"

Special Topics on Algorithms

Public Key Cryptosystems

Vangelis Markakis

g RSA

m Public-key cryptosystems

v' Main disadvantage of symmetric cryptosystems: Alice and Bob
need to agree in advance about the key K through some secure
channel

v' What if this is infeasible? Can we have encryption without Alice
and Bob communicating with each other beforehand?

v |ldea: Every entity has a Public and a Secret key.
v' RSA: the public key is a pair of integers

v" Suppose Alice (A) and Bob (B) have public and secret keys as
follows:

= P, S, for Alice
= Pg, Sg for Bob.

Special Topics on Algorithms

g RSA

m Public-key cryptosystems

v Let E,() be the encryption function of Alice, and D,() be the decryption
function

v' Challenge for developing a computationally feasible public-key
cryptosystem:

* Need a system where we can reveal the encyption function E,()
without running the danger of making the decryption function D,()
known

= On the contrary, in symmetric cryptosystems knowing E,() leads to
identifying D, () as well

Special Topics on Algorithms

g RSA

m Public-key cryptosystems

m Hence, overall requirements:

v' Computationally feasible for a user B to produce a pair of keys
(Public key Pg, Secret key Sg)

v' Computationally feasible for a sender A, who knows the public
key of B and wants to send the plaintext M, to create the
ciphertext: C = Eg(M)

v' Computationally feasible for the receiver B, who knows his
private key and receives the ciphertext C to retrieve the original
plaintext M: M=Dg(C)=Dg(Eg(M))

v' Computationally infeasible to find the private key Sg, knowing
only the public key Pg

v' Computationally infeasible to find the message M, knowing
only the public key Pg and the ciphertext C

Special Topics on Algorithms

g RSA

m Public-key cryptosystems

Trapdoor one way functions

v' One-way functions: functions that are easy to
compute but hard to invert

v Trapdoor: some extra information that allows us to
Invert a one-way function

v' Trapdoor one-way functions: one-way functions that
are easy to invert when we have the trapdoor

v Essentially, in public-key cryptography we are looking
for trapdoor one-way functions

v [Diffie-Hellman, 1976]: New Directions in
Cryptography

Special Topics on Algorithms

g RSA

m RSA - Rivest, Shamir, Adleman (1978, MIT)
v" Turing award, 2003

Special Topics on Algorithms

g RSA

m RSA - Rivest, Shamir, Adleman (1978, MIT)

v Block cipher

v All calculations take place in Z,, for some large n (message space
= integers mod n)

grri]r%%sguzrr?l;%rgnd distinct P4 Euler function
Compute n: n=p-q —
Compute g(n): o= (D @1

Choose integer e

(1<e<o(n)), such that: gcd(e(n), e) =1

Compute d, such that: de = 1 mod(p(n))

Public key P={e, n}

Secret key S={d,p q}

Special Topics on Algorithms 7

g RSA

m RSA - Rivest, Shamir, Adleman (1978, MIT)

v"In principle, we could have a phone directory with the public keys of all
users

Initial message: integer M such that 0 <M <n-1
Ciphertext: C = E(M) = Mémod n

Ciphertext: 0<C <n-1
Message recovery: M = D(C) = C9mod n

v For the exponentiation: use the repeated squaring algorithm

Special Topics on Algorithms

g RSA

m In more detall:

m How do we choose e?

v' Suffices to choose some prime number > max{p, q} (smaller prime
numbers can also be suitable) - use primality testing

v Recommended value in some systems: e = 216 + 1 = 65537

m How do we compute d?
v' Use extended Euclidean algorithm

Choose 2 big and distinct P, g

prime numbers

Compute n: n=p-q
Compute ¢(n): ¢(n) = (p-1) (a-1)
Choose integer e

(1<e<o(n)), such that: gcd(e(n), e) =1
Compute d, such that: de = 1 mod(p(n))
Public key P={e, n}

Secret key S={d,pq}

Special Topics on Algorithms

g RSA

m Example

Choose 2 big and distinct P, q > p=7,q=17
prime numbers
Compute n: n=p-q > n=119
Compute ¢(n): o(n) = (p-1) (g-1) —— o(n) = 96
Choose integer e
(1<e<@(n)), such that: gcd(p(n),e)=1 [— €=5
Compute d, such that: de =1 mod(p(n)) > d=77
Public key P={e, n} since 5*77=1 mod96
Secret key S={d, p,q}
Let M =19
Encryption: C=M5modn =195 mod 119 =66 — Repeated Squaring
Algorithm:
Decryption: M= C’” mod n=667"mod 119 =19

Special Topics on Algorithms 10

g RSA

m Proof of correctness

v' Theorem: For every message M
= E(D(M))=M and
= D(E(M))=M

v' Proof:

LetM e Z,
Since d is the multiplicative inverse of e modulo ¢@(n) = (p - 1)(q — 1):

ed =1 + k ¢(n) for some integer k.
) If M # 0 (mod p), we have:
Med (mod p) = Mi*keM (mod p)
= M (MeM)k (mod p)
= M (MPLk@D (mod p)
= M (mod p) (from Fermat’s theorem)

i) If M = 0 (mod p), then again Méd (mod p) = M (mod p)

Special Topics on Algorithms

11

g RSA

m Proof of Correctness
v" Hence, for every M, Med (mod p) = M (mod p)
v Similarly Med (mod q) =M (mod q)

v' From the corollary of the Chinese Remainder Theorem: when n=pq,
X =y mod n iff x=y mod p and x=y mod q

v = D(E(M)) = Med (mod n) = M (mod n)

m Simpler proof when gcd(M, n)=1.:
v ed =1+ k ¢(n) for some k.
D(E(M)) =Med = MT+ke((mod n)
= M (MeM)k (mod n)

= M (mod n) (from Euler’'s theorem)

Special Topics on Algorithms 12

g RSA

B Asymmetry of RSA

v

v
v
v
v

Usually e is a relatively small number = fast encryption

E.g. when e = 216 + 1, we can encrypt with 17 multiplications

The private key d is usually a larger number = slower decryption
Around 2000 multiplications or more

RSA-Chinese Remaindering (RSA-CRT): Another version of RSA
for making decryption faster

= Almost all operations in the decryption phase are done mod p and mod g and
then combined to return the message mod n

= |ntermediate numbers are half in size than before

= =~ 4 times faster

Special Topics on Algorithms 13

g RSA

m RSA Cryptanalysis

v Conjecture: the function f(x) = x> mod n, where n
IS a product of 2 primes is a one-way function

v At the moment, there is no function that is
provably one-way

v' Theorem: If there are one-way functions, then
P #NP

v Trapdoor in RSA: ¢(n) or the factoring of n

Special Topics on Algorithms 14

g RSA

m RSA Cryptanalysis

Reduction to the integer factorization problem:
v'Suppose Oscar can easily factor the number n

= |f he finds p and g, he can compute ¢(n)

= Then, he can easily find d such that de = 1 mod(¢(n)) using the
extended Euclidean algorithm

v'For the opposite, we also know that:

v'Theorem: Any algorithm that can compute the exponent d in RSA,
can be converted into a randomized algorithm for factoring n

= Hence, if d is revealed, it is not enough to change just d, e, we should
also change n

Special Topics on Algorithms

15

g RSA

m RSA Cryptanalysis
v Note: For factoring n, it suffices to know @(n)
v' Suppose ¢(n) becomes known
v" We can solve the system:
n=pg

¢(n) = (p-1)(@-1)

v If g = n/p, the factors are derived by solving
p*—(N-@(n)+1)p+ N =0

v Corollary: Computing ¢(n) is not easier than factoring n

Special Topics on Algorithms

16

g RSA

m RSA Cryptanalysis

m |n practice:

v If we work with 2048 bits, then the key is not breakable
within a “reasonable” amount of time, using current
knowledge and technology (n > 200 decimal digits)

v Factoring algorithms do well for numbers up to around
130 decimal digits

v Great open problem to come up with improved factoring
algorithms!
v NIST guidelines:

= Since 1/1/2011: 1024-bit keys were declared “deprecated”
(acceptable but possibly with some small risk)

= Since 1/1/2014: 1024 bits no longer acceptable, only 2048 bits

Special Topics on Algorithms 17

g RSA

m RSA Cryptanalysis

m Other known attacks (implementation attacks):

v' Timing attacks [Kocher ’97]: The time it takes to do the decryption
may Yyield information about d

v' Power attacks [Kocher '99]: Measuring power consumption in a
smartcard during the run of the repeated squaring algorithm, may
also reveal the bits of d

. Chips should not be vulnerable to power analysis

v' Fault attacks [Lenstra '96, Boneh, de Millo, Lipton '97]: If some
mistake takes place during decryption Oscar may guess d!
(applicable mostly for RSA-CRT)

. These methods work if the computations mod p have been done correctly, and

there is a mistake on the computations mod q

. Rule of thumb: After decryption, we could check that the calculations are all
correct, i.e., check that (Cd)¢ = C modn

Special Topics on Algorithms

18

g RSA

m RSA Cryptanalysis

A CRYPTO NERD's
[I MAGINATION ¢ ii

LETS BUILD A

A\

E‘u”L PLHN
15 FOILED! ™~

HIS LAPTOPS ENCRYPTED.
CLOSTER To CRACK \T.

MILLION-DOLLAE,

NO GOoD! TS
U096 -BIT Rﬁm

WHAT WOULD
ACTUALLY HAPPEN:

HIS LAPTOP'S ENCRYPTED.
DEUG HIM AND HIT HIM WITH

THIS $5 WRENCH UNTIL
HE TEUS US THE PASSWORD.

\ GOt 1T,
@, o)

A

Special Topics on Algorithms

http://Xkcd.com

" JSIcEmME

m KputrtoouoTtnua ElGamal
v T. Elgamal (1985)

Special Topics on Algorithms

20

= ElGamal

m Discrete logarithm problems
v LetZ'y=2Z,—{0}={L, 2, ..., p-1}

v’ The set Z°, for a prime p, always has at least one
generator: a number g such that for every a € Z*,
there exists z with gz = a (mod p)

v' g generates the whole Z°,
= In abstract algebra terms: Z°, with multiplication is a cyclic
group
v' For aeZ*, the number z is called the discrete
logarithm of a, mod p with basis g

v" There are known algorithms for finding generators of

Z,

Special Topics on Algorithms 21

= ElGamal

m Discrete logarithm problems

v" When we want to compute the k-th power of a number:
= Easy by repeated squaring. In Z*,; with k=4, 34 = 13 mod17
v Discrete logarithm in Z, (DLP): the reverse of raising
to a power

= Given that 3= 13 (mod 17), find k

= More generally: Given a generator g € Z*,, and an element
B € Z*,, find the unique integer k € Z, for which gk = (mod p)

v Considered a hard problem, when p is chosen carefully

= For example, for p = 1024 bits and when p-1 has a «large»
prime factor

Special Topics on Algorithms

22

= ElGamal

m EIGamal cryptosystem (T. ElGamal, 1985)

m Based on the difficulty of DLP

m Defined over Z*, for some large prime p

v Key generation

= First, select a large prime p such that DLP is difficult

= An indicative method: Find a prime p such that p—1 = mq for
some small integer m and large prime q

= E.g., with m=2, we can first choose a large prime g and then test
whether p=2g+1 is a prime number

* Use primality testing
= Choose a generator g € Z*,, (hence g** = 1 mod p)
* Choose an elementa e {2, ..., p-2}

Special Topics on Algorithms 23

ElGamal

m EIGamal cryptosystem

v Key generation
= Public + private keys = {(p,g,a,B): B = g® modp)}
» Public Key: The numbers p, g, B
» Private Key: the exponent a

v Encryption algorithm for a message x:

= Alice chooses a secret random number k e Z*, ; and sends to
Bob E(x,k) = (Y4, ¥»), where

* y1 = g*modp
* y, = xBXmodp //mask on x
v" Decryption algorithm:
= Upon receiving Yy, Y,, do:

* D(y1, ¥2) = Ya(y1%)*modp

o Which results at x

Special Topics on Algorithms 24

= ElGamal

m EIGamal cryptosystem
m Proof of correctness

Claim: D(yy, Y2)=Y.(y1%)*modp = x
* V(Y)t = xBk (g9t

= XB* (99"
=xB*((B))* (because B = g“modp)
=X
m Features
v The plaintext x is “masked” through the multiplication by BX
(yielding y,)

v The ciphertext contains also the value gk
v Bob knows his private key a, hence he can derive (y,)°
v He then removes the mask by multiplying y, with the inverse of X

Special Topics on Algorithms 25

= ElGamal

mExample
v Letp=2579,g=2,a=765
v B =27 mod 2579 = 949
v Suppose Alice wants to send the message x = 1299
v Suppose also that she chooses at random k = 853

v Then:
= y,= 283 mod 2579 = 435
=y, = 1299 (949)853 mod 2579 = 2396

v' Bob then calculates
= 2396 (4357%%)-1 mod 2579 = 1299

Special Topics on Algorithms

26

= ElGamal

m Cryptanalysis for ElIGamal

m The cryptanalysis can be reduced to the discrete
logarithm problem

m Given the public parameters (p, g, B) and the
ciphertext (y4, Y,), Oscar should
v’ either compute the exponent a, from the relation
B =g®mod p (DLP)

v" or find k from the relation y, = gk mod p (again DLP),
and then compute x via: x = y,(BX)* modp

Special Topics on Algorithms 27

m Other public key cryptosystems

v' Merkle-Hellman Knapsack systems, all broken
except:
= Chor-Rivest

v McEliece

v" Elliptic Curve systems

Special Topics on Algorithms

28

g ECC

m Elliptic Curve Systems
v' Studied initially in [Miller '86, Koblitz '87]
v Wider use from 2004 onwards
v NIST approval: 2006

v Important advantage: smaller key size for the same
security level as other public-key systems

v Applications: Bitcoin, SSH (about 10% of ssh
Implementations), Austrian citizen card, etc
v' Main idea:

= DLP can be defined not just over Z*, but over other abelian
groups

» Find suitable such groups where DLP is difficult

Special Topics on Algorithms

29

g ECC

m Elliptic Curve Systems

Symmatric Scheme (key slze In bits) ECC-Based Schems (elzs of n In bits) RSAMDSA (moduluz aiza In bits)
a6 112 412
an 160 1024
112 2 208
1348 258 3T
92 364 76480
256 512 15360
Source: Certicom

Using elliptic curves we decrease significantly the key size!

Special Topics on Algorithms

m Other applications of public-key
cryptosystems

v
v
v

AN

Digital signatures
Bit pattern that depends on the message to be signed

Idea 1: use the decryption algorithm as a signing algorithm
(treat the message as a ciphertext)

Size of signature could be big
Idea 2: Apply the signing algorithm to a hash of the message

Digital Signature Standard (DSA): Based on ElGamal and the
Secure Hash Algorithm (produces signature size around 320
bits)

Special Topics on Algorithms 31

= Bibliography on®™

- [DPV] S. Dasgupta, C. H. Papadimitriou, U. V. Vazirani :
“Algorithms”

v' Chapter 1, Sections 1.1-1.4
v' Representative exercises: 1.11-1.13, 1.19-1.22, 1.25, 1.27-1.28

- [CLRS] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein:
“Introduction to Algorithms”
v" Chapter 31 on number-theoretic algorithms

v' Representative exercises: most exercises up until the RSA section

Special Topics on Algorithms 32

	Slide 1
	Slide 2: RSA
	Slide 3: RSA
	Slide 4: RSA
	Slide 5: RSA
	Slide 6: RSA
	Slide 7: RSA
	Slide 8: RSA
	Slide 9: RSA
	Slide 10: RSA
	Slide 11: RSA
	Slide 12: RSA
	Slide 13: RSA
	Slide 14: RSA
	Slide 15: RSA
	Slide 16: RSA
	Slide 17: RSA
	Slide 18: RSA
	Slide 19: RSA
	Slide 20: ElGamal
	Slide 21: ElGamal
	Slide 22: ElGamal
	Slide 23: ElGamal
	Slide 24: ElGamal
	Slide 25: ElGamal
	Slide 26: ElGamal
	Slide 27: ElGamal
	Slide 28
	Slide 29: ΕCC
	Slide 30: ΕCC
	Slide 31
	Slide 32: Bibliography on Number Theory and Cryptography

