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◼ Public-key cryptosystems

✓ Main disadvantage of symmetric cryptosystems: Alice and Bob 

need to agree in advance about the key Κ through some secure 

channel

✓ What if this is infeasible? Can we have encryption without Alice 

and Bob communicating with each other beforehand? 

✓ Idea: Every entity has a Public and a Secret key. 

✓ RSA: the public key is a pair of integers

✓ Suppose Alice (A) and Bob (B) have public and secret keys as 

follows:

▪ PA, SA for Alice 

▪ PB, SB for Bob.
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◼ Public-key cryptosystems

✓ Let EA() be the encryption function of Alice, and DA() be the decryption 
function

✓ Challenge for developing a computationally feasible public-key 
cryptosystem:

▪ Need a system where we can reveal the encyption function EA() 
without running the danger of making the decryption function DA() 
known

▪ On the contrary, in symmetric cryptosystems knowing EA() leads to 
identifying DA() as well
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◼ Public-key cryptosystems

◼ Hence, overall requirements:

✓ Computationally feasible for a user B to produce a pair of keys
(Ρublic key PB, Secret key SB) 

✓ Computationally feasible for a sender Α, who knows the public 
key of Β and wants to send the plaintext Μ, to create the
ciphertext: C = EB(M)

✓ Computationally feasible for the receiver B, who knows his 
private key and receives the ciphertext C to retrieve the original 
plaintext M: Μ=DB(C)=DB(EB(M))

✓ Computationally infeasible to find the private key SB, knowing 
only the public key PB

✓ Computationally infeasible to find the message M, knowing 
only the public key PB and the ciphertext C
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◼ Public-key cryptosystems

Trapdoor one way functions

✓ One-way functions: functions that are easy to 

compute but hard to invert

✓ Trapdoor: some extra information that allows us to 

invert a one-way function

✓ Trapdoor one-way functions: one-way functions that 

are easy to invert when we have the trapdoor

✓ Essentially, in public-key cryptography we are looking 

for trapdoor one-way functions

✓ [Diffie-Hellman, 1976]: New Directions in 

Cryptography
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◼ RSA - Rivest, Shamir, Adleman (1978, MIT)

✓ Turing award, 2003
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◼ RSA - Rivest, Shamir, Adleman (1978, MIT)

✓ Block cipher  

✓ All calculations take place in Zn, for some large n (message space  
= integers mod n)

Key generation
Choose 2 big and distinct  p, q
prime numbers

Compute n:          n = pq

Compute φ(n):            φ(n) = (p-1) (q-1)

Choose integer e 

(1<e<φ(n)), such that:         gcd(φ(n), e) = 1

Compute d, such that:                 de = 1 mod(φ(n))

Public key           P = {e, n}

Secret key          S = {d, p, q}

Euler function
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◼ RSA - Rivest, Shamir, Adleman (1978, MIT)

✓ In principle, we could have a phone directory with the public keys of all 
users

✓ For the exponentiation: use the repeated squaring algorithm

Encryption

Initial message: integer Μ such that 0 ≤ M ≤ n-1

Ciphertext: C = E(M) = Me mod n

Decryption

Ciphertext: 0 ≤ C ≤ n-1

Message recovery: M = D(C) = Cd mod n
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◼ In more detail:

◼ How do we choose e?

✓ Suffices to choose some prime number > max{p, q} (smaller prime 
numbers can also be suitable) - use primality testing

✓ Recommended value in some systems: e = 216 + 1 = 65537 

◼ How do we compute d?

✓ Use extended Euclidean algorithm
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◼ Example

p = 7, q = 17

n = 119

φ(n) =  96

e = 5

d = 77

since 5*77=1 mod96

Let M = 19

Encryption: C = M5 mod n = 195 mod 119 = 66  

Decryption:  M= C77 mod n = 66 77 mod 119 = 19

Repeated Squaring

Algorithm:  
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◼ Proof of correctness

✓ Theorem: For every message M

▪ Ε( D(Μ) ) = Μ and 

▪ D( E(Μ) ) = Μ

✓ Proof:

Let Μ  Ζn

Since d is the multiplicative inverse of e modulo φ(n) = (p - 1)(q – 1):

ed = 1 + k φ(n) for some integer k. 

i) If M ≠ 0 (mod p), we have:

Med (mod p) ≡  M1 + k φ(n) (mod p)

  ≡  M (Mφ(n))k (mod p)

   ≡  M (Mp-1)k(q-1) (mod p)

   ≡  M   (mod p) (from Fermat’s theorem)

ii) If M = 0 (mod p), then again Med (mod p) ≡ Μ (mod p) 
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◼ Proof of Correctness

✓ Hence, for every Μ, Med (mod p) ≡ Μ (mod p) 

✓ Similarly Med (mod q) ≡ Μ (mod q) 

✓ From the corollary of the Chinese Remainder Theorem: when n=pq, 

x = y mod n iff x=y mod p and x=y mod q

✓  D(E(Μ)) = Med (mod n) = M (mod n)

◼ Simpler proof when gcd(M, n)=1:

✓ ed = 1 + k φ(n) for some k. 

D(E(Μ)) = Med  ≡  M1 + k φ(n) (mod n)

  ≡  M (Mφ(n))k (mod n)

                          ≡  M   (mod n) (from Euler’s theorem)
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◼ Asymmetry of RSA

✓ Usually e is a relatively small number  fast encryption

✓ E.g. when e = 216 + 1, we can encrypt with 17 multiplications

✓ The private key d is usually a larger number  slower decryption

✓ Around 2000 multiplications or more

✓ RSA-Chinese Remaindering (RSA-CRT): Another version of RSA 

for making decryption faster

▪ Almost all operations in the decryption phase are done mod p and mod q and 

then combined to return the message mod n

▪ Intermediate numbers are half in size than before 

▪  4 times faster
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◼ RSA Cryptanalysis

✓ Conjecture: the function f(x) = xb mod n, where n 

is a product of 2 primes is a one-way function

✓ At the moment, there is no function that is 

provably one-way

✓ Theorem: If there are one-way functions, then 

 P   NP

✓ Trapdoor in RSA: φ(n) or the factoring of n
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◼ RSA Cryptanalysis

Reduction to the integer factorization problem:

✓Suppose Oscar can easily factor the number n

▪ If he finds p and q, he can compute φ(n)

▪ Then, he can easily find d such that de = 1 mod(φ(n)) using the
extended Euclidean algorithm

✓For the opposite, we also know that:

✓Theorem: Any algorithm that can compute the exponent d in RSA, 
can be converted into a randomized algorithm for factoring n

▪ Hence, if d is revealed, it is not enough to change just d, e, we should 
also change n
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◼ RSA Cryptanalysis

✓ Note: For factoring n, it suffices to know φ(n)

✓ Suppose φ(n) becomes known

✓ We can solve the system:

n = pq

                 φ(n) = (p-1)(q-1)

✓  If q = n/p, the factors are derived by solving 

 p2 – (N – φ(n)+1)p + N = 0

✓ Corollary: Computing φ(n) is not easier than factoring n
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◼ RSA Cryptanalysis

◼ In practice:

✓ If we work with 2048 bits, then the key is not breakable 

within a “reasonable” amount of time, using current 

knowledge and technology (n > 200 decimal digits)

✓ Factoring algorithms do well for numbers up to around

130 decimal digits

✓ Great open problem to come up with improved factoring 

algorithms!

✓ NIST guidelines: 

▪ Since 1/1/2011: 1024-bit keys were declared “deprecated” 

(acceptable but possibly with some small risk)

▪ Since 1/1/2014: 1024 bits no longer acceptable, only 2048 bits
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◼ RSA Cryptanalysis

◼ Other known attacks (implementation attacks):

✓ Timing attacks [Kocher ’97]: The time it takes to do the decryption 
may yield information about d

✓ Power attacks [Kocher ’99]: Measuring power consumption in a 
smartcard during the run of the repeated squaring algorithm, may 
also reveal the bits of d

▪ Chips  should not be vulnerable to power analysis

✓ Fault attacks [Lenstra ’96, Boneh, de Millo, Lipton ’97]: If some 
mistake takes place during decryption Oscar may guess d! 
(applicable mostly for RSA-CRT)

▪ These methods work if the computations mod p have been done correctly, and 
there is a mistake on the computations mod q

▪ Rule of thumb: After decryption, we could check that the calculations are all 
correct, i.e., check that (Cd)e ≡ C modn

18



Special Topics on Algorithms

RSA

http://xkcd.com/538/

◼ RSA Cryptanalysis
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◼ Κρυπτοσύστημα ElGamal

✓ T. Elgamal (1985)

20



Special Topics on Algorithms

ElGamal

◼ Discrete logarithm problems

✓ Let Z*
p = Ζp – {0} = {1, 2, ..., p-1}

✓ The set Z*
p for a prime p, always has at least one 

generator: a number g such that for every a  Z*p

there exists z with gz ≡ a (mod p)

✓ g generates the whole Z*
p

▪ In abstract algebra terms: Z*
p with multiplication is a cyclic 

group

✓ For aZ*p, the number z is called the discrete 

logarithm of a, mod p with basis g

✓ There are known algorithms for finding generators of 

Z*
p 
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◼ Discrete logarithm problems

✓ When we want to compute the k-th power of a number:

▪ Easy by repeated squaring. In Z*17 with k=4, 34 ≡ 13 mod17

✓ Discrete logarithm in Ζp (DLP): the reverse of raising 

to a power

▪ Given that 3k ≡ 13 (mod 17), find k

▪ More generally: Given a generator g  Z*p, and an element   

β  Z*p, find the unique integer k  Zp for which gk ≡ β (mod p)

✓ Considered a hard problem, when p is chosen carefully

▪ For example, for p  1024 bits and when p-1 has a «large» 

prime factor
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◼ElGamal cryptosystem (T. ElGamal, 1985)

◼ Based on the difficulty of DLP

◼ Defined over Z*p for some large prime p

✓Key generation

▪ First, select a large prime p such that DLP is difficult

▪ An indicative method: Find a prime p such that p−1 = mq for 

some small integer m and large prime q 

▪ E.g., with m=2, we can first choose a large prime q and then test 

whether p=2q+1 is a prime number

• Use primality testing

▪ Choose a generator g  Z*p, (hence gp-1 ≡ 1 mod p)

▪ Choose an element α  {2, ..., p-2}
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◼ElGamal cryptosystem
✓ Key generation

▪ Public + private keys = {(p,g,α,β): β ≡ gα modp)}

▪ Public Key: The numbers p, g, β 

▪ Private Key: the exponent α 

✓ Encryption algorithm for a message x:

▪ Alice chooses a secret random number k  Z*p–1 and sends to 

Bob E(x,k) = (y1, y2), where

• y1 = gk modp

• y2 = xβk modp //mask on x

✓ Decryption algorithm:

▪ Upon receiving y1, y2, do:

• D(y1, y2) = y2( y1
α)-1modp 

o Which results at x
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◼ElGamal cryptosystem
◼ Proof of correctness

Claim: D(y1, y2)=y2( y1
α)-1modp  = x

• y2(y1
α)-1 = xβk ((gk)α)-1 

 = xβk ((gα)k)-1 

   = xβk ((β)k)-1 (because β ≡ gα modp)

 = x

◼Features
✓ The plaintext x is “masked” through the multiplication by βk

(yielding y2)

✓ The ciphertext contains also the value gk

✓ Bob knows his private key α, hence he can derive (y1)
α

✓ He then removes the mask by multiplying y2 with the inverse of βk
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◼Example
✓ Let p = 2579, g = 2, α = 765

✓ β = 2765 mod 2579 = 949

✓ Suppose Alice wants to send the message x = 1299

✓ Suppose also that she chooses at random k = 853

✓ Then:

▪ y1= 2853 mod 2579 = 435

▪ y2 = 1299 (949)853 mod 2579 = 2396

✓ Bob then calculates

▪ 2396 (435765)-1 mod 2579 = 1299
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◼ Cryptanalysis for ElGamal

◼ The cryptanalysis can be reduced to the discrete 

logarithm problem 

◼ Given the public parameters (p, g, β) and the 

ciphertext (y1, y2), Oscar should

✓ either compute the exponent α, from the relation

β ≡ gα mod p (DLP)

✓  or find k from the relation y1 ≡ gk mod p (again DLP), 

and then compute x via: x = y2(β
k)-1 modp
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◼  Other public key cryptosystems

✓  Merkle-Hellman Knapsack systems, all broken 

except: 

▪ Chor-Rivest

✓  McEliece

 

✓  Elliptic Curve systems
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◼ Elliptic Curve Systems

✓ Studied initially in [Miller ’86, Koblitz ’87]

✓ Wider use from 2004 onwards

✓ NIST approval: 2006

✓ Important advantage: smaller key size for the same 

security level as other public-key systems

✓ Applications: Bitcoin, SSH (about 10% of ssh 

implementations), Austrian citizen card, etc

✓ Main idea: 

▪ DLP can be defined not just over  Z*p but over other abelian 

groups

▪ Find suitable such groups where DLP is difficult 
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ΕCC

◼ Elliptic Curve Systems

Using elliptic curves we decrease significantly the key size!
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◼ Other applications of public-key 

cryptosystems

✓ Digital signatures

✓ Bit pattern that depends on the message to be signed

✓ Idea 1: use the decryption algorithm as a signing algorithm 

(treat the message as a ciphertext)

✓ Size of signature could be big

✓ Idea 2: Apply the signing algorithm to a hash of the message 

✓ Digital Signature Standard (DSA): Based on ElGamal and the 

Secure Hash Algorithm (produces signature size around 320 

bits)
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Bibliography on Number Theory and Cryptography

• [DPV]  S. Dasgupta, C. H. Papadimitriou, U. V. Vazirani : 
“Algorithms”

✓ Chapter 1, Sections 1.1 – 1.4

✓ Representative exercises: 1.11 – 1.13, 1.19 – 1.22, 1.25, 1.27-1.28

• [CLRS]  T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein:  
  “Introduction to Algorithms”

✓ Chapter 31 on number-theoretic algorithms

✓ Representative exercises: most exercises up until the RSA section
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