

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Special Topics on Algorithms

Vertex Cover, Set Cover Vangelis Markakis-George Zois markakis@gmail.com georzois@gmail.com

Vertex Cover and Set Cover (Greedy Approximation Algorithms)

Recall the (optimization) version:

VERTEX COVER (VC):

I: A graph G = (V,E)

Q: Find a cover $C \subseteq V$ of minimum size, i.e., a set $C \subseteq V$, s.t. \forall (u, v) \in E, either $u \in C$ or $v \in C$ (or both)

Weighted version:

WEIGHTED VERTEX COVER (WVC):

I: A graph G = (V,E), and a weight w(u) for every vertex $u \in V$ Q: Find a subset C \subseteq V covering all edges of G, s.t. $W = \mathop{\text{al}}_{u\hat{i}} w(u)$ is minimized

Many different approximation techniques have been "tested" on vertex cover

We will focus first on the unweighted version

Natural greedy algorithms: start picking nodes according to some criterion until all edges are covered

1st approach:

Greedy-any-node

 $\mathsf{C}\coloneqq \varnothing$;

while $E \neq \emptyset$ do

```
{ choose arbitrarily a vertex u ∈ V;
 delete u and its incident edges from G;
 Add u to C }
```

What is the approximation ratio this algorithm ?

2nd natural approach: start picking nodes and at each step choose the node with the maximum degree

Greedy-best-node

C := Ø; while E ≠ Ø do { choose the vertex u ∈ V with the largest degree; (break ties arbitrarily) delete u and its incident edges from G; Add u to C }

This is not Optimal!

A graph instance

A vertex cover of size 5 obtained by the greedy algorithm.

A vertex cover of size 4 optimal solution!!

2nd natural approach: start picking nodes and at each step choose the node with the maximum degree

Greedy-best-node

C := Ø; while E ≠ Ø do { choose the vertex u ∈ V with the largest degree; (break ties arbitrarily) delete u and its incident edges from G; Add u to C }

Theorem: Greedy-best-node is an O(log n)-approximation algorithm (see slides 25-26 for a proof)

The O(logn) ratio of Greedy-best-node is tight, i.e. the algorithm cannot achieve a better ratio.

- Partition b-nodes into pairs, triples, quadtuples,...,(n-1)tuples
- Connect the nodes in each i-tuple above with a new a-node

$$L(n) = \sum_{j=2}^{n-1} \left\lfloor \frac{n}{j} \right\rfloor = n \sum_{j=2}^{n-1} \left\lfloor \frac{1}{j} \right\rfloor \le n \sum_{j=1}^{n} \frac{1}{j} = nO(\log n)$$

The O(logn) ratio of Greedy-best-node is tight

 $C = \{a_7, a_6, a_5, a_4, a_4, a_2, a_1\}$ OPT = {b_1, b_2, b_3, b_4, b_5, b_6}

Greedy-best-node is not a constant approximation algorithm.

Detour on matchings

Consider a graph G = (V, E)

Definition: A matching M is a collection of edges $M \subseteq E$, such that no 2 edges share a common vertex

Given a matching M, a vertex u is called *matched* if there exists an edge $e \in M$ such that e has u as one of its endpoints

Detour on matchings

Types of matchings we are interested in:

- Maximal matching: find a matching where no more edges can be added
- Maximum matching: find a matching with the maximum possible number of edges
- Perfect matching: find a matching where every vertex is matched (if one exists)
- Maximum weight matching: given a weighted graph, find a matching with maximum possible total weight
- Minimum weight perfect matching: given a weighted graph, find a perfect matching with minimum cost

All the above problems can be solved in polynomial time (several algorithms and publications over the last decades)

A different approach:

- We will resort to matching
- Let M be any matching in the graph
- Observation: $OPT \ge |M|$
 - The optimal solution needs at least one vertex to cover each of the matched edges
- But we cannot just pick any matching, since it may not be a cover

Matching-based VC

 $C = \emptyset$; Find a maximal matching M; For every $(u, v) \in M$, add both u and v to C Output C

Theorem: Matching-based VC is a 2-approximation algorithm

Is it easy to find a maximal matching? Trivial! Keep adding edges until it is not feasible to add more

A way to implement the maximal matching based algorithm <u>Greedy-any-edge</u>

 $C := \emptyset;$

while $E \neq \emptyset$ do

```
\{ \ \ choose \ arbitrarily \ an \ edge \ (u,v) \ \in E \ ; \ \
```

Add u and v to C;

delete u and v and their incident edges from G;

}

The edges selected by the algorithm form a maximal matching (no 2 edges share a common vertex)

Note: In contrast to greedy-any-node, greedy-any-edge achieves a constant factor approximation

Theorem: Matching-based VC is a 2-approximation algorithm

Proof:

a) The solution – say C - returned by the algorithm is a vertex cover

- Suppose not
- Then there is an uncovered edge (u, v)
- But then we could add this edge to the matching M
- Contradiction with the fact that M is a maximal matching

b) 2-approximation ratio

- Let M be the set of edges selected by Greedy-any-edge
- Each selected edge adds two vertices to C: |C| = 2 |M|
 - No two edges in M share a vertex (since M is a maximal matching)
 - Edges incident to the endpoints of a selected edge are removed

Cost of the solution: $|C| = 2 |M| \le 2 \text{ OPT}$ (by the observation) Hence a 2-approximation

Tightness of the 2-approximation

Example:

Greedy-any-edge is almost the best known for VC

Is there a better approximation algorithm ?

We know a lower bound of 1.36 on the approximation factor for VC, i.e.,

Unless P=NP, VC cannot be approximated with a ratio smaller than 1.36

Find a minimum weight subset $C \subseteq V$ covering all edges of G

What is the min weighted cover here?

Pricing method. Each edge must be covered by some vertex i. Edge e pays price $p_e \ge 0$ to use vertex i.

Fairness. Edges incident to vertex i should pay $\leq w_i$ in total.

Claim. For any vertex cover S and any fair prices $p_e: \sum_e p_e \le w(S)$. Proof.

$$\sum_{e \in E} p_e \leq \sum_{i \in S} \sum_{e=(i,j)} p_e \leq \sum_{i \in S} w_i = w(S).$$

each edge e covered by at least one node in S sum fairness inequalities for each node in S

```
Weighted-Vertex-Cover-Approx(G, w) {
   foreach e in E
                                                   \sum_{e=(i,j)} p_e = W_i
      p_{a} = 0
   while (Bedge i-j such that neither i nor j are tight)
      select such an edge e
      increase p. without violating fairness
   }
   S ← set of all tight nodes
   return S
```


(a)

(b)

Theorem. Pricing method is a 2-approximation. Pf.

- Algorithm terminates since at least one new node becomes tight after each iteration of while loop.
- Let S = set of all tight nodes upon termination of algorithm. S is a vertex cover: if some edge i-j is uncovered, then neither i nor j is tight. But then while loop would not terminate.
- Let S* be optimal vertex cover. We show w(S) ≤ 2w(S*).

$$w(S) = \sum_{i \in S} w_i = \sum_{i \in S} \sum_{e=(i,j)} p_e \le \sum_{i \in V} \sum_{e=(i,j)} p_e = 2 \sum_{e \in E} p_e \le 2w(S^{\otimes}).$$

$$1 \qquad 1 \qquad 1 \qquad 1 \qquad 1$$
all nodes in S are tight $S \subseteq V$, each edge counted twice fairness lemma prices ≥ 0

Tightness ?

Set Cover

SET COVER (SC):

I: a set U of n elements

a family F = {S₁, S₂, ...,S_m} of subsets of U

Q: Find a minimum size subset $C \subseteq F$ covering all elements of U, i.e.:

$$\bigcup_{S_i \in C} S_i = U \text{ and } |C| \text{ is minimized}$$

Weighted version:

WEIGHTED SET COVER (WSC):

I: a set U of n elements

a family $F = {S_1, S_2, ..., S_m}$ of subsets of U

a weight $w(S_i)$ for each set S_i

Q: Find a minimum weight subset $C \subseteq F$ covering all elements of U, i.e.,

$$\bigcup_{S_i \in C} S_i = U \text{ and } W = \sum_{S_i \in C} w(S_i) \text{ is minimized}$$

Set Cover vs Vertex Cover

(WEIGHTED) VERTEX COVER	(WEIGHTED) SET COVER
I: (weighted) graph G=(V,E)	<pre>I: U=E (i.e., we need to cover the edges) F = V ,</pre>
	One set per vertex: $S_u = \{(u,v) \mid (u,v) \in E \}$
	(in the weighted case: weight of S _u is w(u)
Q: find C \subseteq V s.t.	Q: find C \subseteq F s.t.
C covers E and	C covers U and
C is of min size (cost)	C is of min size (cost)

Hence, all WSC, SC, and WVC problems are NP-complete as generalizations of VC

Set Cover-Example

Input: Set U of n elements and m subsets, $S_1, S_2, ..., S_m$ of U. Question: Find the minimum number of subsets covering U.

Example:

U: a set of n cities

- Consider that the ministry of education is planing to place/build new schools such that no city is more than 30km away from a school.
- Subsets: For each city i, S_i is the subset of cities which are at most 30km away from i.

Find which is the minimum number of schools to be built?

Set Cover-Example

Input: Set U of n elements and m subsets, $S_1, S_2, ..., S_m$ of U. Question: Find the minimum number of subsets covering U.

 S_a , S_b , ..., S_k : cities which are away at most 30km from each candidate location

Set Cover-Greedy Algorithm

Greedy Idea: While there are uncovered cities:

Choose the subset with the greatest number of uncovered cities-elements.

 $S_i: S_a, S_b, ..., S_k$, cities which are away at most 30km

Greedy Solution:

- 1. S_a
- 2. S_f
- 3. S_c 4. S_i

C=4 (# συνόλων)

OPT=?

Is the greedy optimal?

Set Cover-Greedy Algorithm

Greedy Idea: While there are uncovered cities:

Choose the subset with the greatest number of uncovered elements.

 $S_i: S_a, S_b, ..., S_k$, cities which are away at most 30km

Greedy is not optimal

1. S_b 2. S_j 3. S_f OPT=3

- What is the approximation ratio of
- Greedy?
- We will analyze a generalization of the greedy algorithm for Weighted Set Cover

In a similar spirit as for (greedy best-node) Vertex Cover:

Greedy-best-set

 $C := \emptyset;$

}

while $C \neq U$ do

```
{ choose the best set S;
 remove S from F;
```

```
C := C U S;
```

```
W(C) = W(C)+W(S);
```

```
C: elements covered before iteration i
```

```
S: Set chosen at iteration i
```

Q: What does "best set" mean ?

- S covers |S-C| new elements
- Covering those elements costs w(S)
- Every element x ∈ S-C essentially costs

 $\frac{w(S)}{|S-C|} = p(x) = \text{"cost-effectiveness" of S}$

Best set: the set with the smallest cost-effectiveness

Analysis of Greedy-best-set

Let $x_{1,} x_{2,} \dots, x_{k,} \dots, x_{n}$ be the order in which the elements of U are covered S₁, S₂, ..., S_i, ... be the order in which sets are chosen by the algorithm Suppose set S_i covers element x_k

Claim:
$$p(x_k) \le \frac{OPT}{n-k+1}$$

 $C = \bigcup_{j=1}^{i-1} S_j$ elements covered by iterations 1,2,...,i-1

- U-C: uncovered elements before iteration i
- $|U-C| \ge n-k+1$, since element x_k is covered in iteration i

- These elements of U-C are covered in the optimal solution by some sets at a cost of at most OPT
- Among them there must be one set with cost-effectiveness at most

$$\leq \frac{OPT}{|U-C|} \leq \frac{OPT}{n-k+1}$$

• the set S_i was picked by the algorithm as the set with the smallest costeffectiveness at that moment (and it covered x_k)

• that is
$$p(x_k) \le \frac{OPT}{n-k+1}$$

$$W = \sum_{k=1}^{n} p(x_k) \le \sum_{k=1}^{n} \frac{OPT}{n-k+1} = OPT \sum_{i=1}^{n} \frac{1}{k} = OPT \cdot H_n = O(\log n)OPT$$

Tightness

The greedy algorithm outputs the n singleton sets with total cost

$$W = \frac{1}{n} + \frac{1}{n-1} + \dots + 1 = H_n$$

The optimal cover takes only the other set of cost $1+\varepsilon$

Q: Is there a better approximation ?

- Several failed attempts over the years
- [Lund, Yannakakis '94]: There can be no logn/2 = 0.72ln(n)approximation
- [Feige '98] There can be no (1-ε)ln(n) approximation
 - Proof based on the PCP theorem
- Complexity assumption for these results: NP cannot be solved in time n^{O(loglogn)}