
Special Topics on Algorithms

Vertex Cover, Set Cover

Vangelis Markakis-George Zois

markakis@gmail.com

georzois@gmail.com

22

Vertex Cover and Set Cover

(Greedy Approximation

Algorithms)

33

Recall the (optimization) version:

VERTEX COVER (VC):

I: A graph G = (V,E)

Q: Find a cover C  V of minimum size, i.e., a set C  V, s.t.  (u, v)  E, either
u  C or v  C (or both)

Weighted version:

WEIGHTED VERTEX COVER (WVC):

I: A graph G = (V,E), and a weight w(u) for every vertex uV

Q: Find a subset C  V covering all edges of G, s.t. is minimized

Many different approximation techniques have been “tested” on vertex cover

Vertex Cover (VC)

W = w(u)
uÎC

å

44

We will focus first on the unweighted version

Natural greedy algorithms: start picking nodes according to some criterion until
all edges are covered

1st approach:

Greedy-any-node

C :=  ;

while E   do

{ choose arbitrarily a vertex u  V;

delete u and its incident edges from G;

Add u to C }

What is the approximation ratio this algorithm ?

Vertex Cover (VC)

55

2nd natural approach: start picking nodes and at each step choose the node
with the maximum degree

Greedy-best-node
C :=  ;
while E   do
{ choose the vertex u  V with the largest degree; (break ties arbitrarily)
delete u and its incident edges from G;
Add u to C }

This is not Optimal!

Vertex Cover (VC)

66

2nd natural approach: start picking nodes and at each step choose the node
with the maximum degree

Greedy-best-node
C :=  ;
while E   do
{ choose the vertex u  V with the largest degree; (break ties arbitrarily)
delete u and its incident edges from G;
Add u to C }

Theorem: Greedy-best-node is an O(log n)-approximation algorithm
(see slides 25-26 for a proof)

Vertex Cover (VC)

77

b1 b2 b3 b4 b5 b6
(n)

a1 a2 a3 a4 a5 a6 a7
L(n)

– Partition b-nodes into pairs, triples, quadtuples,…,(n-1)tuples

– Connect the nodes in each i-tuple above with a new a-node


=

−

=

−

=

=







=








=

n

j

n

j

n

j

nnO
j

n
j

n
j

n
nL

1

1

2

1

2

)(log
11

)(

The O(logn) ratio of Greedy-best-node is tight, i.e. the algorithm

cannot achieve a better ratio.

Vertex Cover (VC)

88

Vertex Cover (VC)

C = {a7,a6,a5,a4,a4,a2,a1}
OPT = {b1,b2,b3,b4,b5,b6}

Greedy-best-node is not a constant approximation algorithm.

)(log
)(

nO
n

nL

OPT

C
==

…74.83.672.62.17C/OPT

…100010030106n

The O(logn) ratio of Greedy-best-node is tight

9

Detour on matchings

Consider a graph G = (V, E)

Definition: A matching M is a collection of edges M  E, such that no 2 edges

share a common vertex

Given a matching M, a vertex u is called matched if there exists an

edge eM such that e has u as one of its endpoints

Vertex Cover (VC)

10

Detour on matchings

Types of matchings we are interested in:

• Maximal matching: find a matching where no more edges can be added

• Maximum matching: find a matching with the maximum possible number
of edges

• Perfect matching: find a matching where every vertex is matched (if one
exists)

• Maximum weight matching: given a weighted graph, find a matching with
maximum possible total weight

• Minimum weight perfect matching: given a weighted graph, find a perfect
matching with minimum cost

All the above problems can be solved in polynomial time (several algorithms
and publications over the last decades)

Vertex Cover (VC)

1111

A different approach:
• We will resort to matching
• Let M be any matching in the graph
• Observation: OPT ≥ |M|

– The optimal solution needs at least one vertex to cover each of the matched
edges

• But we cannot just pick any matching, since it may not be a cover

Matching-based VC
C = ;
Find a maximal matching M;
For every (u, v)  M, add both u and v to C
Output C

Theorem: Matching-based VC is a 2-approximation algorithm

Vertex Cover (VC)

1212

Is it easy to find a maximal matching?
Trivial! Keep adding edges until it is not feasible to add more

A way to implement the maximal matching based algorithm

Greedy-any-edge

C :=  ;

while E   do

{ choose arbitrarily an edge (u,v)  E ;

Add u and v to C;

delete u and v and their incident edges from G;

}

The edges selected by the algorithm form a maximal matching (no 2 edges
share a common vertex)

Vertex Cover (VC)

Note: In contrast to greedy-any-node, greedy-any-edge achieves a
constant factor approximation

1313

Theorem: Matching-based VC is a 2-approximation algorithm

Proof:
a) The solution – say C - returned by the algorithm is a vertex cover
• Suppose not
• Then there is an uncovered edge (u, v)
• But then we could add this edge to the matching M
• Contradiction with the fact that M is a maximal matching

b) 2-approximation ratio

• Let M be the set of edges selected by Greedy-any-edge

• Each selected edge adds two vertices to C: |C| = 2 |M|

– No two edges in M share a vertex (since M is a maximal matching)

– Edges incident to the endpoints of a selected edge are removed

Cost of the solution: |C| = 2 |M| ≤ 2 OPT (by the observation)
Hence a 2-approximation

Vertex Cover (VC)

1414

Tightness of the 2-approximation

Example:

1

2

3

4

n

G

C = 2n

OPT = n

Vertex Cover (VC)

1515

Vertex Cover (VC)
Greedy-any-edge is almost the best known for VC

Is there a better approximation algorithm ?

We know a lower bound of 1.36 on the approximation factor for VC,

i.e.,

Unless P=NP, VC cannot be approximated with a ratio smaller than 1.36

1.36

?
BEST KNOWN

LOWER BOUND

BEST KNOWN

APPROXIMATION RATIO

)log/1(2 n−

Big open problem!!

1616

Weighted Vertex Cover (WVC)

1717

Weighted Vertex Cover (WVC)

1818

Weighted Vertex Cover (WVC)

1919

Weighted Vertex Cover (WVC)

2020

Weighted Vertex Cover (WVC)

Set Cover
SET COVER (SC):

I: a set U of n elements

a family F = {S1, S2, …,Sm} of subsets of U

Q: Find a minimum size subset C  F covering all elements of U, i.e.:

Weighted version:

WEIGHTED SET COVER (WSC):

I: a set U of n elements

a family F = {S1, S2, …, Sm} of subsets of U

a weight w(Si) for each set Si

Q: Find a minimum weight subset C  F covering all elements of U, i.e.,

2121

minimized is)(Wand SwUS
CS

i

CS

i

ii




==

minimized is |C| and US
CS

i

i

=




22

(WEIGHTED) VERTEX COVER (WEIGHTED) SET COVER

I: (weighted) graph G=(V,E) I: U=E (i.e., we need to cover the edges)

|F| = |V|,

One set per vertex: Su ={(u,v) | (u,v)  E }

(in the weighted case: weight of Su is w(u)

Q: find C  V s.t. Q: find C  F s.t.

C covers E and C covers U and

C is of min size (cost) C is of min size (cost)

Hence, all WSC, SC, and WVC problems are NP-complete

as generalizations of VC

WSC

WVC

SC

VC

Set Cover vs Vertex Cover

23

Input: Set U of n elements and m subsets, S1,S2,…,Sm of U.
Question: Find the minimum number of subsets covering U.

Example:
U: a set of n cities
Consider that the ministry of education is planing to place/build new schools

such that no city is more than 30km away from a school.
Subsets: For each city i, Si is the subset of cities which are at most 30km away

from i.
Find which is the minimum number of schools to be built?

Set Cover-Example

Input: Set U of n elements and m subsets, S1,S2,…,Sm of U.
Question: Find the minimum number of subsets covering U.

Set Cover-Example

24

U: 11 cities Sa, Sb, …,Sk : cities

which are away at most 30km

from each candidate location

Se

Sa

Greedy Idea: While there are uncovered cities:
Choose the subset with the greatest number of uncovered
cities-elements.

Set Cover-Greedy Algorithm

25

Si: Sa, Sb, …,Sk, cities

which are away at most 30km

Greedy Solution:

1. Sa

2. Sf

3. Sc

4. Sj

C=4 (# συνόλων)

ΟPT=?

Is the greedy optimal?

Sa

Sc

Sj

Sf

Sb

Greedy Idea: While there are uncovered cities:
Choose the subset with the greatest number of uncovered
elements.

Set Cover-Greedy Algorithm

26

Si: Sa, Sb, …,Sk, cities

which are away at most 30km

Sb

Sj

Sf

Greedy is not optimal

1. Sb

2. Sj

3. Sf

OPT=3

• What is the approximation ratio of
Greedy?

• We will analyze a generalization of the
greedy algorithm for Weighted Set Cover

2727

In a similar spirit as for (greedy best-node) Vertex Cover:

Greedy-best-set

C :=  ;

while C  U do

{ choose the best set S;

remove S from F;

C := C U S;

W(C) = W(C)+W(S);

}

C: elements covered before iteration i
S: Set chosen at iteration i

Weighted Set Cover (WSC)

2828

Q: What does “best set” mean ?

• S covers |S-C| new elements

• Covering those elements costs w(S)

• Every element x  S-C essentially costs

Best set: the set with the smallest cost-effectiveness

)(
||

)(
xp

CS

Sw
=

−

Weighted Set Cover (WSC)

= “cost-effectiveness” of S

2929

Analysis of Greedy-best-set

Let x1, x2, …, xk, …, xn be the order in which the elements of U are covered

S1, S2, … Si, … be the order in which sets are chosen by the algorithm

Suppose set Si covers element xk

Claim:

elements covered by iterations 1,2,…,i-1

• U-C: uncovered elements before iteration i

• |U-C| ≥ n-k+1, since element xk is covered in iteration i

1

)(
+−


kn

OPT
xp k


1

1

−

=

=
i

j

jSC

Weighted Set Cover (WSC)

3030

• These elements of U-C are covered in the optimal solution by some sets at
a cost of at most OPT

• Among them there must be one set with cost-effectiveness at most

• the set Si was picked by the algorithm as the set with the smallest cost-
effectiveness at that moment (and it covered xk)

• that is

1|| +−


−


kn

OPT

CU

OPT

1
)(

+−


kn

OPT
xp k

OPTnOHOPT
k

OPT
kn

OPT
xpW n

n

i

n

k

n

k

k)(log
1

1
)(

111

===
+−

= 
===

Weighted Set Cover (WSC)

3131

Weighted Set Cover (WSC)

3232

Q: Is there a better approximation ?

• Several failed attempts over the years

• [Lund, Yannakakis ’94]: There can be no logn/2 = 0.72ln(n)-
approximation

• [Feige ’98] There can be no (1-ε)ln(n) approximation
– Proof based on the PCP theorem

• Complexity assumption for these results: NP cannot be solved
in time nO(loglogn)

Weighted Set Cover (WSC)

	Slide 1: Special Topics on Algorithms
	Slide 2
	Slide 3: Vertex Cover (VC)
	Slide 4: Vertex Cover (VC)
	Slide 5: Vertex Cover (VC)
	Slide 6: Vertex Cover (VC)
	Slide 7: Vertex Cover (VC)
	Slide 8: Vertex Cover (VC)
	Slide 9
	Slide 10: Vertex Cover (VC)
	Slide 11: Vertex Cover (VC)
	Slide 12: Vertex Cover (VC)
	Slide 13: Vertex Cover (VC)
	Slide 14: Vertex Cover (VC)
	Slide 15: Vertex Cover (VC)
	Slide 16: Weighted Vertex Cover (WVC)
	Slide 17: Weighted Vertex Cover (WVC)
	Slide 18: Weighted Vertex Cover (WVC)
	Slide 19: Weighted Vertex Cover (WVC)
	Slide 20: Weighted Vertex Cover (WVC)
	Slide 21: Set Cover
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Weighted Set Cover (WSC)
	Slide 28: Weighted Set Cover (WSC)
	Slide 29: Weighted Set Cover (WSC)
	Slide 30: Weighted Set Cover (WSC)
	Slide 31: Weighted Set Cover (WSC)
	Slide 32: Weighted Set Cover (WSC)

