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Weighted set problems 
SUBSET SUM

I: A set of objects S = {1,…,n}, each with a positive integer weight wi, i = 1,…,n, 

and a positive integer W

Q: is there A  S  s.t.            = W?

PARTITION

I: A set of objects S = {1,…,n}, each with a positive integer weight wi, i = 1,…,n

Q:  is there A  S  s.t. ?

0-1 KNAPSACK

I: A set of objects S = {1,…,n}, each with a positive integer weight wi, and a 

value vi, i=1,…,n, and a positive integer W

Q: find A  S  s.t.                     and            is maximizedWw

Ai

i 

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Weighted set problems 

BIN PACKING

I: A set of objects S = {1,…,n}, each with a positive integer weight wi, i = 1,…,n, 
and a positive integer W 

Q: find a partition of S into                     s.t.                 

    and m is minimized

i.e., minimize the number of bins to fit the objects

MAKESPAN  (P||Cmax ) 

I: A set of objects S = {1,…,n}, each with a positive integer weight wi, i = 1,…,n, 
and a positive integer m 

 

Q: find a partition of S into                    s.t.                           is minimized

mjWw

jAi

i ,...,2,1, =

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Weighted set problems 

• All these problems are NP-complete

E.g.:

• SUBSET-SUM ≤p PARTITION

• PARTITION ≤p BIN PACKING

• BIN PACKING ≤p MAKESPAN

• PARTITION ≤p MAKESPAN
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A. SUBSET SUM and PARTITION
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SUBSET SUM
 I: a set S = {a1, a2, ..., an} of n positive integers and an integer B

Q: is there a subset A   S  such  that    
  

BRUTE FORCE  

▪ there are 2n possible combinations of n items (= possible number 
of subsets one can construct from S)

▪ Go through all combinations and stop  in the first one such that

▪ Report NO otherwise
▪ Running time:  O(n2n)

• Can we do better? 

? Ba
Ai i = 

 Ba
Ai i = 
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• Let  Si = {w1, w2,…,wi) [the values of the first i elements]

• IDEA (Dynamic Programming): Compute the sums of all subsets of Si using 
the sums of all subsets of Si-1 (exclude sums  > W)

• Let L be a list of integers

• Notation: L+b = a new list with all elements of L increased by b

           e.g., if L = [1, 2, 3, 5], L+2 = [3, 4, 5, 7] 

• Auxiliary method MERGE (L,L’)

▪ Input: 2 sorted lists of integers, L and L’

▪ Output: a sorted list that is the merge of L and L’ with no duplicates

▪ Complexity O(|L|+|L’|) 

SUBSET SUM  
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Li : list of the sums of all subsets of Si (keep only sums ≤ W)   

Algorithm SubsetSum (S,W);

L0=[0];

for i=1 to n do 

 Li=MERGE(Li-1, Li-1+wi);

 Remove from Li every element > W;

Check if the largest element in L equals W;

Example 

  S={1,4,5}, n=3, W=8

 S0:      L0=[0]             L0+w1 =[1]

 S1:      L1=[0,1]          L1+w2 =[4,5]  

 S2:      L2=[0,1,4,5]    L2+w3 =[5,6,9,10]

 S3=S:  L3=[0,1,4,5,6]  Answer: NO

 

Complexity ?

SUBSET SUM



Complexity: O(nW)

At every step, the list we keep has at most W elements

• Not polynomial

• But pseudo-polynomial!

SUBSET SUM
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• Tightly related to SUBSET SUM

• SUBSET-SUM ≤p PARTITION, hence NP-complete as well

• We could use the algorithm for SUBSET SUM, setting W = ½ Σwi

• PARTITION is also a special case of scheduling problems

• To solve PARTITION, think of 2 identical processors, with 
processing times equal to wi

• Minimizing the makespan would tell us if there exists a solution 
to the PARTITION problem

PARTITION
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B. Knapsack problems
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Knapsack problems

• We are given a knapsack with maximum capacity W,

and a set S = {1,2,…,n} of n items

• Each item i has a weight wi and a value vi 

▪ assume all wi, vi and W are integers

Problem: How to pack the knapsack to achieve maximum total 

                      value of packed items?
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Knapsack problems

W = 20

wi vi

9

5

4

3

2

Weight

Max weight: W = 20

Items

Value

10

8

5

4

3
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Knapsack problems
Three (basic) versions of the problem:

1. Fractional knapsack 

 Items are divisible: any fraction of an item can go into the 
knapsack

 poly-time solvable by a greedy algorithm

2. 0-1 knapsack 

 Items are indivisible: either take an item or not

 NP-complete,  O(nW), by a dynamic programming algorithm, 
PTAS based on DP 

3. Integer knapsack 

 Multiple copies of indivisible items: take any number of copies of 
an  item 

 Exercise !
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Knapsack problems

Fractional  knapsack 

0-1 knapsack

Integer knapsack 

 [0,1]     xand  ,    s.t.  , 


i

Si

iii

Si

i Wxwxvmax

 {0,1}    xand  ,    s.t.  , 


i

Si

iii

Si

i Wxwxvmax

Ν   x,  Wxw.    ,   xv i

Si

iii

Si

i 


ands.tmax
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Greedy algorithm:

▪ Start with an empty knapsack

▪ Consider the item with the maximum value per unit (vi/wi) among the 
remaining items, 

▪ Take as much quantity of this item as the capacity of  the knapsack allows 

Note: at the end of the algorithm, the knapsack is loaded by the whole weights of 
all chosen items, except possibly the last included item

Theorem. Greedy algorithm computes an optimal solution for Greedy Knapsack 
in time O(nlogn).

Fractional Knapsack
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Fractional Knapsack

Example:

Item Weight Value

1 10 60

2 20 100

3 30 120

Suppose W=50

The greedy algorithm will select:
• All of item 1
• All of item 2
• 2/3 of item 3 
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0-1 Knapsack

Brute-force approach 
 

• there are 2n possible combinations of n  items

• Go through all combinations and find the one with the most total value 
and with total weight less or equal to W

• Running time:  O(n2n)

Can we do better? 

▪ Yes, by Dynamic Programming

18



DP for 0-1 Knapsack

Subproblem:  

V[k, w] = maximum value of the subproblem consisting of the first k items  Sk={1, 2, …, k} 
and capacity  w (where 0≤w≤W)

Item k can either be in the optimal solution of V[k,w] or not

• First case: wk > w 

▪ item k cannot be in the optimal solution of V[k, w] 

▪ V[k,w] = V[k-1, w] 

• Second case: wk ≤ w, thus item k could be in the optimal solution (but not 
necessarily): 

▪ The maximum value of the subproblem consisting of the first k items and 
capacity w is one of the next two:

– V[k-1, w] or

– the optimal solution of the subproblem consisting of the first k-1 items and 
capacity w-wk, plus the value of item k: V[k-1, w-wk] +vk

▪ V[k,w] = max { V[k-1, w], V[k-1, w-wk] +vk } 19



DP for 0-1 Knapsack

Recursive Formula  
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What we want is OPT = V[n, W]
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DP for 0-1 Knapsack

0-1 Knapsack Value-only({wi}, {vi}, W)

for w := 0 to W do V[0,w] := 0; 

for k = 1 to n do 

for w := 0 to W do 

  if wk ≤ w     // item i can be in the solution

    then  V[k,w]:= max { vk + V[k-1,w-wk], V[k-1,w] } 

    else V[k,w]:= V[k-1,w]   // wk > w

Complexity: O(n W) 

• Pseudopolynomial time algorithm

• Polynomial when W is small

Note: Almost all known pseudopolynomial time algorithms for NP-hard 
problems are based on dynamic programming
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DP for 0-1 Knapsack

Can we find the actual set of items included in the optimal solution? 

0-1 Knapsack({wi}, {vi}, W)

{

Run 0-1 Knapsack Value-only algorithm 

k:=n; w:=W; S:= {}

While k ≠ 0 and w ≠ 0 do 

   { if V[k,w] ≠ V[k-1,w] then  { S:= S U {k}; w:= w-wk}

     k:=k-1 } 

return S

}

complexity of this algorithm ? 
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Another DP for 0-1 Knapsack
Previous  Algorithm:

 

OPT is equal to V[n,W] and can be found  in O(nW) time

Another Dynamic Programming Algorithm:

Subproblem:  

C[k,v] = the minimum capacity achieved when using only the items 1, 2,…, k, 
yielding a value equal to v.  

OPT = maximum v for which  C[n,v] ≤ W                         

Claim: The optimal solution can be found in O(n2 vmax) time, where vmax = maxi vi
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FPTAS for 0-1 KNAPSACK

▪ We will utilize the O(n2 vmax) dynamic programming algorithm for 
0-1 KNAPSACK

▪ Recall that  vmax = maxi {vi } and vmax  OPT  nvmax

▪ Recall also that we have assumed all quantities are integers (the 
wi’s, the vi’s, and W)
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FPTAS for 0-1 KNAPSACK

Main ingredients for designing an FPTAS

•Inspired by the dynamic programming algorithm

•The DP algorithm implies that if the values are small (polynomial in n), then 
we can solve the problem efficiently

•Idea: round down the values by ignoring some of their least significant bits

•Solve the “rounded” or “scaled” instance (which can be seen as a 
“perturbation” of the original instance)

•The scaling should be dependent on ε
▪The scaled values should be bounded by a polynomial in n and 1/ε 

•Prove that the solution found is a good approximation to the original instance
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FPTAS for 0-1 KNAPSACK
SCALED INSTANCE: 

Scale all item values by a parameter k, i.e., for item j, vj(k) = vj / k:

It holds that: 

FPTAS-Knapsack(k)

{  Produce the scaled instance;

   Solve the scaled problem by the last DP algorithm;

   Let S(k)  {1,2,…,n} be the optimal solution to the scaled problem;

   Return S(k) for the original problem; }

26

The parameter k will be determined by the analysis

Theorem: The algorithm above with k = ε vmax/n is an FPTAS for 0-1 
KNAPSACK
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Proof:   

• Let S*  {1,2,…,n} be the optimal solution of original problem, with value OPT

• Let S(k)  {1,2,…,n} be the output of the algorithm, attaining value OPT(k) for the 
original instance

(*) for the scaled instance, S(k) is of greater value than any other solution (hence 
better than S* too)
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FPTAS for 0-1 KNAPSACK

Proof (cont.):

Thus:

Complexity
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C. Scheduling problems
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Scheduling Problems
Any problem where 

• We have a set of jobs/tasks

• We have a set of processors

• We want to assign the jobs to the processors so as to optimize some 
criterion

A plethora of such problems have been studied since the 60s

Variations:

• Criterion to optimize: makespan, throughput, sum of (weighted) 
completion times,...

• Processors: may be completely unrelated (each with a different speed), 
identical, or uniformly related (speeds are multiples of each other)

• Jobs: they may have arrival times or deadlines, precedence constraints 
(cannot execute job i before job j finishes), option for preemption 
(execute only one part of the job now and continue later with the rest) 

30
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Scheduling Problems
We will focus on makespan

MAKESPAN (P||Cmax) 

I: A set of objects S = {1,…,n}, each with a positive integer weight wi, i = 1,…,n, and a 
positive integer m 

 

Q: find a partition of S into                        s.t.                              is minimized

In other words (in shceduling terminology):

Given a set of n independent jobs J1, J2,…, Jn

And a set of m identical machines M1, M2,…, Mm

Let pi = the processing time of job i on any machine (i.e., p i = wi)

Problem: schedule the jobs on the machines 

     in order to minimize Cmax = maxj {Cj} 

where, for a given assignment of jobs to machines :

Cj : the time job j finishes its execution

                 

31
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Makespan (P | | Cmax)

List scheduling - A general scheduling methodology

▪ Construct a list of jobs (an ordering of the jobs according to some 
criterion)

▪ Whenever a machine becomes available, the next job in the list is 
scheduled on that  machine

J1 J5

J2 J4

J3 J6
J7

M1

M2

M3

S6 C6 Cmax

Sj: the time job j starts its execution
Cj: the time job j finishes its execution

32
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Makespan (P | | Cmax):
A 2-approximation

Theorem [Graham, 1966]: 

List scheduling using an arbitrary order of the jobs

yields a (2 – 1/m)-approximation algorithm for P | | Cmax 

Proof:

Jk

Sk Ck=Cmax

The job which  

completes last

kkk pSC +=

33
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Makespan (P | | Cmax):
A 2-approximation

Proof (cont.): 

• We need a lower bound for OPT

• We will actually use 2 lower bounds

• Let C* be the makespan of an optimal solution  

C*³ pk        (2)

C* ³
1

m
pi

i=1

n

å (3) (best case is if all machines finish at the 
same time)

(in fact the makespan is at least as big as 
any pi)
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Makespan (P | | Cmax):
A 2-approximation

Proof (cont.):

C =Ck £
(1) 1

m
pi

i=1

n

å + (1-
1

m
)pk

£
(2),(3)

C *+(1-
1

m
)C *

Let C = makespan of the algorithm’s solution

Hence: C ≤ (2 - 1/m) C* = (2 – 1/m) OPT
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Tightness of ρ=2

Graham’s ratio of 2-1/m is tight

Family of instances (parameterized by m, the number of processors): 

▪ m2 - m + 1 jobs in total

▪ m2 – m  jobs of processing time 1 

▪ 1 job  of  processing time m 

▪ m machines

If the long  job is last in the list, then C = ((m2-m)/m)+m = m-1+m = 2m-1 

The optimal schedule has length C* = m  (why ?) 

C/C* = (2m-1) / m = 2 - 1/m
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Makespan (P | | Cmax):
A 3/2-approximation

List scheduling using LPT (Longest Processing Time first)

Drawback with previous approach:

• List created arbitrarily

• Long jobs at the end of the list may cause a large makespan

Theorem: List scheduling with the LPT rule yields a 3/2-approximation for P | | Cmax 

Proof:

• Let p1 ≥ p2 ≥ … … ≥ pm ≥ pm+1 ≥ … ≥ pk ≥ … ≥ pn  be the processing times

▪ if n ≤ m, the problem is trivial, so we can safely assume that n > m

• Let Jk be the job that finishes last under LPT (say on machine Mi )

• If Jk  is the only job on Mi , then the schedule is optimal (OPT ≥ pk)

• Otherwise, Mi  executes at least two jobs, that is  k ≥ m+1 (the first m jobs go to 
different machines)
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Makespan (P | | Cmax):
A 3/2-approximation

As there are at least m+1 jobs, then two of the first m+1 jobs are executed on 
the same machine in any optimal schedule (pigeonhole principle) 

Hence: 

C £
1

m
pi

i=1

n

å + (1-
1

m
)pk

£C *+(1-
1

m
)
C *

2

£C *(1+
1

2
-

1

2m
)

=C *(
3

2
-

1

2m
)

(as before)

2

*
22* 1

C
pppC kkm  +

Using this new 
bound:

38



39

Makespan (P | | Cmax): Can we do better?

Theorem [Graham, 1969]:

List scheduling using LPT (Longest Processing Time first)

yields a (4/3 – 1/(3m))-approximation algorithm for 
makespan 

Proof a little more involved (omitted here)

Is the (3/2 – 1/2m)-ratio for LPT scheduling tight  ?

NO !

The lower bounds we have used in the analysis are too 
generous!
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Makespan (P | | Cmax): 
Tightness for ρ=4/3

The (4/3 – 1/3m) ratio for LPT scheduling is tight

Family of instances (parameterized by m, the number of processors): 

▪ 2m + 1 jobs in total

▪ 2 jobs for each of the weights m+1, m+2, …, 2m-2, 2m-1 
– 2m-2 jobs

▪ 3 jobs of weight m

▪ m machines

Example: m = 5

   2 jobs of each of the weights 6, 7, 8, 9 (total of 8 jobs)

   3 jobs of weight 5   (+ 3 jobs)

   5 machines    total of 11 jobs

        ( = 2m+1)
40
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Makespan (P | | Cmax): 
Tightness for ρ=4/3

Example (cont.):

8

9

9

8

7

5

6

5
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7

LPT

8
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Optimal

5

C = 19

C* = 15

15

19
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Makespan (P | | Cmax)

Let us recap on List scheduling 

    arbitrary list:  ρ = 2 – 1/m

LPT:                  ρ = 4/3 – 1/3m

    Can we go beyond 4/3 ?

Further known results for makespan

• There is an FPTAS  for constant m

• And there is a PTAS for arbitrary m [Hochbaum, Shmoys ’87]

• There is  no FPTAS for general m, unless P = NP  
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D. BIN PACKING
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Bin Packing
Recall the problem:

BIN PACKING

I: A set of objects S = {1,…,n}, each with a positive integer weight wi, i = 1,…,n, 
and a positive integer W (bin capacity)

Q: find a partition of S into                     (m bins) s.t.                 

    and m is minimized

i.e., minimize the number of bins to fit the objects

44

mjWw

jAi

i ,...,2,1, =


Negative known-results: 
• There is no approximation algorithm achieving a factor better than 3/2, 

unless P = NP
• The proof is by showing that it is NP-hard to distinguish between 

instances with OPT = 2 and instances with OPT ≥ 3



Bin Packing
On the positive side:

Greedy algorithms can achieve constant approximations

First-Fit algorithm:

• Start with one empty bin

• Process the items in an arbitrary order

• Try to place the next item in one of the existing bins (if it fits)

• If not, then create a new bin and put it there

45

Theorem: First-Fit achieves a 2-approximation
Relatively simple (do it as an exercise)



Bin Packing
Improving on First-Fit:

First-Fit Decreasing algorithm (FFD):

• First sort the items in decreasing order

• Run First-Fit but by processing the items in this order

46

Theorem: FFD uses at most 11/9 OPT + 1 bins



Bin Packing
And further improvements:

• Bin Packing does not admit a PTAS (since we have 3/2-hardness result)

• But it does achieve an Asymptotic PTAS

47

Theorem [Fernandez de la Vega, Lueker, ’81]: 
For any ε>0, there exists an algorithm using at most 
(1 + ε)OPT + 1 bins

•Asymptotic refers to the fact that when OPT grows the 
approximation ratio approaches 1
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