ATHENS UNIVERSITY
CF EGQONOMICS
AND BUSINESS

OIKONOMIKO
MANEMNIETHMIO
AOHNAON

Special Topics on Algorithms

Vertex Cover, Set Cover
Vangelis Markakis-George Zois

markakis@gmail.com
georzois@gmail.com




Vertex Cover and Set Cover
(Greedy Approximation
Algorithms)



Vertex Cover (VC)

Recall the (optimization) version:

VERTEX COVER (VC):
I: Agraph G = (V,E)

Q: Find a cover Cc V of minimum size, i.e.,asetCcV, s.t. V (u, v) € E, either
ue Corv e C(or both)

Weighted version:

WEIGHTED VERTEX COVER (WV():

I: A graph G =(V,E), and a weight w(u) for every vertex UCE,V

Q: Find a subset C c V covering all edges of G, s.t. W = g w(u) is minimized
nye

Many different approximation technigues have been “tested” on vertex cover




Vertex Cover (VC)

We will focus first on the unweighted version

Natural greedy algorithms: start picking nodes according to some criterion until
all edges are covered

15t approach:

Greedy-any-node

C:=0;

while E# & do

{ choose arbitrarily a vertexu € V;

delete u and its incident edges from G;
AddutoC}

What is the approximation ratio this algorithm ?



Vertex Cover (VC)

2" natural approach: start picking nodes and at each step choose the node
with the maximum degree

Greedy-best-node

C:=0;

while E = & do

{ choose the vertex u € V with the largest degree; (break ties arbitrarily)
delete u and its incident edges from G;
AddutoC}

This is not Optimal!

A E_I'I;Il'lh ingtance A varey cover of gize 5 A wEnex cover of s15e d
abtained by the greedy optimal golutien!]
'.:||Hmh|1:1|.



Vertex Cover (VC)

2"d natural approach: start picking nodes and at each step choose the node
with the maximum degree

Greedy-best-node

C:=0;

while E = & do

{ choose the vertex u € V with the largest degree; (break ties arbitrarily)
delete u and its incident edges from G;
AddutoC}

Theorem: Greedy-best-node is an O(log n)-approximation algorithm
(see slides 25-26 for a proof)



Vertex Cover (VC)

The O(logn) ratio of Greedy-best-node is tight, i.e. the algorithm
cannot achieve a better ratio.

(n)

L(n)

— Partition b-nodes into pairs, triples, quadtuples,...,(n-1)tuples

— Connect the nodes in each i-tuple above with a new a-node

L(n) = niHJ =N 3 FJ < nzn:% =n0O(logn)

i—2| J



Vertex Cover (VC)

The O(logn) ratio of Greedy-best-node is tight

C ={a,,a5,35,3,,34,2,,31}
OPT ={b,,b,,b;,b,,b:,b,}

C _Ln)

=0O(logn
OPT (logn)

n | 6 10 30 100 1000
CIOPT | 217 26 367 48 7

Greedy-best-node is not a constant approximation algorithm.



Vertex Cover (VC)

Detour on matchings
Consider agraph G =(V, E)

Definition: A matching M is a collection of edges M — E, such that no 2 edges

share a common vertex

Given a matching M, a vertex u is called matched if there exists an
edge eeM such that e has u as one of its endpoints



Vertex Cover (VC)

Detour on matchings

Types of matchings we are interested in:
e Maximal matching: find a matching where no more edges can be added

e Maximum matching: find a matching with the maximum possible number
of edges

e Perfect matching: find a matching where every vertex is matched (if one
exists)

e Maximum weight matching: given a weighted graph, find a matching with
maximum possible total weight

e Minimum weight perfect matching: given a weighted graph, find a perfect
matching with minimum cost

All the above problems can be solved in polynomial time (several algorithms

and publications over the last decades) 10



Vertex Cover (VC)

A different approach:
e We will resort to matching
e Let M be any matching in the graph

e Observation: OPT = |M|

— The optimal solution needs at least one vertex to cover each of the matched
edges

e But we cannot just pick any matching, since it may not be a cover

Matching-based VC

C=;

Find a maximal matching M;

For every (u, v) € M, add both uand vto C
Output C

Theorem: Matching-based VC is a 2-approximation algorithm

11



Vertex Cover (VC)

Is it easy to find a maximal matching?
Trivial! Keep adding edges until it is not feasible to add more

A way to implement the maximal matching based algorithm
Greedy-any-edge
C:=0;
while E = & do
{ choose arbitrarily an edge (u,v) € E;
Adduandv to C;
delete u and v and their incident edges from G;

}

The edges selected by the algorithm form a maximal matching (no 2 edges
share a common vertex)

Note: In contrast to greedy-any-node, greedy-any-edge achieves a
constant factor approximation 12




Vertex Cover (VC)

Theorem: Matching-based VC is a 2-approximation algorithm

Proof:

a) The solution —say C - returned by the algorithm is a vertex cover
e Suppose not

e Then thereis an uncovered edge (u, v)

e But then we could add this edge to the matching M

e Contradiction with the fact that M is a maximal matching

b) 2-approximation ratio
« Let M be the set of edges selected by Greedy-any-edge

« Each selected edge adds two vertices to C: |C| = 2 |M|
— No two edges in M share a vertex (since M is a maximal matching)
— Edges incident to the endpoints of a selected edge are removed
Cost of the solution: |C| =2 |M| £ 2 OPT (by the observation)
Hence a 2-approximation

13



Vertex Cover (VC)

Tightness of the 2-approximation

Example:

G

C=2n

OPT =n

14



Vertex Cover (VC)

Greedy-any-edge is almost the best known for VC

Is there a better approximation algorithm ?

We know a lower bound of 1.36 on the approximation factor for VC,
i.e.,

Unless P=NP, VC cannot be approximated with a ratio smaller than 1.36

- 2—-0(1/./logn)
| 2 |

BEST KNOWN BEST KNOWN
LOWER BOUND APPROXIMATION RATIO

Big open problem!!

15



Weighted Vertex Cover (WVC)

Find a minimum weight subset C — V covering all edges of G

o ® @
o 9 ®
weight=2+2 + 4 weight = 9
Cover No Cover

What is the min weighted cover here?



Weighted Vertex Cover (WVC)

Pricing method. Each edge must be covered by some vertex i. Edge e
pays price p, = 0 to use vertex i.

Fairness. Edges incident to vertex i should pay < w; in total.

@ ®

foreach vertexi: 3 p, =W
e=(1.j)

@ ©

Claim. For any vertex cover S and any fair prices p.;: 3, p. = w(5).

Proof.
D P = S E_po = E w; = w(3S).
ecE ] €S e=(1)) [ IES
each edge € covered by sum fairness inequalities

at least one node in S foreachnode in S

17



Weighted Vertex Cover (WVC)

Weighted-Vertex-Cover-Approx (G, w) {
foreach e in E o
p. =0 _-pt =W

while (JdJedge i-j such that neither i nor j are tight)
select such an edge e
increase p_ without wviolating fairness

}

S « set of all tight nodes
return S

18



Weighted Vertex Cover (WVC)

d ad
N '
| 4 : | 4 :.
.-"}L _‘{".x ;__.‘}kr'_!{\_‘
ﬂ;"/ "\\\L_]' 3/ _ H,,_H\-{]
7 0 . /a/ 0 \,\
/ “ p :
l."'_' . 0 FOoy 0 R_.!"_"-, P, 1 0 I.-"_'"-.I 0 \:)"__*.I
L3 ) 1 5 ) 1 3 ) | 3 ] {5} L 3 )
L L N “_ N N
b ¢ d b tight C d
(a) (b)
a: tight a: tight
price of edge a-b |f 4 3y ( 4 3y
A A,
N / . il BN
3, 1 3 / .
’ DN / ™,
L 0
vertex weight _,.-"f \ ;’x xl“x_
—~ 0 ~~ 0 N 7~ 0 N 2 Y™
T‘fs'r (5} Pai | 3} {5} {3)
.___.J' L N L 'x,___.- a___,-'
b: tight [ d b tight c d: tight
(€) C)

19



Weighted Vertex Cover (WVC)

Theorem. Pricing method is a 2-approximation.
Pf.
« Algorithm terminates since at least one new node becomes tight
after each iteration of while loop.

« Let S = set of all tight nodes upon termination of algorithm. Sisa

vertex cover: if some edge i-j is uncovered, then neither i nor j is
tight. But then while loop would not terminate.

« Let S* be optimal vertex cover. We show w(S) < 2w(5%).

w(S) = Swi=3Y% Yp = ¥ JIp = 2% p, = 2w(SH).

i€S iI€S e={i)) i€V e=(iJ)) e€E
I I I l

all nodes in S are tight SCV. each edge counted twice  fairness lemma
prices=0

Tightness ?

20



Set Cover

SET COVER (SC):
I: a set U of n elements
a family F={S,, S,, ...,S,,} of subsets of U
Q: Find a minimum size subset C — F covering all elementsof U, i.e.:

LJS: =U and|C| is minimized

Si EC

Weighted version:

WEIGHTED SET COVER (WSC):
I: a set U of n elements
a family F=1{S,, S,, ..., S,,} of subsets of U
a weight w(S;) for each set S,
Q: Find a minimum weight subset C c F covering all elements of U, i.e.,
LJSi =U and W = > "w(S;) is minimized

Si eC SiEC




Set Cover vs Vertex Cover

(WEIGHTED) VERTEX COVER (WEIGHTED) SET COVER
I: (weighted) graph G=(V,E) I: U=E (i.e., we need to cover the edges)
IFl =1[V],

One set per vertex: S, ={(u,v) | (u,v) € E }
(in the weighted case: weight of S is w(u)

Q: find Cc Vs.t. Q: findCc Fs.t.
C covers E and C covers U and
C is of min size (cost) Cis of min size (cost)

Hence, all WSC, SC, and WVC problems are NP-complete
as generalizations of VC 22



Set Cover-Example

Input: Set U of n elements and m subsets, S,,S,,...,S,,, of U.
Question: Find the minimum number of subsets covering U.

Example:
U: a set of n cities

Consider that the ministry of education is planing to place/build new schools
such that no city is more than 30km away from a school.

Subsets: For each city i, S; is the subset of cities which are at most 30km away
from .

Find which is the minimum number of schools to be built?

23



Set Cover-Example

Input: Set U of n elements and m subsets, S,,S,,...,S,, of U.
Question: Find the minimum number of subsets covering U.

il =

* ]

U: 11 cities

S, Sy, ..., S cities
which are away at most 30km
from each candidate location

24



Set Cover-Greedy Algorithm

Greedy Idea: While there are uncovered cities:

Choose the subset with the greatest number of uncovered

cities-elements.

Si: S, Sy .- Sy, Cities
which are away at most 30km

Greedy Solution:
1. S,

.S
.S,
.S

H WD

—

C=4 (# ouvoAwv)

OPT=?
Is the greedy optimal?

25



Set Cover-Greedy Algorithm

Greedy Idea: While there are uncovered cities:
Choose the subset with the greatest number of uncovered

elements.
Sh
Greedy is not optimal
1. Sy
2. S
Sf 3. Sf
OPT=3
e What is the approximation ratio of
N Greedy?
ST _Sa, Sp -1k, ClliES e We will analyze a generalization of the
which are away at most 30km greedy algorithm for Weighted Set Cover

26



Weighted Set Cover (WSC)

In a similar spirit as for (greedy best-node) Vertex Cover:

Greedy-best-set

C:=0; C: elements covered before iteration i
while C# U do S: Set chosen at iteration i

{ choose the best set S;
remove S from F;
C:=CUS;

W(C) = W(C)+W(S);

27



Weighted Set Cover (WSC)

Q: What does “best set” mean ?
e Scovers |S-C| new elements
e Covering those elements costs w(S)

e Every element x € S-C essentially costs
w(S)
|S-C|

= p(X) = “cost-effectiveness” of S

Best set: the set with the smallest cost-effectiveness

28



Weighted Set Cover (WSC)

Analysis of Greedy-best-set

Let x; X, ..., X, ..., X, be the order in which the elements of U are covered

$; S, ... S, ... bethe orderin which sets are chosen by the algorithm
Suppose set S; covers element x,

OPT

Claim: P(X, )<
aim: px,) n-k+1

i-1

C={)S; elementscovered by iterations 1,2,...,i-1
j=1

e U-C: uncovered elements before iteration i

e |U-C| 2n-k+1, since element x, is covered in iteration i

29



Weighted Set Cover (WSC)

e These elements of U-C are covered in the optimal solution by some sets at
a cost of at most OPT

e Among them there must be one set with cost-effectiveness at most
OPT OPT
< <
IlU-C| n-k+1
e thesetS, was picked by the algorithm as the set with the smallest cost-
effectiveness at that moment (and it covered x,)

OPT
e thatis p(xk)sn_kJrl
W = Zp(xk sz :OPTZ%:OPT-Hn =O(logn)OPT
k=1 k=1 i=1

30



Weighted Set Cover (WSC)

Tightness
M\ N A
4T ) - _____ah_'":l'w\
4 . | . e )
\[m |I | || ]I ﬂ;}/ ]+E
\ o/ 1
\/ ~J W/
I/n 1/(n-1) 1

The greedy algorithm outputs the n singleton sets with total cost

| 1
W= — +
n n— 1

+---+1=H,

The optimal cover takes only the other set of cost /+¢
31



Weighted Set Cover (WSC)

Q: Is there a better approximation ?

Several failed attempts over the years

[Lund, Yannakakis '94]: There can be no logn/2 = 0.72In(n)-
approximation

[Feige 98] There can be no (1-€)In(n) approximation
— Proof based on the PCP theorem

Complexity assumption for these results: NP cannot be solved
in time nO(loglogn)

32



	Slide 1: Special Topics on Algorithms
	Slide 2
	Slide 3: Vertex Cover (VC)
	Slide 4: Vertex Cover (VC)
	Slide 5: Vertex Cover (VC)
	Slide 6: Vertex Cover (VC)
	Slide 7: Vertex Cover (VC)
	Slide 8: Vertex Cover (VC)
	Slide 9
	Slide 10: Vertex Cover (VC)
	Slide 11: Vertex Cover (VC)
	Slide 12: Vertex Cover (VC)
	Slide 13: Vertex Cover (VC)
	Slide 14: Vertex Cover (VC)
	Slide 15: Vertex Cover (VC)
	Slide 16: Weighted Vertex Cover (WVC)
	Slide 17: Weighted Vertex Cover (WVC)
	Slide 18: Weighted Vertex Cover (WVC)
	Slide 19: Weighted Vertex Cover (WVC)
	Slide 20: Weighted Vertex Cover (WVC)
	Slide 21: Set Cover
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Weighted Set Cover (WSC)
	Slide 28: Weighted Set Cover (WSC)
	Slide 29: Weighted Set Cover (WSC)
	Slide 30: Weighted Set Cover (WSC)
	Slide 31: Weighted Set Cover (WSC)
	Slide 32: Weighted Set Cover (WSC)

