
Special Topics on Algorithms

Special Topics on Algorithms

Public Key Cryptosystems

Vangelis Markakis

Special Topics on Algorithms

RSA

◼ Public-key cryptosystems

✓ Main disadvantage of symmetric cryptosystems: Alice and Bob

need to agree in advance about the key Κ through some secure

channel

✓ What if this is infeasible? Can we have encryption without Alice

and Bob communicating with each other beforehand?

✓ Idea: Every entity has a Public and a Secret key.

✓ RSA: the public key is a pair of integers

✓ Suppose Alice (A) and Bob (B) have public and secret keys as

follows:

▪ PA, SA for Alice

▪ PB, SB for Bob.

2

Special Topics on Algorithms

RSA

◼ Public-key cryptosystems

✓ Let EA() be the encryption function of Alice, and DA() be the decryption
function

✓ Challenge for developing a computationally feasible public-key
cryptosystem:

▪ Need a system where we can reveal the encyption function EA()
without running the danger of making the decryption function DA()
known

▪ On the contrary, in symmetric cryptosystems knowing EA() leads to
identifying DA() as well

3

Special Topics on Algorithms

RSA

◼ Public-key cryptosystems

◼ Hence, overall requirements:

✓ Computationally feasible for a user B to produce a pair of keys
(Ρublic key PB, Secret key SB)

✓ Computationally feasible for a sender Α, who knows the public
key of Β and wants to send the plaintext Μ, to create the
ciphertext: C = EB(M)

✓ Computationally feasible for the receiver B, who knows his
private key and receives the ciphertext C to retrieve the original
plaintext M: Μ=DB(C)=DB(EB(M))

✓ Computationally infeasible to find the private key SB, knowing
only the public key PB

✓ Computationally infeasible to find the message M, knowing
only the public key PB and the ciphertext C

4

Special Topics on Algorithms

RSA

◼ Public-key cryptosystems

Trapdoor one way functions

✓ One-way functions: functions that are easy to

compute but hard to invert

✓ Trapdoor: some extra information that allows us to

invert a one-way function

✓ Trapdoor one-way functions: one-way functions that

are easy to invert when we have the trapdoor

✓ Essentially, in public-key cryptography we are looking

for trapdoor one-way functions

✓ [Diffie-Hellman, 1976]: New Directions in

Cryptography
5

Special Topics on Algorithms

RSA

◼ RSA - Rivest, Shamir, Adleman (1978, MIT)

✓ Turing award, 2003

6

Special Topics on Algorithms

RSA

◼ RSA - Rivest, Shamir, Adleman (1978, MIT)

✓ Block cipher

✓ All calculations take place in Zn, for some large n (message space
= integers mod n)

Key generation
Choose 2 big and distinct p, q
prime numbers

Compute n: n = pq

Compute φ(n): φ(n) = (p-1) (q-1)

Choose integer e

(1<e<φ(n)), such that: gcd(φ(n), e) = 1

Compute d, such that: de = 1 mod(φ(n))

Public key P = {e, n}

Secret key S = {d, p, q}

Euler function

7

Special Topics on Algorithms

RSA

◼ RSA - Rivest, Shamir, Adleman (1978, MIT)

✓ In principle, we could have a phone directory with the public keys of all
users

✓ For the exponentiation: use the repeated squaring algorithm

Encryption

Initial message: integer Μ such that 0 ≤ M ≤ n-1

Ciphertext: C = E(M) = Me mod n

Decryption

Ciphertext: 0 ≤ C ≤ n-1

Message recovery: M = D(C) = Cd mod n

8

Special Topics on Algorithms

RSA

◼ In more detail:

◼ How do we choose e?

✓ Suffices to choose some prime number > max{p, q} (smaller prime
numbers can also be suitable) - use primality testing

✓ Recommended value in some systems: e = 216 + 1 = 65537

◼ How do we compute d?

✓ Use extended Euclidean algorithm

9

Key generation
Choose 2 big and distinct p, q
prime numbers

Compute n: n = pq

Compute φ(n): φ(n) = (p-1) (q-1)

Choose integer e

(1<e<φ(n)), such that: gcd(φ(n), e) = 1

Compute d, such that: de = 1 mod(φ(n))

Public key P = {e, n}

Secret key S = {d, p, q}

Special Topics on Algorithms

RSA

◼ Example

p = 7, q = 17

n = 119

φ(n) = 96

e = 5

d = 77

since 5*77=1 mod96

Let M = 19

Encryption: C = M5 mod n = 195 mod 119 = 66

Decryption: M= C77 mod n = 66 77 mod 119 = 19

Repeated Squaring

Algorithm:

10

Key generation
Choose 2 big and distinct p, q
prime numbers

Compute n: n = pq

Compute φ(n): φ(n) = (p-1) (q-1)

Choose integer e

(1<e<φ(n)), such that: gcd(φ(n), e) = 1

Compute d, such that: de = 1 mod(φ(n))

Public key P = {e, n}

Secret key S = {d, p, q}

Special Topics on Algorithms

RSA

◼ Proof of correctness

✓ Theorem: For every message M

▪ Ε(D(Μ)) = Μ and

▪ D(E(Μ)) = Μ

✓ Proof:

Let Μ  Ζn

Since d is the multiplicative inverse of e modulo φ(n) = (p - 1)(q – 1):

ed = 1 + k φ(n) for some integer k.

i) If M ≠ 0 (mod p), we have:

Med (mod p) ≡ M1 + k φ(n) (mod p)

 ≡ M (Mφ(n))k (mod p)

 ≡ M (Mp-1)k(q-1) (mod p)

 ≡ M (mod p) (from Fermat’s theorem)

ii) If M = 0 (mod p), then again Med (mod p) ≡ Μ (mod p)

11

Special Topics on Algorithms

RSA

◼ Proof of Correctness

✓ Hence, for every Μ, Med (mod p) ≡ Μ (mod p)

✓ Similarly Med (mod q) ≡ Μ (mod q)

✓ From the corollary of the Chinese Remainder Theorem: when n=pq,

x = y mod n iff x=y mod p and x=y mod q

✓  D(E(Μ)) = Med (mod n) = M (mod n)

◼ Simpler proof when gcd(M, n)=1:

✓ ed = 1 + k φ(n) for some k.

D(E(Μ)) = Med ≡ M1 + k φ(n) (mod n)

 ≡ M (Mφ(n))k (mod n)

 ≡ M (mod n) (from Euler’s theorem)

12

Special Topics on Algorithms

RSA

◼ Asymmetry of RSA

✓ Usually e is a relatively small number  fast encryption

✓ E.g. when e = 216 + 1, we can encrypt with 17 multiplications

✓ The private key d is usually a larger number  slower decryption

✓ Around 2000 multiplications or more

✓ RSA-Chinese Remaindering (RSA-CRT): Another version of RSA

for making decryption faster

▪ Almost all operations in the decryption phase are done mod p and mod q and

then combined to return the message mod n

▪ Intermediate numbers are half in size than before

▪  4 times faster

13

Special Topics on Algorithms

RSA

◼ RSA Cryptanalysis

✓ Conjecture: the function f(x) = xb mod n, where n

is a product of 2 primes is a one-way function

✓ At the moment, there is no function that is

provably one-way

✓ Theorem: If there are one-way functions, then

 P  NP

✓ Trapdoor in RSA: φ(n) or the factoring of n

14

Special Topics on Algorithms

RSA

◼ RSA Cryptanalysis

Reduction to the integer factorization problem:

✓Suppose Oscar can easily factor the number n

▪ If he finds p and q, he can compute φ(n)

▪ Then, he can easily find d such that de = 1 mod(φ(n)) using the
extended Euclidean algorithm

✓For the opposite, we also know that:

✓Theorem: Any algorithm that can compute the exponent d in RSA,
can be converted into a randomized algorithm for factoring n

▪ Hence, if d is revealed, it is not enough to change just d, e, we should
also change n

15

Special Topics on Algorithms

RSA

◼ RSA Cryptanalysis

✓ Note: For factoring n, it suffices to know φ(n)

✓ Suppose φ(n) becomes known

✓ We can solve the system:

n = pq

 φ(n) = (p-1)(q-1)

✓ If q = n/p, the factors are derived by solving

 p2 – (N – φ(n)+1)p + N = 0

✓ Corollary: Computing φ(n) is not easier than factoring n

16

Special Topics on Algorithms

RSA

◼ RSA Cryptanalysis

◼ In practice:

✓ If we work with 2048 bits, then the key is not breakable

within a “reasonable” amount of time, using current

knowledge and technology (n > 200 decimal digits)

✓ Factoring algorithms do well for numbers up to around

130 decimal digits

✓ Great open problem to come up with improved factoring

algorithms!

✓ NIST guidelines:

▪ Since 1/1/2011: 1024-bit keys were declared “deprecated”

(acceptable but possibly with some small risk)

▪ Since 1/1/2014: 1024 bits no longer acceptable, only 2048 bits

17

Special Topics on Algorithms

RSA

◼ RSA Cryptanalysis

◼ Other known attacks (implementation attacks):

✓ Timing attacks [Kocher ’97]: The time it takes to do the decryption
may yield information about d

✓ Power attacks [Kocher ’99]: Measuring power consumption in a
smartcard during the run of the repeated squaring algorithm, may
also reveal the bits of d

▪ Chips should not be vulnerable to power analysis

✓ Fault attacks [Lenstra ’96, Boneh, de Millo, Lipton ’97]: If some
mistake takes place during decryption Oscar may guess d!
(applicable mostly for RSA-CRT)

▪ These methods work if the computations mod p have been done correctly, and
there is a mistake on the computations mod q

▪ Rule of thumb: After decryption, we could check that the calculations are all
correct, i.e., check that (Cd)e ≡ C modn

18

Special Topics on Algorithms

RSA

http://xkcd.com/538/

◼ RSA Cryptanalysis

Special Topics on Algorithms

ElGamal

◼ Κρυπτοσύστημα ElGamal

✓ T. Elgamal (1985)

20

Special Topics on Algorithms

ElGamal

◼ Discrete logarithm problems

✓ Let Z*
p = Ζp – {0} = {1, 2, ..., p-1}

✓ The set Z*
p for a prime p, always has at least one

generator: a number g such that for every a  Z*p

there exists z with gz ≡ a (mod p)

✓ g generates the whole Z*
p

▪ In abstract algebra terms: Z*
p with multiplication is a cyclic

group

✓ For aZ*p, the number z is called the discrete

logarithm of a, mod p with basis g

✓ There are known algorithms for finding generators of

Z*
p

21

Special Topics on Algorithms

ElGamal

◼ Discrete logarithm problems

✓ When we want to compute the k-th power of a number:

▪ Easy by repeated squaring. In Z*17 with k=4, 34 ≡ 13 mod17

✓ Discrete logarithm in Ζp (DLP): the reverse of raising

to a power

▪ Given that 3k ≡ 13 (mod 17), find k

▪ More generally: Given a generator g  Z*p, and an element

β  Z*p, find the unique integer k  Zp for which gk ≡ β (mod p)

✓ Considered a hard problem, when p is chosen carefully

▪ For example, for p  1024 bits and when p-1 has a «large»

prime factor

22

Special Topics on Algorithms

ElGamal

◼ElGamal cryptosystem (T. ElGamal, 1985)

◼ Based on the difficulty of DLP

◼ Defined over Z*p for some large prime p

✓Key generation

▪ First, select a large prime p such that DLP is difficult

▪ An indicative method: Find a prime p such that p−1 = mq for

some small integer m and large prime q

▪ E.g., with m=2, we can first choose a large prime q and then test

whether p=2q+1 is a prime number

• Use primality testing

▪ Choose a generator g  Z*p, (hence gp-1 ≡ 1 mod p)

▪ Choose an element α  {2, ..., p-2}

23

Special Topics on Algorithms

ElGamal

◼ElGamal cryptosystem
✓ Key generation

▪ Public + private keys = {(p,g,α,β): β ≡ gα modp)}

▪ Public Key: The numbers p, g, β

▪ Private Key: the exponent α

✓ Encryption algorithm for a message x:

▪ Alice chooses a secret random number k  Z*p–1 and sends to

Bob E(x,k) = (y1, y2), where

• y1 = gk modp

• y2 = xβk modp //mask on x

✓ Decryption algorithm:

▪ Upon receiving y1, y2, do:

• D(y1, y2) = y2(y1
α)-1modp

o Which results at x

24

Special Topics on Algorithms

ElGamal

◼ElGamal cryptosystem
◼ Proof of correctness

Claim: D(y1, y2)=y2(y1
α)-1modp = x

• y2(y1
α)-1 = xβk ((gk)α)-1

 = xβk ((gα)k)-1

 = xβk ((β)k)-1 (because β ≡ gα modp)

 = x

◼Features
✓ The plaintext x is “masked” through the multiplication by βk

(yielding y2)

✓ The ciphertext contains also the value gk

✓ Bob knows his private key α, hence he can derive (y1)
α

✓ He then removes the mask by multiplying y2 with the inverse of βk

25

Special Topics on Algorithms

ElGamal

◼Example
✓ Let p = 2579, g = 2, α = 765

✓ β = 2765 mod 2579 = 949

✓ Suppose Alice wants to send the message x = 1299

✓ Suppose also that she chooses at random k = 853

✓ Then:

▪ y1= 2853 mod 2579 = 435

▪ y2 = 1299 (949)853 mod 2579 = 2396

✓ Bob then calculates

▪ 2396 (435765)-1 mod 2579 = 1299

26

Special Topics on Algorithms

ElGamal

◼ Cryptanalysis for ElGamal

◼ The cryptanalysis can be reduced to the discrete

logarithm problem

◼ Given the public parameters (p, g, β) and the

ciphertext (y1, y2), Oscar should

✓ either compute the exponent α, from the relation

β ≡ gα mod p (DLP)

✓ or find k from the relation y1 ≡ gk mod p (again DLP),

and then compute x via: x = y2(β
k)-1 modp

27

Special Topics on Algorithms

◼ Other public key cryptosystems

✓ Merkle-Hellman Knapsack systems, all broken

except:

▪ Chor-Rivest

✓ McEliece

✓ Elliptic Curve systems

28

Special Topics on Algorithms

ΕCC

◼ Elliptic Curve Systems

✓ Studied initially in [Miller ’86, Koblitz ’87]

✓ Wider use from 2004 onwards

✓ NIST approval: 2006

✓ Important advantage: smaller key size for the same

security level as other public-key systems

✓ Applications: Bitcoin, SSH (about 10% of ssh

implementations), Austrian citizen card, etc

✓ Main idea:

▪ DLP can be defined not just over Z*p but over other abelian

groups

▪ Find suitable such groups where DLP is difficult

29

Special Topics on Algorithms

ΕCC

◼ Elliptic Curve Systems

Using elliptic curves we decrease significantly the key size!

30

Special Topics on Algorithms

◼ Other applications of public-key

cryptosystems

✓ Digital signatures

✓ Bit pattern that depends on the message to be signed

✓ Idea 1: use the decryption algorithm as a signing algorithm

(treat the message as a ciphertext)

✓ Size of signature could be big

✓ Idea 2: Apply the signing algorithm to a hash of the message

✓ Digital Signature Standard (DSA): Based on ElGamal and the

Secure Hash Algorithm (produces signature size around 320

bits)

31

Special Topics on Algorithms

Bibliography on Number Theory and Cryptography

• [DPV] S. Dasgupta, C. H. Papadimitriou, U. V. Vazirani :
“Algorithms”

✓ Chapter 1, Sections 1.1 – 1.4

✓ Representative exercises: 1.11 – 1.13, 1.19 – 1.22, 1.25, 1.27-1.28

• [CLRS] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein:
 “Introduction to Algorithms”

✓ Chapter 31 on number-theoretic algorithms

✓ Representative exercises: most exercises up until the RSA section

32

	Slide 1
	Slide 2: RSA
	Slide 3: RSA
	Slide 4: RSA
	Slide 5: RSA
	Slide 6: RSA
	Slide 7: RSA
	Slide 8: RSA
	Slide 9: RSA
	Slide 10: RSA
	Slide 11: RSA
	Slide 12: RSA
	Slide 13: RSA
	Slide 14: RSA
	Slide 15: RSA
	Slide 16: RSA
	Slide 17: RSA
	Slide 18: RSA
	Slide 19: RSA
	Slide 20: ElGamal
	Slide 21: ElGamal
	Slide 22: ElGamal
	Slide 23: ElGamal
	Slide 24: ElGamal
	Slide 25: ElGamal
	Slide 26: ElGamal
	Slide 27: ElGamal
	Slide 28
	Slide 29: ΕCC
	Slide 30: ΕCC
	Slide 31
	Slide 32: Bibliography on Number Theory and Cryptography

