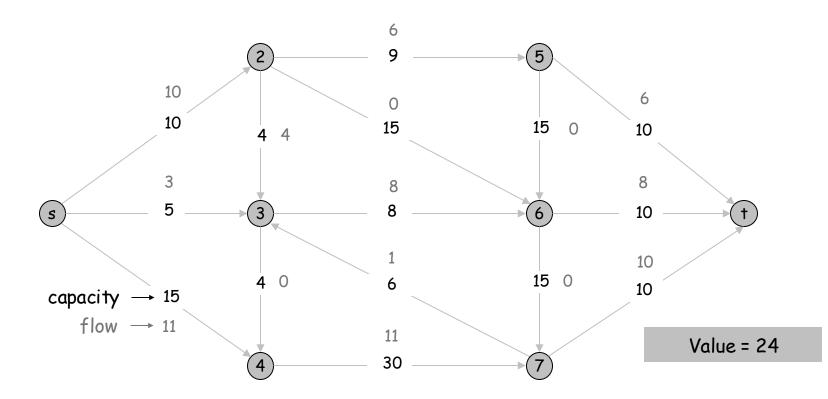
- For each $e \in E$: $0 \notin f(e) \notin c(e)$ (capacity)

- For each $v \in V \{s, t\}$: $\mathring{a} f(e) = \mathring{a} f(e)$ (conservation) e out of v

The value of a flow f is: $v(f) = \mathring{a} f(e)$.

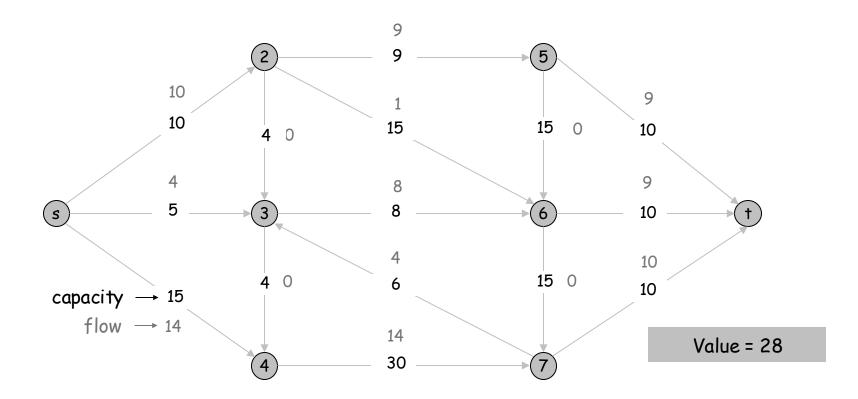
$$v(f) = \mathop{\rm ad}_{e \text{ out of } s} f(e)$$
.

e in to v



The Maximum Flow Problem

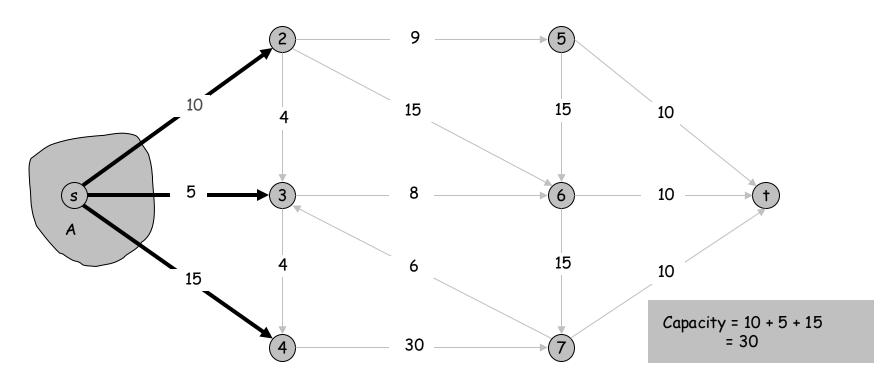
Optimal flow: 28 units of flow from s to t



Cuts

Def. An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

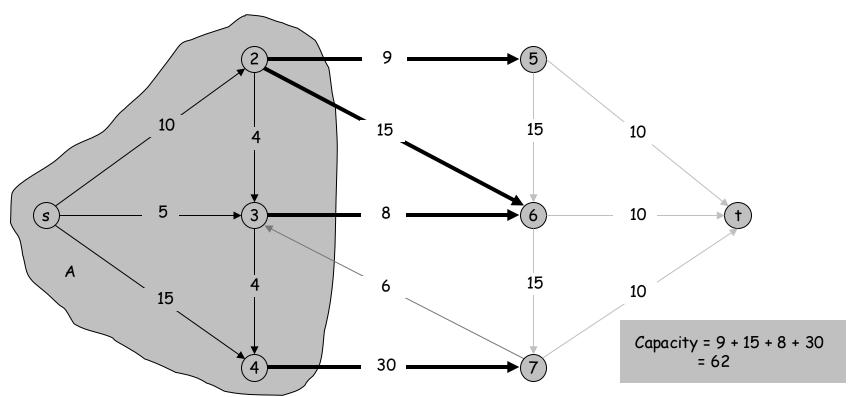
Def. The capacity of a cut (A, B) is: $cap(A, B) = \mathop{\Diamond}_{e \text{ out of } A} c(e)$



Cuts

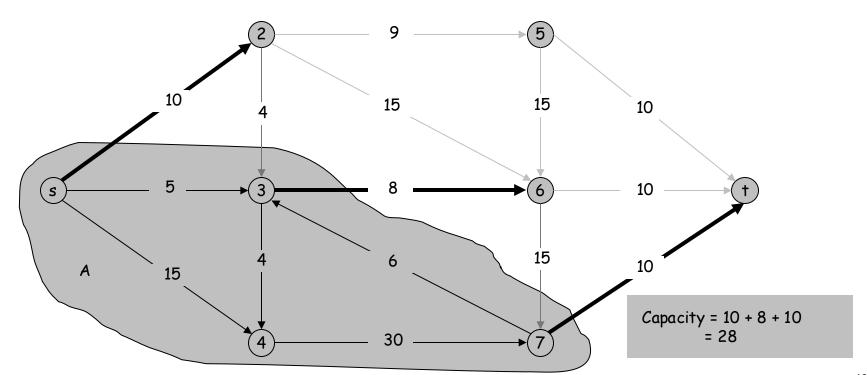
Def. An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

Def. The capacity of a cut (A, B) is: $cap(A, B) = \mathop{\circ}_{e \text{ out of } A} c(e)$



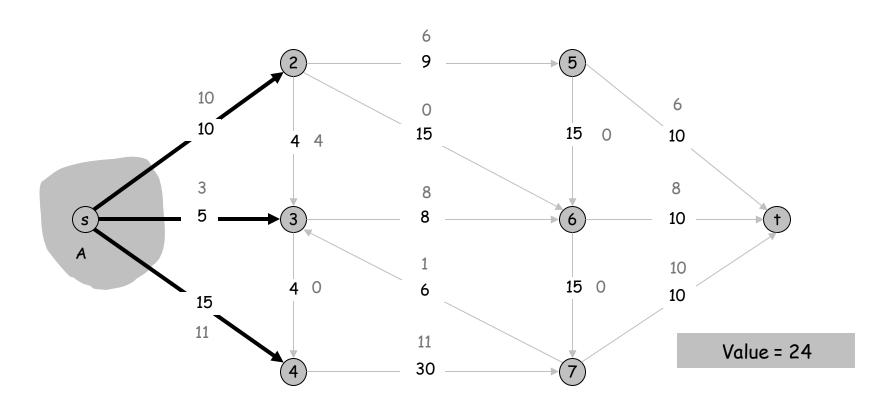
The Minimum Cut Problem

Min s-t cut problem. Find an s-t cut of minimum capacity.



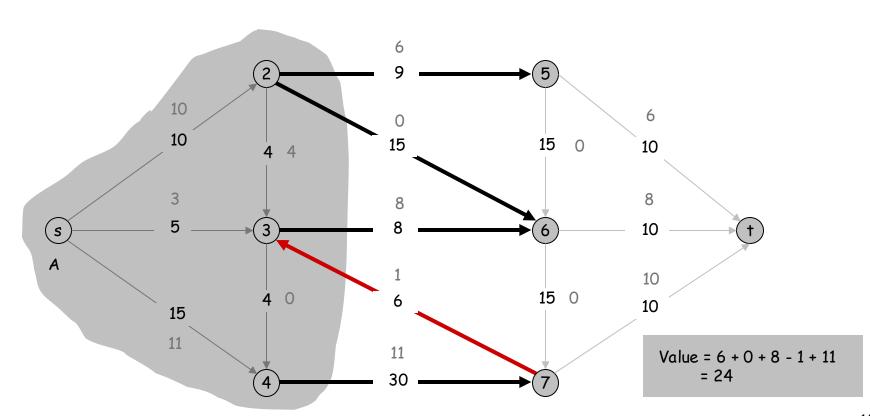
Lemma 1. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\mathring{\mathbf{a}}_{e \text{ out of } A} f(e) - \mathring{\mathbf{a}}_{e \text{ in to } A} f(e) = v(f)$$



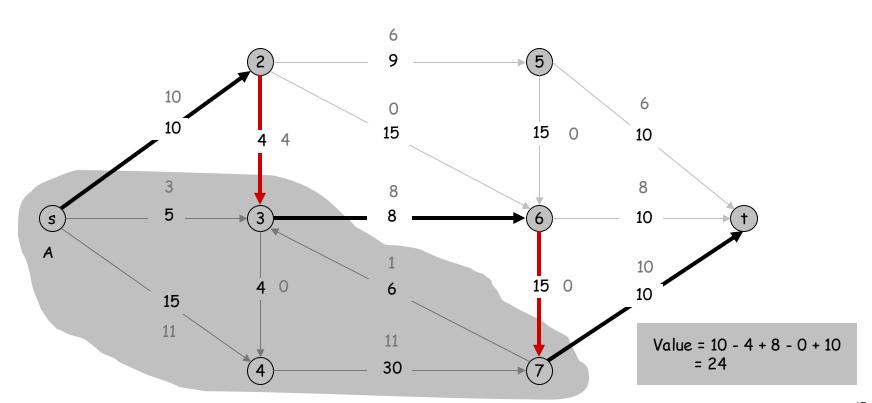
Lemma 1. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\mathring{\mathbf{a}}_{e \text{ out of } A} f(e) - \mathring{\mathbf{a}}_{e \text{ in to } A} f(e) = v(f)$$



Lemma 1. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\mathring{\mathbf{a}}_{e \text{ out of } A} f(e) - \mathring{\mathbf{a}}_{e \text{ in to } A} f(e) = v(f)$$



Lemma 1. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\mathring{\mathbf{a}} f(e) - \mathring{\mathbf{a}} f(e) = v(f)$$
e out of A e in to A

Pf.

by flow conservation, all terms except v = s are 0

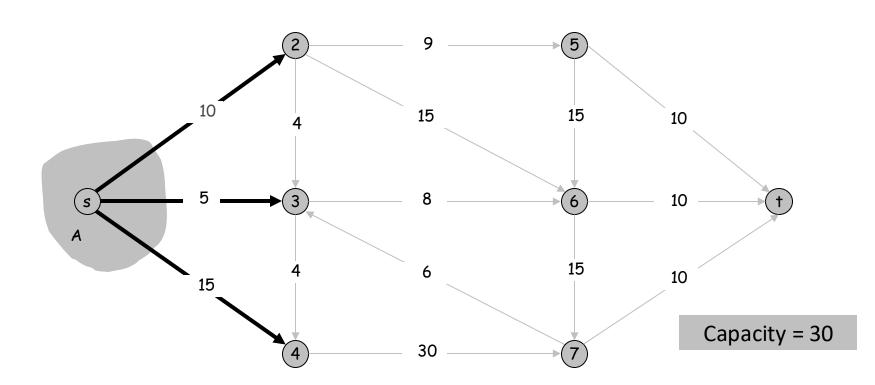
$$v(f) = \sum_{e \text{ out of } s} f(e)$$

$$= \sum_{v \in A} \left(\sum_{e \text{ out of } v} f(e) - \sum_{e \text{ in to } v} f(e) \right)$$

$$= \sum_{v \in A} f(e) - \sum_{e \text{ in to } v} f(e).$$

Lemma 2. Let f be any flow, and let (A, B) be any s-t cut. Then the value of the flow is at most the capacity of the cut.

Cut capacity = 30 \implies Flow value \leq 30



Lemma 2. Let f be any flow. Then, for any s-t cut (A, B) we have $v(f) \le cap(A, B)$.

Pf.

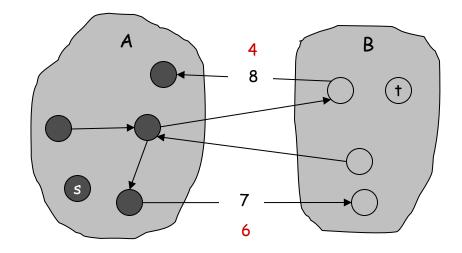
$$v(f) = \mathop{\mathring{a}}_{e \text{ out of } A} f(e) - \mathop{\mathring{a}}_{e \text{ in to } A} f(e)$$

$$\mathop{\text{E}}_{e \text{ out of } A} \mathop{\mathring{a}}_{f \text{ } (e)}$$

$$\mathop{\text{E}}_{e \text{ out of } A} \mathop{\mathring{a}}_{c \text{ } (e)}$$

$$\mathop{\text{E}}_{e \text{ out of } A} \mathop{\mathring{a}}_{c \text{ } (e)}$$

$$\mathop{\text{E}}_{e \text{ out of } A} \mathop{\text{C}}_{e \text{ } (e)}$$

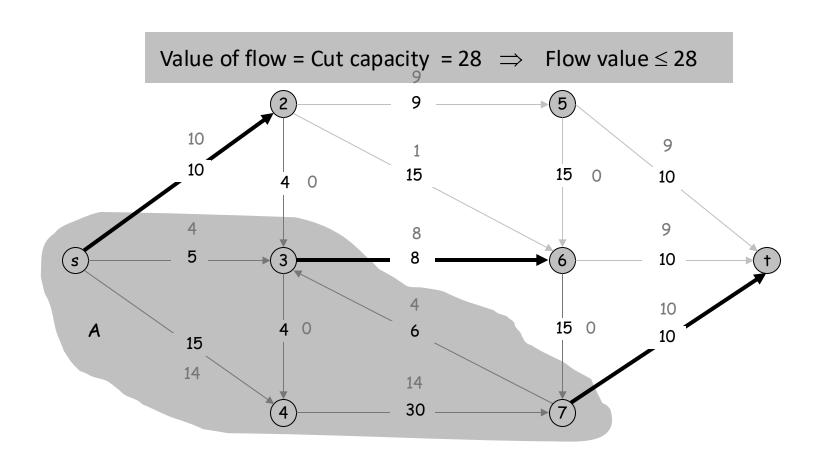


Certificate of Optimality

Corollary 1. Max flow is at most equal to the capacity of the min cut (i.e., max flow is a lower bound to min cut)

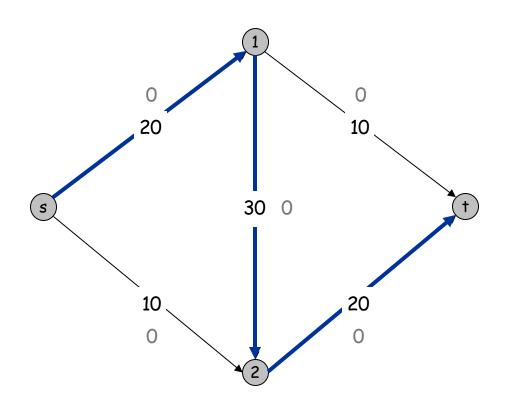
Corollary 2. Let f be any flow, and let (A, B) be any cut.

If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.



Greedy algorithm.

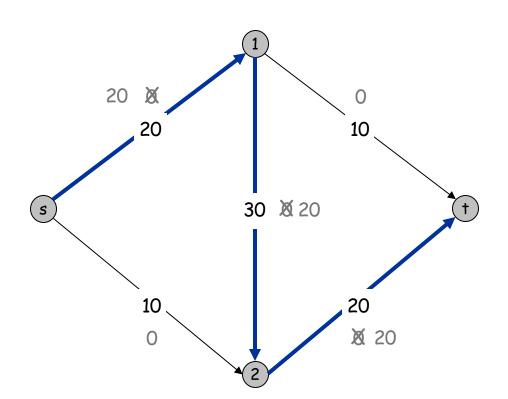
- Start with f(e) = 0 for every edge $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).</p>
- Augment flow along path P.
- Repeat until you get stuck.



Flow value = 0

Greedy algorithm.

- Start with f(e) = 0 for every edge $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).</p>
- Augment flow along path P.
- Repeat until you get stuck.

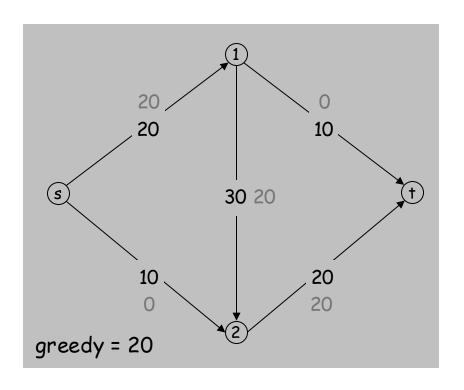


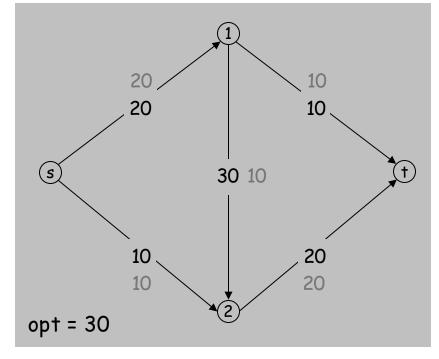
Flow value = 20

Greedy algorithm.

- Start with f(e) = 0 for every edge $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).</p>
- Augment flow along path P.
- Repeat until you get stuck.

 \nearrow locally optimality \Rightarrow global optimality





We need an algorithm with more flexibility Desired operations:

- Push flow forward along a non-saturated path
- Push flow backwards (i.e., undo some units of flow when necessary)
 - in order to to divert flow to a different direction

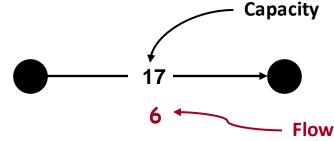
The residual graph:

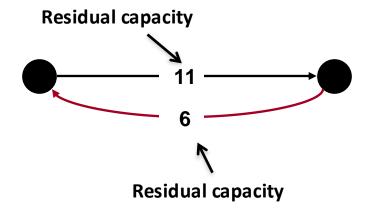
Given the initial graph G, and a fesible flow f, the residual graph G_f has

- the same set of nodes as G
- forward edges: for every edge e = (u, v) of G with f(e) < c(e), we include the same edge in G_f with residual capacity c(e) f(e)
- backward edges: for every edge e = (u, v) of G with f(e) > 0, we include the edge (v, u) in G_f with residual capacity f(e)

Simple Facts:

- Given G and f, the graph G_f can be constructed efficiently
- G_f has at most twice as many edges as G
- Capacities in G_f are strictly positive



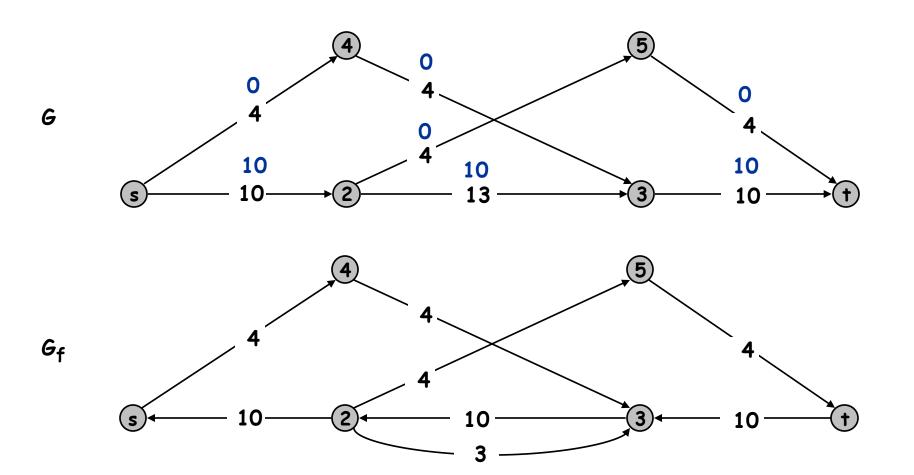


Residual Graph and Augmenting Paths

Residual graph: $G_f = (V, E_f)$.

□ $E_f = \{e : f(e) < c(e)\}$ $\cup \{e^R : f(e) > 0\}$.

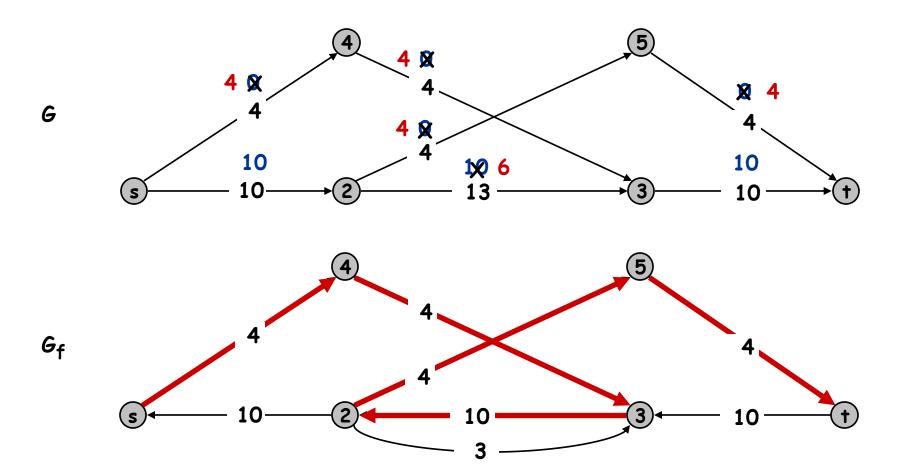
$$c_{f}(e) = \begin{cases} c(e) - f(e) & \text{if } e \in E \\ f(e) & \text{if } e^{R} \in E \end{cases}$$



Augmenting Path

Augmenting path = path in residual graph

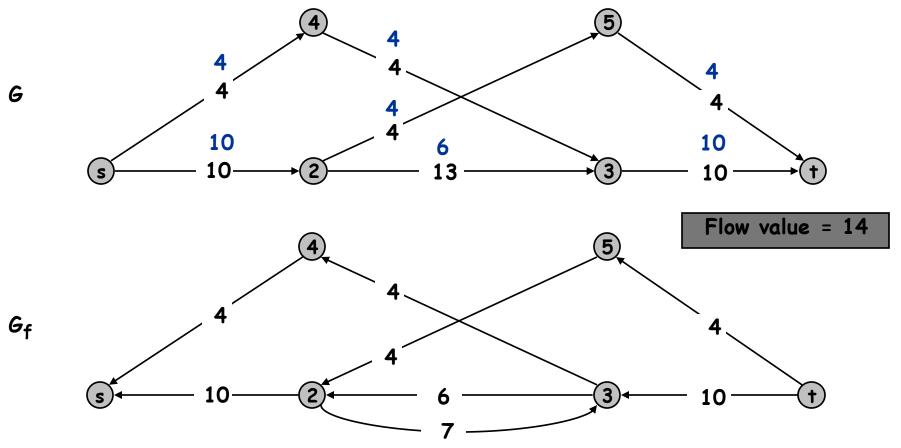
- Allows to undo some flow units from current solution
- And produce a flow of higher value



Augmenting Path

Augmenting path = path in residual graph.

■ Max flow ⇔ no augmenting paths ???



Augmenting Path Algorithm

Bottleneck is the minimum residual capacity of any edge in P forward edge reverse edge

```
Ford-Fulkerson(G, s, t, c) {
   foreach e ∈ E f(e) ← 0
   G<sub>f</sub> ← residual graph

while (there exists augmenting path P) {
   f ← Augment(f, c, P)
     update G<sub>f</sub>
   }
   return f
}
```

[Ford, Fulkerson '56]:

Theorem 1 (algorithm correctness): A feasible flow is optimal if and only if there is no augmenting path (i.e., no s-t path in the residual graph)

Theorem 2 (the max-flow min-cut theorem): For any flow graph G = (V, E) with capacities on its edges, value of max flow = capacity of min s-t cut

We will prove both theorems together

Proof sketch:

Let f be a feasible flow computed by the algorithm. We prove that the following are equivalent:

- (i) The flow f is optimal
- (ii) There is no augmenting path with respect to f (i.e., no s-t path in the residual graph)
- There exists a cut (A, B) such that v(f) = cap(A, B)

Proof sketch:

$$(i) \Rightarrow (ii)$$

trivial, if there was an augmenting path, we would increase the flow and f would not be optimal

(ii)
$$\Rightarrow$$
 (iii)

- Let f be a flow with no augmenting paths
- Let A be the set of vertices reachable from s in the residual graph G_f
- Let B := V \ A
- By definition of A, $s \in A$
- By our assumption on f (no augmenting paths), t ∉ A
- Hence (A, B) is a valid s-t cut

Proof sketch:

```
(ii) \Rightarrow (iii) cont'd
```

- Claim 1: for an edge e = (u, v) with $u \in A$ and $v \in B$, f(e) = c(e)
 - Otherwise, v is reachable in G_f from s (since $u \in A$)
- Claim 2: for an edge e = (u, v) with $u \in B$ and $v \in A$, f(e) = 0
 - Otherwise, there is a backward edge (v, u) in G_f, and hence u is reachable from s

$$v(f)$$
 = $\mathop{\mathring{a}} f(e)$ - $\mathop{\mathring{a}} f(e)$ (From Lemma 1)
 $e \text{ out of } A$ $e \text{ in to } A$
= $\mathop{\mathring{a}} c(e)$
 $e \text{ out of } A$
= $cap(A, B)$

$$(iii) \Rightarrow (i)$$

follows by the Corollary 2 on certificates of optimality

Running time

Assumption: Assume all capacities are integers

Claim 1: All flow values and residual capacities are integers throughout the execution of the algorithm

Claim 2: In every iteration of the while loop, the flow increases by at least 1 unit

Claim 3: Let
$$C = \mathring{a} c(s,u)$$
. Then max flow $\leq C$

Total running time: O((m+n) C) pseudopolynomial algorithm Corollary: If all capacities are 0 or 1, then running time is O(mn)

important special case in some applications

Improving the running time

Worst case scenarios:

With integer capacities, the algorithm may need to do C augmentations

. If capacities are irrational, algorithm not even guaranteed to terminate!

Some improvements

[Edmonds-Karp 1972, Dinitz 1970]:

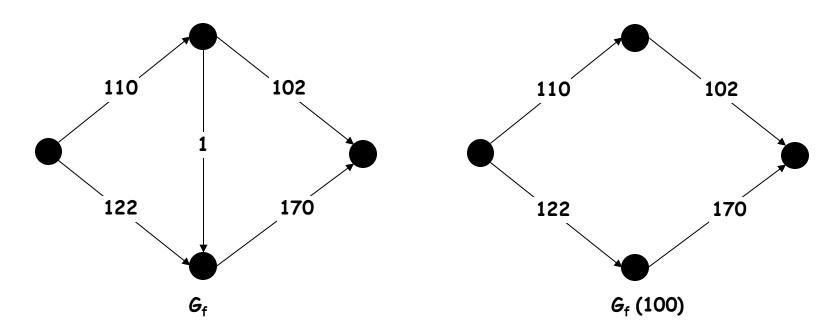
Choose augmenting paths with:

- Max bottleneck capacity
- Sufficiently large bottleneck capacity
- Fewest number of edges

Capacity Scaling

Intuition: Choosing a path with the highest bottleneck capacity increases flow by max possible amount.

- Actually, don't worry about finding the exact highest bottleneck path (this may slow down the algorithm)
- $_{\scriptscriptstyle \square}$ Maintain a scaling parameter $\Delta.$
- Let $G_f(\Delta)$ be the subgraph of the residual graph consisting only of arcs with capacity at least Δ



Capacity Scaling

```
Scaling-Max-Flow(G, s, t, c) {
    foreach e \in E f(e) \leftarrow 0
    \Delta \leftarrow smallest power of 2 less than or equal to C
    G_f \leftarrow residual graph
    while (\Delta \geq 1) {
        G_f(\Delta) \leftarrow \Delta-residual graph
        while (there exists an augmenting path P in G_f(\Delta)) {
            f \leftarrow augment(f, c, P)
            update G_f(\Delta)
        \Delta \leftarrow \Delta / 2
    return f
```

Correctness and running time

Assume integer capacities

Correctness:

- Eventually, when $\Delta = 1 \implies G_f(\Delta) = G_f$
- Hence the algorithm stops when there are no s-t paths in G_f
- The flow must be optimal by the correctness analysis of Ford-Fulkerson

Running time analysis

Lemma 1: The outer while loop runs for $1 + \lceil \log_2 C \rceil$ iterations Proof: Initially $C \le \Delta < 2C$. Δ decreases by a factor of 2 in each iteration of the outer while loop

Correctness and running time

Assume integer capacities

Running time analysis (cont'd)

Lemma 2: Let f be the flow at the end of a Δ -scaling phase. Then the value of the maximum flow is at most v(f) + m Δ

Proof: do it as an exercise

Lemma 3: There are at most 2m augmentations per scaling phase Proof: Consider the beginning of a scaling phase with parameter Δ Let f be the flow at the end of the previous scaling phase Lemma 2 \Rightarrow v(f*) \leq v(f) + m (2 Δ) [previous is twice the current Δ] Each augmentation in a Δ -phase increases v(f) by at least Δ

Theorem: The capacity scaling max-flow algorithm finds a max flow in O(m log C) augmentations. It can be implemented to run in O(m² log C) time

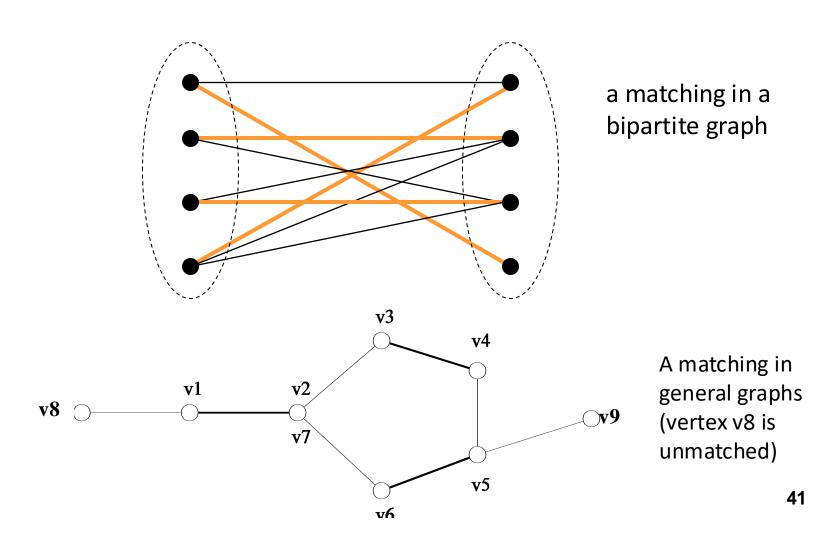
Application to Matching problems

Consider an undirected graph G = (V, E)

Definition: A matching M is a collection of edges $M \subseteq E$, such that no 2 edges share a common vertex

Given a matching M, a vertex u is called *matched* if there exists an edge $e \in M$ such that e has u as one of its endpoints

Examples



Types of matching problems that arise in optimization:

Maximal matching: find a matching where no more edges can be added Maximum matching: find a matching with the maximum possible number of edges

Perfect matching: find a matching where every vertex is matched (if one exists)

Maximum weight matching: given a weighted graph, find a matching with maximum possible total weight

Minimum weight perfect matching: given a weighted graph, find a perfect matching with minimum cost

All the above problems can be solved in polynomial time (several algorithms and publications over the last decades)

Trivial algorithm for maximal matching:

- Start from the empty set of edges
- Keep adding edges that do not have common endpoints to the current solution
- Stop when it is not possible to add an edge that does not have any common endpoint with the edges already picked
- The selected set of edges forms a maximal matching

More sophisticated algorithms are required for maximum matching and perfect matching

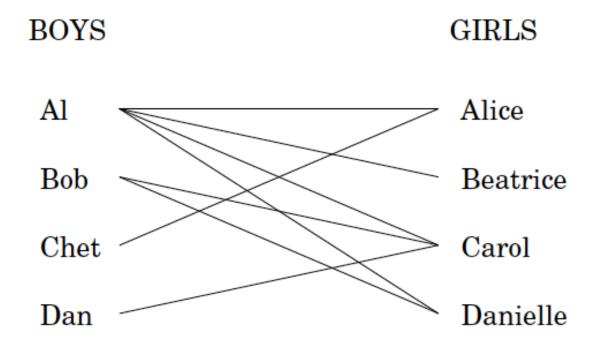
[Edmonds '65]: first algorithm for maximum matching in general graphs

Also first mention of polynomial time solvability as a measure of efficiency

Matching in Bipartite Graphs

An interesting special case for matching problems:

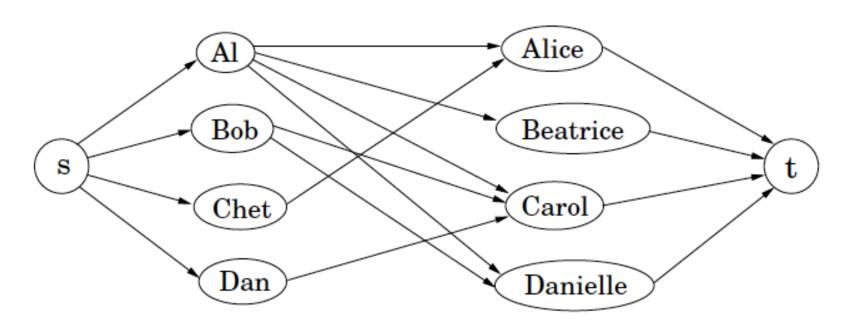
A graph G = (V, E) is called bipartite if V can be partitioned into 2 sets V_1 , V_2 such that all edges connect a vertex from V_1 with a vertex from V_2



Q: How can we find a maximum matching in a bipartite graph?

Matching in Bipartite Graphs

We can reduce this to a max-flow problem



- Orient all edges from left to right
- Add a source node s, connect it to all of V₁
- Add a sink node t, connect all of V₂ to t
- Capacities: set them to 1 for all edges

Matching in Bipartite Graphs

Hence:

- a maximum matching for bipartite graphs can be computed in polynomial time
- The graph has a perfect matching if and only if the max flow in the modified graph equals n

But wait a minute...

- What if the max flow assigns a flow of 0.65 to an edge?
- Fortunately this can be avoided

Theorem: If all the capacities of a graph are integral, then there is an integral optimal flow and our algorithms compute such an integral optimal flow