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Vertex Cover and Set Cover

(Greedy Approximation 

Algorithms)
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Recall the (optimization) version:

VERTEX COVER (VC):

I: A graph G = (V,E)

Q: Find a cover C  V of minimum size, i.e., a set C  V, s.t.  (u, v)  E,  either 
u  C or v  C (or both)

Weighted version:

WEIGHTED VERTEX COVER (WVC):

I: A graph G = (V,E), and a weight w(u) for every vertex uV

Q: Find a subset C  V covering all edges of G, s.t.                            is minimized

Many different approximation techniques have been “tested” on vertex cover

Vertex Cover (VC)

W = w(u)
uÎC

å  
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We will focus first on the unweighted version

Natural greedy algorithms: start picking nodes according to some criterion until 
all edges are covered

1st approach:

Greedy-any-node

C :=  ;

while E   do 

{ choose arbitrarily a vertex u  V;

delete u and its incident edges from G; 

Add u to C }

What is the approximation ratio this algorithm ?

Vertex Cover (VC)
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2nd natural approach: start picking nodes and at each step choose  the node 
with the maximum degree

Greedy-best-node
C :=  ;
while E   do 
{ choose the vertex u  V with the largest degree; (break ties arbitrarily)
delete u and its incident edges from G; 
Add u to C }

This is not Optimal! 

Vertex Cover (VC)
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2nd natural approach: start picking nodes and at each step choose  the node 
with the maximum degree

Greedy-best-node
C :=  ;
while E   do 
{ choose the vertex u  V with the largest degree; (break ties arbitrarily)
delete u and its incident edges from G; 
Add u to C }

Theorem: Greedy-best-node is an O(log n)-approximation algorithm 
(see slides 25-26 for a proof)

Vertex Cover (VC)



77

b1 b2 b3 b4 b5 b6
(n)

a1 a2 a3 a4 a5 a6 a7
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– Partition b-nodes into pairs, triples, quadtuples,…,(n-1)tuples

– Connect the nodes in each i-tuple above with a new a-node
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The O(logn) ratio of Greedy-best-node is tight, i.e. the algorithm 

cannot achieve a better ratio. 

Vertex Cover (VC)



88

Vertex Cover (VC)

C  = {a7,a6,a5,a4,a4,a2,a1}
OPT = {b1,b2,b3,b4,b5,b6}

Greedy-best-node  is not a constant approximation algorithm.
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The O(logn) ratio of Greedy-best-node is tight
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Detour on matchings

Consider a graph G = (V, E)

Definition: A matching M is a collection of edges M  E, such that no 2 edges 

share a common vertex

Given a matching M, a vertex u is called matched if there exists an 

edge eM such that e has u as one of its endpoints

Vertex Cover (VC)
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Detour on matchings

Types of matchings we are interested in:

• Maximal matching: find a matching where no more edges can be added

• Maximum matching: find a matching with the maximum possible number 
of edges

• Perfect matching: find a matching where every vertex is matched (if one 
exists)

• Maximum weight matching: given a weighted graph, find a matching with 
maximum possible total weight

• Minimum weight perfect matching: given a weighted graph, find a perfect 
matching with minimum cost

All the above problems can be solved in polynomial time (several algorithms 
and publications over the last decades)

Vertex Cover (VC)
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A different approach: 
• We will resort to matching
• Let M be any matching in the graph
• Observation: OPT ≥ |M|

– The optimal solution needs at least one vertex to cover each of the matched 
edges

• But we cannot just pick any matching, since it may not be a cover

Matching-based VC
C = ;
Find a maximal matching M;
For every (u, v)  M, add both u and v to C
Output C

Theorem: Matching-based VC is a 2-approximation algorithm 

Vertex Cover (VC)
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Is it easy to find a maximal matching? 
Trivial! Keep adding edges until it is not feasible to add more

A way to implement the maximal matching based algorithm

Greedy-any-edge

C :=  ;

while E   do 

{ choose arbitrarily an edge (u,v)   E ; 

Add u and v  to  C;

delete u and v and their incident edges from G; 

}

The edges selected by the algorithm form a maximal matching (no 2 edges 
share a common vertex)                                              

Vertex Cover (VC)

Note: In contrast to greedy-any-node, greedy-any-edge achieves a 
constant factor approximation
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Theorem: Matching-based VC is a 2-approximation algorithm 

Proof:
a) The solution – say C - returned by the algorithm is a vertex cover
• Suppose not
• Then there is an uncovered edge (u, v)
• But then we could add this edge to the matching M
• Contradiction with the fact that M is a maximal matching

b) 2-approximation ratio

• Let M be the set of edges selected by Greedy-any-edge

• Each selected edge adds two vertices to C: |C| = 2 |M|

– No two edges in M share a vertex (since M is a maximal matching)

– Edges incident to the endpoints of a selected edge are removed

Cost of the solution: |C| = 2 |M| ≤ 2 OPT (by the observation)
Hence a 2-approximation

Vertex Cover (VC)
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Tightness of the 2-approximation

Example:

1

2

3

4

n

G

C = 2n

OPT = n

Vertex Cover (VC)
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Vertex Cover (VC)
Greedy-any-edge is almost the best known for VC

Is there a better approximation algorithm ?

We know a lower bound of 1.36 on the approximation factor for VC,

i.e.,

Unless P=NP, VC cannot be approximated with a ratio smaller than 1.36

1.36

?
BEST KNOWN 

LOWER BOUND

BEST KNOWN 

APPROXIMATION RATIO

)log/1(2 n−

Big open problem!!
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Weighted Vertex Cover (WVC)
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Weighted Vertex Cover (WVC)
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Weighted Vertex Cover (WVC)
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Weighted Vertex Cover (WVC)
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Weighted Vertex Cover (WVC)



Set Cover
SET COVER (SC):

I: a set U of n elements  

a family F = {S1, S2, …,Sm} of subsets of U

Q: Find a minimum size subset C  F covering all elements of U, i.e.:

Weighted version:

WEIGHTED SET COVER (WSC):

I: a set U of n elements  

a family F = {S1, S2, …, Sm} of subsets of U

a weight w(Si) for each set Si

Q: Find a minimum weight subset C  F covering all elements of U, i.e.,
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(WEIGHTED) VERTEX COVER                   (WEIGHTED) SET COVER

I: (weighted) graph G=(V,E)                  I: U=E (i.e., we need to cover the edges)

|F| = |V|, 

One set per vertex: Su ={(u,v) | (u,v)  E }

(in the weighted case: weight of Su is w(u)

Q: find C  V s.t.                                             Q: find C  F s.t. 

C covers E  and                                                 C covers U and 

C is of min size (cost)                                        C is of min size (cost) 

Hence, all WSC, SC, and WVC problems are NP-complete

as generalizations  of VC 

WSC

WVC

SC

VC

Set Cover vs Vertex Cover
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Input: Set U of n elements and m subsets, S1,S2,…,Sm of U.
Question: Find the minimum number of subsets covering U.

Example:
U: a set of n cities
Consider that the ministry of education is planing to place/build new schools 

such that no city is more than 30km away from a school.
Subsets: For each city i, Si is the subset of cities which are at most 30km away 

from i.
Find which is the minimum number of schools to be built?

Set Cover-Example



Input: Set U of n elements and m subsets, S1,S2,…,Sm of U.
Question: Find the minimum number of subsets covering U.

Set Cover-Example
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U: 11 cities Sa, Sb, …,Sk : cities

which are away at most 30km         

from each candidate location

Se

Sa



Greedy Idea: While there are uncovered  cities:
Choose the subset with the greatest number of uncovered 
cities-elements.

Set Cover-Greedy Algorithm

25

Si: Sa, Sb, …,Sk, cities

which are away at most 30km

Greedy Solution:

1. Sa

2. Sf

3. Sc

4. Sj

C=4 (# συνόλων)

ΟPT=?

Is the greedy optimal?

Sa

Sc

Sj

Sf

Sb



Greedy Idea: While there are uncovered  cities:
Choose the subset with the greatest number of uncovered 
elements.

Set Cover-Greedy Algorithm
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Si: Sa, Sb, …,Sk, cities

which are away at most 30km

Sb

Sj

Sf

Greedy is not optimal 

1. Sb

2. Sj

3. Sf

OPT=3

• What is the approximation ratio of 
Greedy?

• We will analyze a generalization of the 
greedy algorithm for Weighted Set Cover
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In a similar spirit as for (greedy best-node) Vertex Cover:

Greedy-best-set

C :=  ;

while C  U do 

{   choose the best set S;           

remove S from F;

C := C U S;

W(C) = W(C)+W(S); 

}

C:  elements covered before iteration i 
S: Set chosen at iteration i

Weighted Set Cover (WSC)
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Q: What does “best set” mean ?

• S covers |S-C| new elements 

• Covering those elements costs w(S)

• Every element x  S-C essentially costs

Best set: the set with the smallest cost-effectiveness
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−

Weighted Set Cover (WSC)

= “cost-effectiveness” of S
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Analysis of Greedy-best-set

Let x1, x2, …, xk, …, xn     be the order in which the elements of U are covered

S1, S2, …  Si,   …    be the order in which sets are chosen by the algorithm

Suppose set Si covers element xk

Claim:

elements covered by iterations 1,2,…,i-1

• U-C: uncovered elements before iteration i  

• |U-C| ≥ n-k+1, since  element xk  is covered in iteration i 
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Weighted Set Cover (WSC)
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• These elements of U-C are covered in the optimal solution by some sets at 
a cost of at most OPT

• Among them there must be one set with cost-effectiveness at most 

• the set Si was picked by the algorithm as the set with the smallest cost-
effectiveness at that moment (and it covered xk)

• that is                               
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Weighted Set Cover (WSC)
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Weighted Set Cover (WSC)
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Q: Is there a better approximation ?

• Several failed attempts over the years

• [Lund, Yannakakis ’94]: There can be no logn/2 = 0.72ln(n)-
approximation

• [Feige ’98] There can be no (1-ε)ln(n) approximation
– Proof based on the PCP theorem

• Complexity assumption for these results: NP cannot be solved 
in time nO(loglogn)

Weighted Set Cover (WSC)
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