Special Topics on Algorithms

Public Key Cryptosystems

Vangelis Markakis

Public-key cryptosystems

- Main disadvantage of symmetric cryptosystems: Alice and Bob need to agree in advance about the key K through some secure channel
- ✓ What if this is infeasible? Can we have encryption without Alice. and Bob communicating with each other beforehand?
- ✓ Idea: Every entity has a Public and a Secret key.
- RSA: the public key is a pair of integers
- ✓ Suppose Alice (A) and Bob (B) have public and secret keys as follows:
 - \bullet P_{Δ} , S_{Δ} for Alice
 - P_B , S_B for Bob.

Public-key cryptosystems

- ✓ Let E_A () be the encryption function of Alice, and D_A () be the decryption function
- Challenge for developing a computationally feasible public-key cryptosystem:
 - Need a system where we can reveal the encyption function $E_{\Delta}()$ without running the danger of making the decryption function $D_{A}()$ known
 - On the contrary, in symmetric cryptosystems knowing $\mathbf{E}_{\Delta}()$ leads to identifying $D_A()$ as well

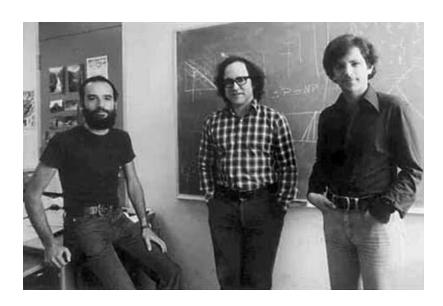
- Public-key cryptosystems
- Hence, overall requirements:
 - ✓ Computationally feasible for a user B to produce a pair of keys. (Public key P_R , Secret key S_R)
 - ✓ Computationally feasible for a sender A, who knows the public key of **B** and wants to send the plaintext **M**, to create the ciphertext: $C = E_{R}(M)$
 - ✓ Computationally feasible for the receiver **B**, who knows his private key and receives the ciphertext **C** to retrieve the original plaintext M: $M=D_B(C)=D_B(E_B(M))$
 - ✓ Computationally infeasible to find the private key S_B, knowing only the public key P_R
 - ✓ Computationally infeasible to find the message M, knowing only the public key P_B and the ciphertext C

Public-key cryptosystems

Trapdoor one way functions

- One-way functions: functions that are easy to compute but hard to invert
- ✓ Trapdoor: some extra information that allows us to invert a one-way function
- ✓ Trapdoor one-way functions: one-way functions that are easy to invert when we have the trapdoor
- Essentially, in public-key cryptography we are looking for trapdoor one-way functions
- ✓ [Diffie-Hellman, 1976]: New Directions in Cryptography

- RSA Rivest, Shamir, Adleman (1978, MIT)
 - ✓ Turing award, 2003



- Block cipher
- ✓ All calculations take place in Z_n , for some large n (message space = integers mod n)

Key generation

Choose 2 big and distinct prime numbers

Compute n:

compute n.

Compute $\varphi(n)$:

Choose integer e

 $(1 < e < \varphi(n))$, such that:

Compute d, such that:

Public key

Secret key

p, q

 $n = p \cdot q$

 $\varphi(n) = (p-1) (q-1)^{n}$

 $gcd(\varphi(n), e) = 1$

 $de = 1 \mod(\varphi(n))$

 $P = \{e, n\}$

 $S = \{d, p, q\}$

Euler function

RSA - Rivest, Shamir, Adleman (1978, MIT)

✓ In principle, we could have a phone directory with the public keys of all users

Encryption

Initial message: integer M such that $0 \le M \le n-1$

Ciphertext: $C = E(M) = M^e \mod n$

Decryption

Ciphertext: $0 \le C \le n-1$

Message recovery: $M = D(C) = C^d \mod n$

✓ For the exponentiation: use the repeated squaring algorithm

In more detail:

- How do we choose e?
 - ✓ Suffices to choose some prime number > max{p, q} (smaller prime numbers can also be suitable) use primality testing

p, q

- ✓ Recommended value in some systems: $e = 2^{16} + 1 = 65537$
- How do we compute d?
 - ✓ Use extended Euclidean algorithm

Key	/ d	en	era	ati	on

Choose 2 big and distinct

prime numbers

Compute n: $n = p \cdot q$

Compute $\varphi(n)$: $\varphi(n) = (p-1) (q-1)$

Choose integer e

 $(1 < e < \varphi(n))$, such that: $gcd(\varphi(n), e) = 1$

Compute d, such that: $de = 1 \mod(\varphi(n))$

Public key $P = \{e, n\}$

Secret key $S = \{d, p, q\}$

Key generation

Choose 2 big and distinct prime numbers

Compute n:

Compute $\varphi(n)$:

Choose integer e

 $(1 < e < \varphi(n))$, such that:

Compute d, such that:

Public key

Secret key

p, q

 $n = p \cdot q$

 $\varphi(n) = (p-1) (q-1)$

 $gcd(\varphi(n), e) = 1$

 $de = 1 \mod(\varphi(n))$

 $P = \{e, n\}$

 $S = \{d, p, q\}$

→ p = 7, q = 17

 \rightarrow n = 119

 \rightarrow $\varphi(n) = 96$

 \rightarrow e = 5

d = 77

since 5*77=1 mod96

Let M = 19

Encryption:

 $C = M^5 \mod n = 19^5 \mod 119 = 66$

Decryption:

Repeated Squaring Algorithm:

 $M = C^{77} \mod n = 66^{77} \mod 119 = 19$

Proof of correctness

- ✓ Theorem: For every message M
 - E(D(M)) = M and
 - D(E(M)) = M
- ✓ Proof:

```
Let M \in Z_n
```

Since d is the multiplicative inverse of e modulo $\varphi(n) = (p - 1)(q - 1)$:

ed = 1 + k φ (n) for some integer k.

i) If $M \neq 0$ (mod p), we have:

```
M^{ed} \pmod{p} \equiv M^{1+k \varphi(n)} \pmod{p}
                  \equiv M (M^{\phi(n)})^k \pmod{p}
                  \equiv M (M^{p-1})^{k(q-1)} \pmod{p}
                  ■ M (mod p) (from Fermat's theorem)
```

ii) If $M = 0 \pmod{p}$, then again $M^{ed} \pmod{p} \equiv M \pmod{p}$

Proof of Correctness

- ✓ Hence, for every M, M^{ed} (mod p) \equiv M (mod p)
- ✓ Similarly Med (mod q) = M (mod q)
- ✓ From the corollary of the Chinese Remainder Theorem: when n=pq, $x = y \mod n$ iff $x=y \mod p$ and $x=y \mod q$
- $\checkmark \Rightarrow D(E(M)) = M^{ed} \pmod{n} = M \pmod{n}$

Simpler proof when gcd(M, n)=1:

 \checkmark ed = 1 + k φ (n) for some k.

```
D(E(M)) = M^{ed} \equiv M^{1 + k \varphi(n)} \pmod{n}
                        \equiv M (M^{\varphi(n)})^k \pmod{n}
                       \equiv M (mod n) (from Euler's theorem)
```


Asymmetry of RSA

- ✓ Usually e is a relatively small number ⇒ fast encryption
- \checkmark E.g. when e = 2^{16} + 1, we can encrypt with 17 multiplications
- The private key d is usually a larger number ⇒ slower decryption
- Around 2000 multiplications or more
- ✓ RSA-Chinese Remaindering (RSA-CRT): Another version of RSA for making decryption faster
 - Almost all operations in the decryption phase are done mod p and mod q and then combined to return the message mod n
 - Intermediate numbers are half in size than before
 - ≈ 4 times faster

RSA Cryptanalysis

- ✓ Conjecture: the function $f(x) = x^b \mod n$, where n is a product of 2 primes is a one-way function
- At the moment, there is no function that is provably one-way
- Theorem: If there are one-way functions, then
 P ≠ NP
- \checkmark Trapdoor in RSA: $\varphi(n)$ or the factoring of n

RSA

RSA Cryptanalysis

Reduction to the integer factorization problem:

- √ Suppose Oscar can easily factor the number n
 - If he finds p and q, he can compute φ(n)
 - Then, he can easily find d such that de = 1 mod($\phi(n)$) using the extended Euclidean algorithm
- ✓ For the opposite, we also know that:
- √Theorem: Any algorithm that can compute the exponent d in RSA, can be converted into a randomized algorithm for factoring n
 - Hence, if d is revealed, it is not enough to change just d, e, we should also change n

RSA Cryptanalysis

- ✓ Note: For factoring n, it suffices to know $\varphi(n)$
- ✓ Suppose φ(n) becomes known
- ✓ We can solve the system:

$$n = pq$$

 $\phi(n) = (p-1)(q-1)$

- ✓ If q = n/p, the factors are derived by solving $p^2 (N \phi(n)+1)p + N = 0$
- \checkmark Corollary: Computing $\varphi(n)$ is not easier than factoring n

RSA

RSA Cryptanalysis

In practice:

- ✓ If we work with 2048 bits, then the key is not breakable within a "reasonable" amount of time, using current knowledge and technology (n > 200 decimal digits)
- ✓ Factoring algorithms do well for numbers up to around 130 decimal digits
- ✓ Great open problem to come up with improved factoring algorithms!
- ✓ NIST guidelines:
 - Since 1/1/2011: 1024-bit keys were declared "deprecated" (acceptable but possibly with some small risk)
 - Since 1/1/2014: 1024 bits no longer acceptable, only 2048 bits

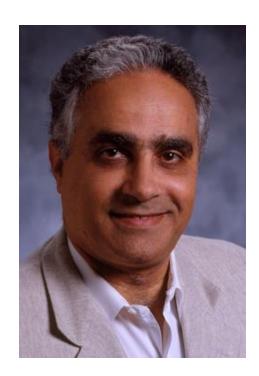
RSA

- RSA Cryptanalysis
- Other known attacks (implementation attacks):
 - ✓ Timing attacks [Kocher '97]: The time it takes to do the decryption may yield information about d
 - ✓ Power attacks [Kocher '99]: Measuring power consumption in a smartcard during the run of the repeated squaring algorithm, may also reveal the bits of d
 - Chips should not be vulnerable to power analysis
 - ✓ Fault attacks [Lenstra '96, Boneh, de Millo, Lipton '97]: If some mistake takes place during decryption Oscar may guess d! (applicable mostly for RSA-CRT)
 - These methods work if the computations mod p have been done correctly, and there is a mistake on the computations mod q
 - Rule of thumb: After decryption, we could check that the calculations are all correct, i.e., check that (C^d)^e ≡ C modn

RSA Cryptanalysis

Κρυπτοσύστημα ElGamal

√ T. Elgamal (1985)



Discrete logarithm problems

- ✓ Let $Z_p^* = Z_p \{0\} = \{1, 2, ..., p-1\}$
- ✓ The set Z_p^* for a prime p, always has at least one generator: a number g such that for every $a \in Z_p^*$ there exists z with $g^z \equiv a \pmod{p}$
- ✓ g generates the whole Z^{*}_p
 - In abstract algebra terms: Z^{*}_p with multiplication is a cyclic group
- ✓ For a∈Z*_{p,} the number z is called the discrete logarithm of a, mod p with basis g
- ✓ There are known algorithms for finding generators of Z^{*}_D

Discrete logarithm problems

- ✓ When we want to compute the k-th power of a number:
 - Easy by repeated squaring. In Z^*_{17} with k=4, $3^4 \equiv 13 \mod 17$
- ✓ Discrete logarithm in Z_p (DLP): the reverse of raising to a power
 - Given that $3^k \equiv 13 \pmod{17}$, find k
 - More generally: Given a generator $g \in Z_p^*$, and an element $\beta \in Z_p^*$, find the unique integer $k \in Z_p$ for which $g^k \equiv \beta$ (mod p)
- Considered a hard problem, when p is chosen carefully
 - For example, for $p \approx 1024$ bits and when p-1 has a «large» prime factor

■ ElGamal cryptosystem (T. ElGamal, 1985)

- Based on the difficulty of DLP
- Defined over Z*_p for some large prime p
 - ✓ Key generation
 - First, select a large prime p such that DLP is difficult
 - An indicative method: Find a prime p such that p−1 = mq for some small integer m and large prime q
 - E.g., with m=2, we can first choose a large prime q and then test whether p=2q+1 is a prime number
 - Use primality testing
 - Choose a generator g ∈ Z*_p, (hence g^{p-1} ≡ 1 mod p)
 - Choose an element $\alpha \in \{2, ..., p-2\}$

ElGamal cryptosystem

- ✓ Key generation
 - Public + private keys = $\{(p,g,\alpha,\beta): \beta \equiv g^{\alpha} \mod p\}$
 - Public Key: The numbers p, g, β
 - Private Key: the exponent α
- ✓ Encryption algorithm for a message x:
 - Alice chooses a secret random number $k \in \mathbb{Z}_{p-1}^*$ and sends to Bob $E(x,k) = (y_1, y_2)$, where
 - $y_1 = g^k \mod p$
 - $y_2 = x\beta^k \mod p // \max k on x$
- ✓ Decryption algorithm:
 - Upon receiving y₁, y₂, do:
 - $D(y_1, y_2) = y_2(y_1^{\alpha})^{-1} \text{modp}$
 - Which results at x

ElGamal cryptosystem

Proof of correctness

Claim:
$$D(y_1, y_2)=y_2(y_1^{\alpha})^{-1} \mod p = x$$

• $y_2(y_1^{\alpha})^{-1} = x\beta^k ((g^k)^{\alpha})^{-1}$

= $x\beta^k ((g^{\alpha})^k)^{-1}$

= $x\beta^k ((\beta)^k)^{-1}$ (because $\beta \equiv g^{\alpha} \mod p$)

= x

Features

- The plaintext x is "masked" through the multiplication by β^k (yielding y₂)
- ✓ The ciphertext contains also the value g^k
- ✓ Bob knows his private key α , hence he can derive $(y_1)^{\alpha}$
- \checkmark He then removes the mask by multiplying y_2 with the inverse of $β^k$

Example

- ✓ Let p = 2579, g = 2, α = 765
- \checkmark $\beta = 2^{765} \mod 2579 = 949$
- ✓ Suppose Alice wants to send the message x = 1299
- ✓ Suppose also that she chooses at random k = 853
- ✓ Then:
 - $y_1 = 2^{853} \mod 2579 = 435$
 - $y_2 = 1299 (949)^{853} \mod 2579 = 2396$
- ✓ Bob then calculates
 - 2396 (435⁷⁶⁵)⁻¹ mod 2579 = 1299

Cryptanalysis for ElGamal

- The cryptanalysis can be reduced to the discrete logarithm problem
- Given the public parameters (p, g, β) and the ciphertext (y₁, y₂), Oscar should
 - \checkmark either compute the exponent α , from the relation $\beta \equiv g^{\alpha} \mod p$ (DLP)
 - ✓ or find k from the relation $y_1 \equiv g^k \mod p$ (again DLP), and then compute x via: $x = y_2(\beta^k)^{-1} \mod p$

Other public key cryptosystems

- ✓ Merkle-Hellman Knapsack systems, all broken except:
 - Chor-Rivest
- ✓ McEliece
- ✓ Elliptic Curve systems

Elliptic Curve Systems

- ✓ Studied initially in [Miller '86, Koblitz '87]
- ✓ Wider use from 2004 onwards
- ✓ NIST approval: 2006
- ✓ Important advantage: smaller key size for the same security level as other public-key systems
- ✓ Applications: Bitcoin, SSH (about 10% of ssh implementations), Austrian citizen card, etc
- ✓ Main idea:
 - DLP can be defined not just over Z_p^* but over other abelian groups
 - Find suitable such groups where DLP is difficult

Elliptic Curve Systems

Symmetric Scheme (key size in bits)	ECC-Based Scheme (size of n in bits)	RSA/DSA (modulus size in bits)
56	112	512
80	160	1024
112	224	2048
128	256	3072
92	384	7680
256	512	15360
Source: Certicom		

Using elliptic curves we decrease significantly the key size!

Other applications of public-key cryptosystems

- Digital signatures
- Bit pattern that depends on the message to be signed
- ✓ Idea 1: use the decryption algorithm as a signing algorithm (treat the message as a ciphertext)
- Size of signature could be big
- ✓ Idea 2: Apply the signing algorithm to a hash of the message
- ✓ Digital Signature Standard (DSA): Based on ElGamal and the Secure Hash Algorithm (produces signature size around 320 bits)

٠,

Bibliography on Number Theory and Cryptography

- [DPV] S. Dasgupta, C. H. Papadimitriou, U. V. Vazirani:
 "Algorithms"
 - ✓ Chapter 1, Sections 1.1 1.4
 - ✓ Representative exercises: 1.11 1.13, 1.19 1.22, 1.25, 1.27 1.28
- [CLRS] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein: "Introduction to Algorithms"
 - ✓ Chapter 31 on number-theoretic algorithms
 - ✓ Representative exercises: most exercises up until the RSA section.