ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Special Topics on Algorithms Algorithms for flows and matchings Vangelis Markakis – George Zois

Contents

- ^{^D} The maximum flow problem
- $_{\scriptscriptstyle \rm I\!I}$ The minimum cut problem
- ^D The max-flow min-cut theorem
- a Augmenting path algorithms
- ^D Applications to matching problems

The maximum flow problem

Maximum Flow and Minimum Cut

Max flow and min cut.

- Two very rich algorithmic problems.
- Cornerstone problems in combinatorial optimization.
- Beautiful mathematical duality.

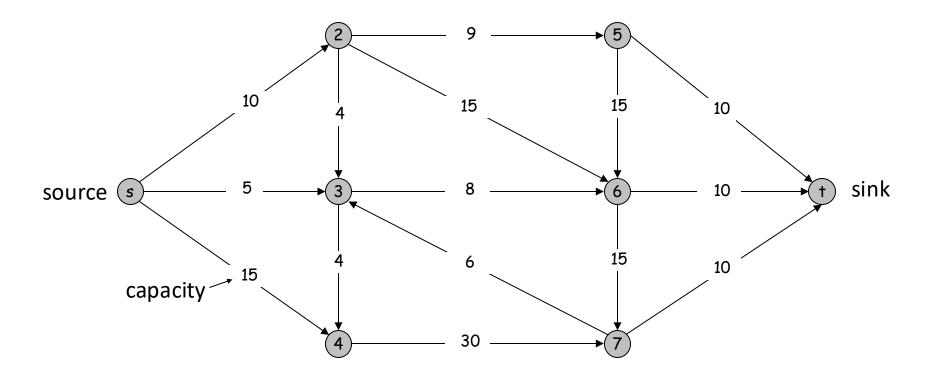
Nontrivial applications / reductions.

- Data mining.
- Project selection.
- Airline scheduling.
- Bipartite matching.
- Image segmentation.
- Network connectivity.

- Network reliability.
- Distributed computing.
- Security of statistical data.
- Many many more . . .

Flow network

- Abstraction for material flowing through the edges.
- G = (V, E) = directed graph, no parallel edges.
- Two distinguished nodes: s = source, t = sink.
- c(e) = capacity of edge e.



The max flow problem

A feasible flow is an assignment of a flow f(e) to every edge so that

1.f(e) ≤ c(e) (capacity constraints)

2.For every node other than source and sink: incoming flow = outgoing flow (preservation of flow)

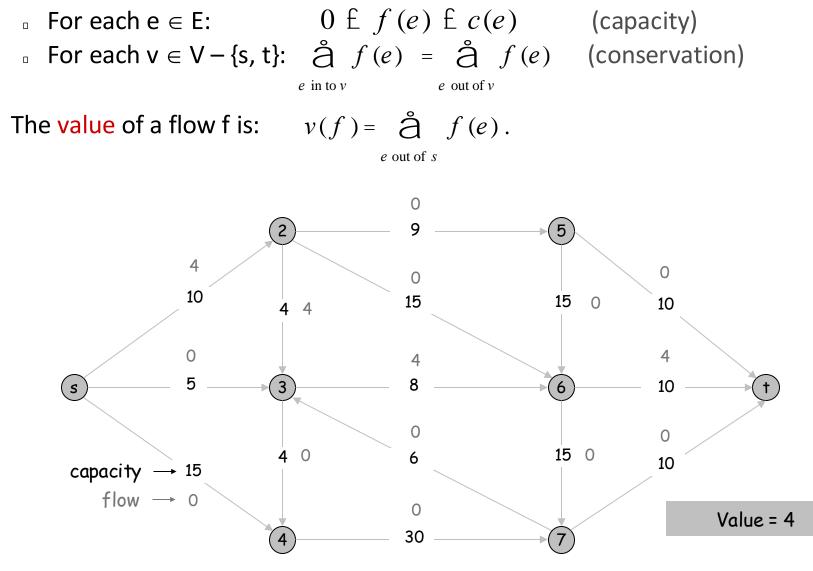
Goal: find a feasible flow so as to maximize the total amount of flow coming out of s (or equivalently going into t)

Flow going out of s: v(f) = $\mathop{\text{a}}_{(s,u)\hat{i}} f(s,u)$

By preservation of flow this equals: $\mathop{\text{a}}_{(u,t)\hat{I}} f(u,t)$

Flows

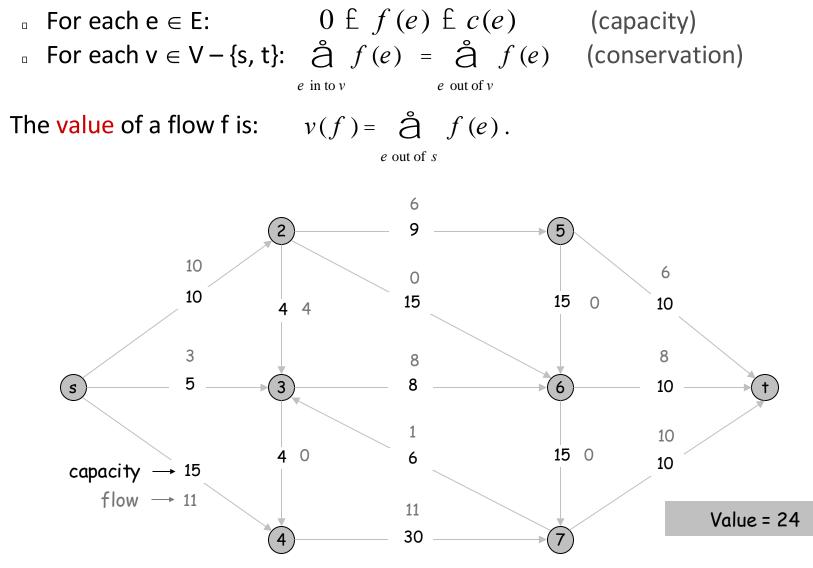
Constraints:



7

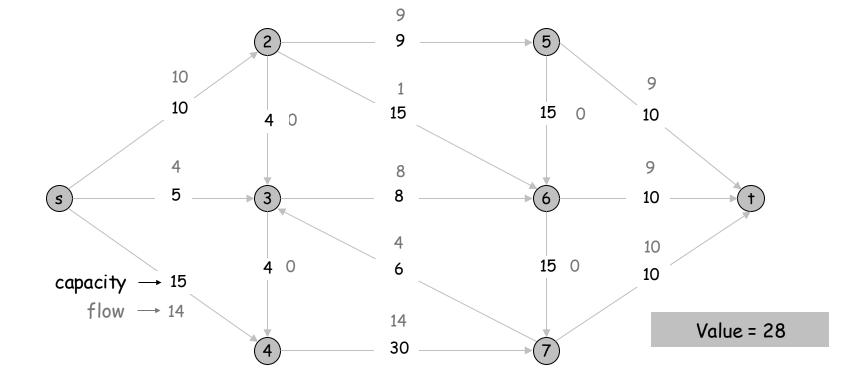
Flows

Constraints:



The Maximum Flow Problem

Optimal flow: 28 units of flow from s to t

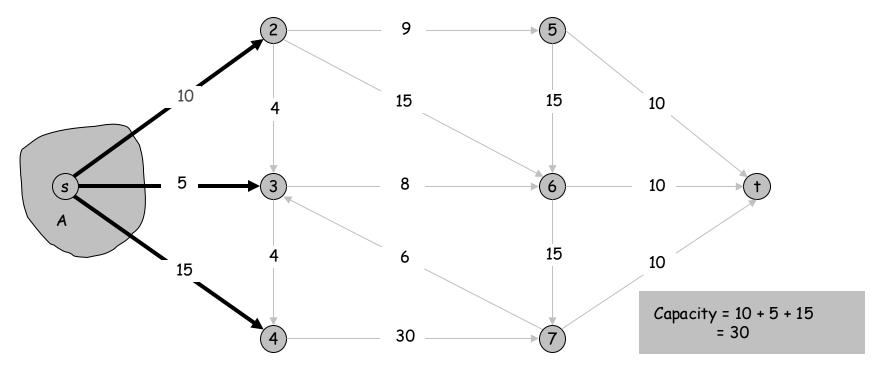


Cuts

Def. An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

Def. The capacity of a cut (A, B) is: $cap(A, B) = \mathring{a} c(e)$

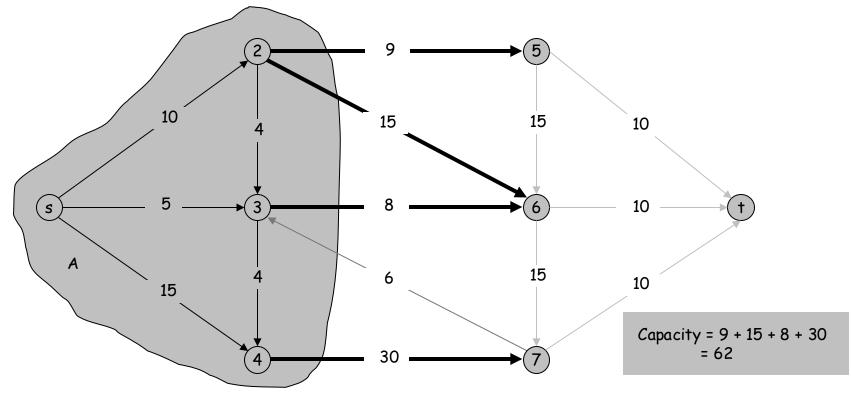
e out of A



Cuts

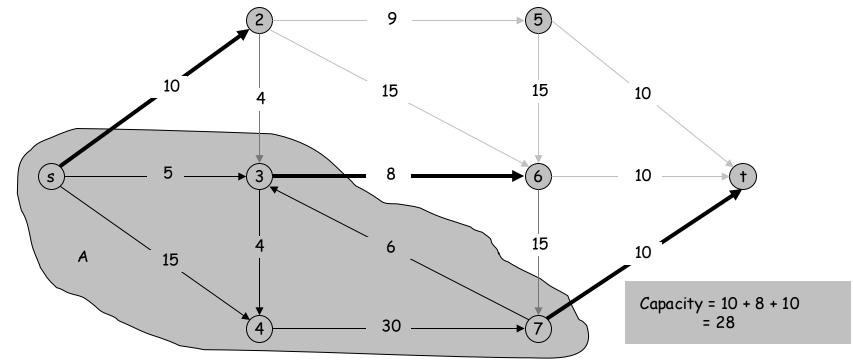
Def. An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

Def. The capacity of a cut (A, B) is: $cap(A, B) = \mathop{\text{a}}_{e \text{ out of } A} c(e)$

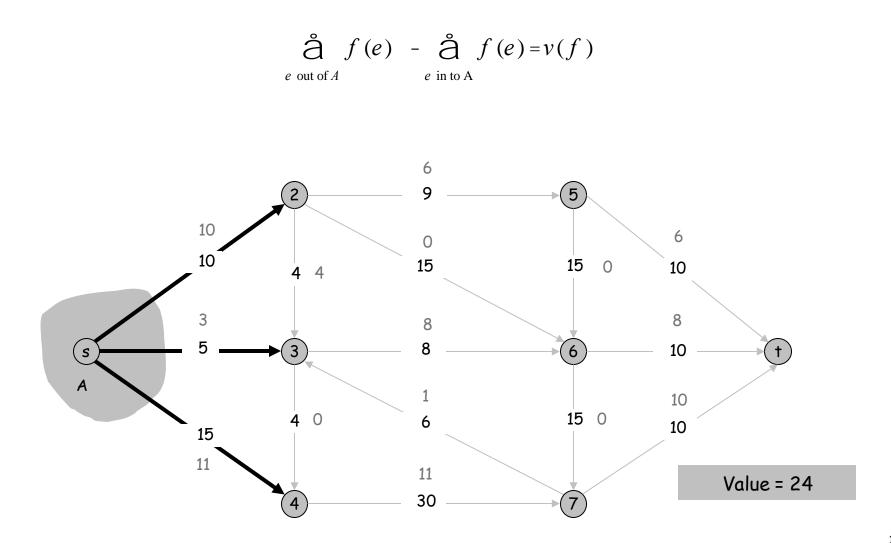


The Minimum Cut Problem

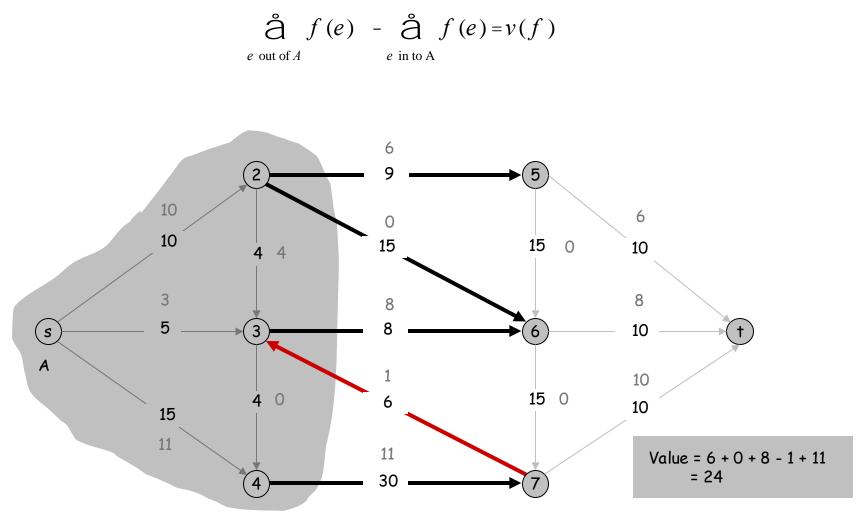
Min s-t cut problem. Find an s-t cut of minimum capacity.



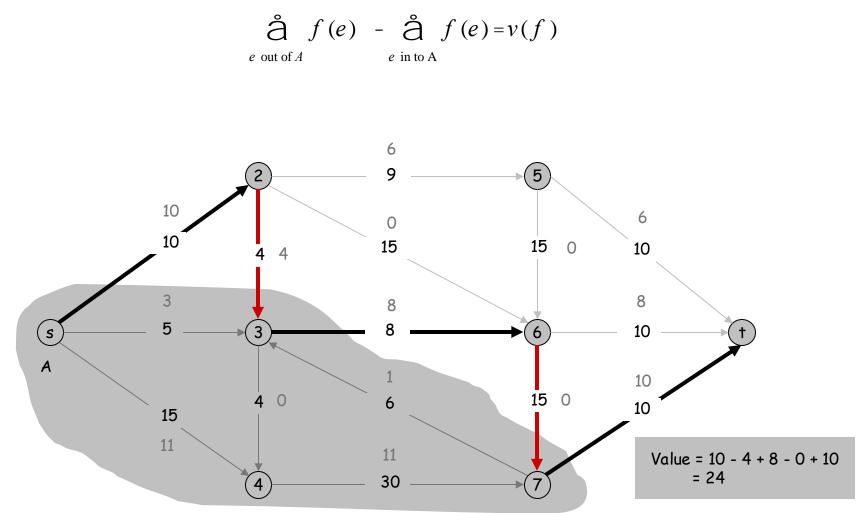
Lemma 1. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.



Lemma 1. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.



Lemma 1. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.



Lemma 1. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$\overset{\circ}{\operatorname{a}}_{e \text{ out of } A} f(e) - \overset{\circ}{\operatorname{a}}_{e \text{ in to } A} f(e) = v(f)$$

Pf.

by flow conservation, all terms except v = s are 0

$$v(f) = \sum_{e \text{ out of } s} f(e)$$

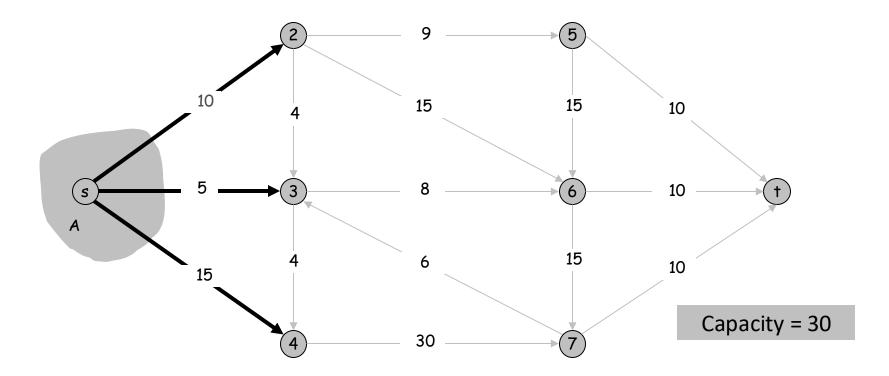
$$\longrightarrow = \sum_{v \in A} \left(\sum_{e \text{ out of } v} f(e) - \sum_{e \text{ in to } v} f(e) \right)$$

$$= \sum_{v \in A} f(e) - \sum_{e \text{ in to } v} f(e)$$

$$= \sum_{e \text{ out of } A} f(e) - \sum_{e \text{ in to } A} f(e).$$

Lemma 2. Let f be any flow, and let (A, B) be any s-t cut. Then the value of the flow is at most the capacity of the cut.

Cut capacity = 30 \implies Flow value \leq 30



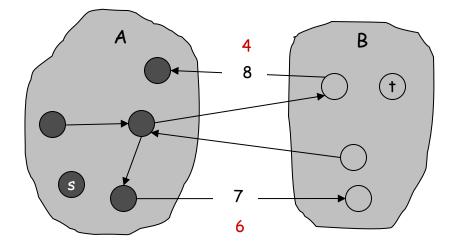
Lemma 2. Let f be any flow. Then, for any s-t cut (A, B) we have $v(f) \leq cap(A, B)$.

Pf.

$$w(f) = \mathop{\text{a}}_{e \text{ out of } A} f(e) - \mathop{\text{a}}_{e \text{ in to } A} f(e)$$

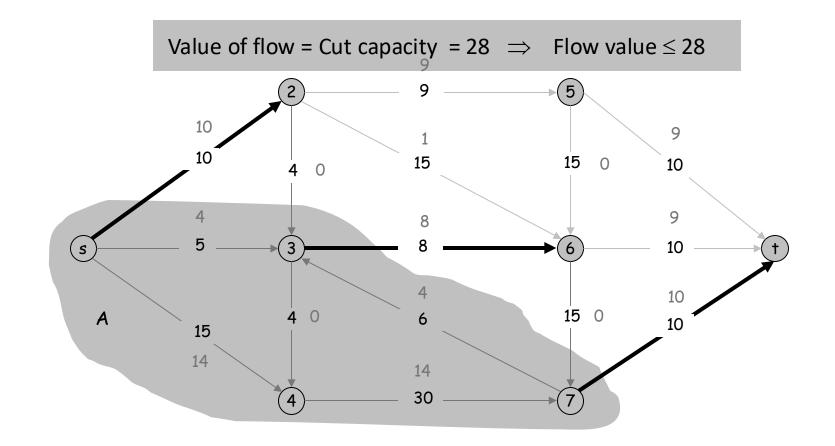
$$\stackrel{\text{f}}{=} \mathop{\text{a}}_{e \text{ out of } A} f(e)$$

$$\stackrel{\text{f}}{=} \mathop{\text{cap}}(A, B)$$



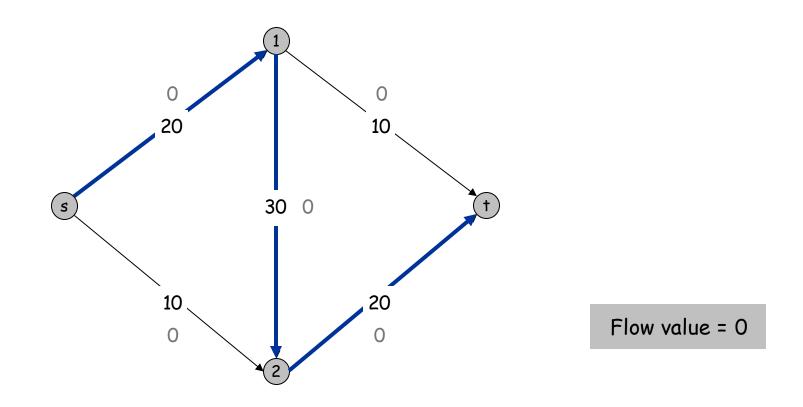
Certificate of Optimality

Corollary 1. Max flow is at most equal to the capacity of the min cut (i.e., max flow is a lower bound to min cut) Corollary 2. Let f be any flow, and let (A, B) be any cut. If v(f) = cap(A, B), then f is a max flow and (A, B) is a min cut.



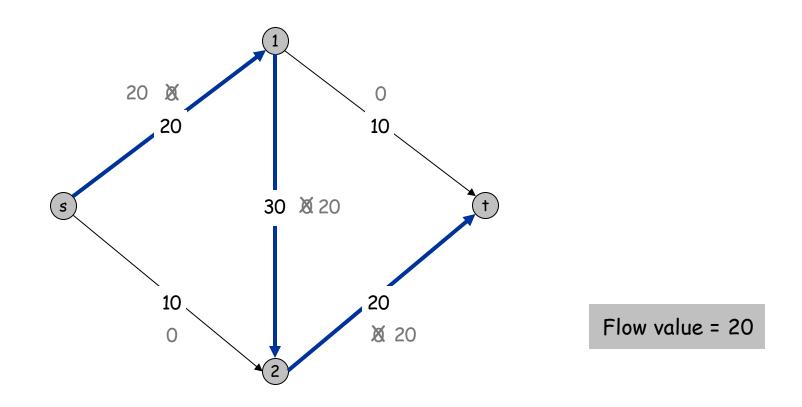
Greedy algorithm.

- Start with f(e) = 0 for every edge $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).</p>
- Augment flow along path P.
- Repeat until you get stuck.



Greedy algorithm.

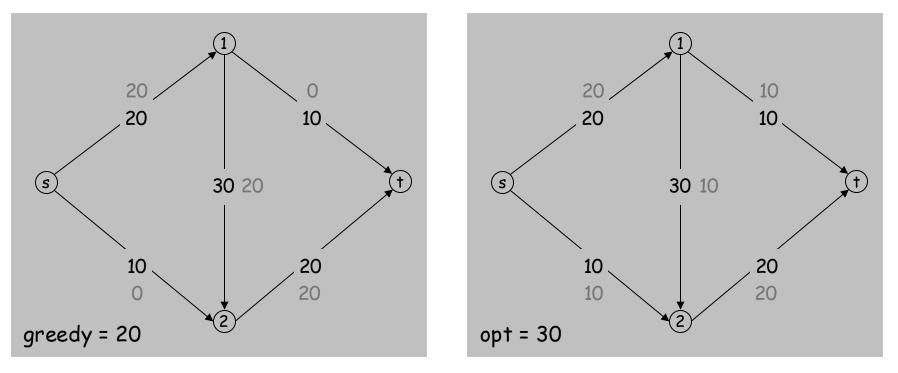
- Start with f(e) = 0 for every edge $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).</p>
- Augment flow along path P.
- Repeat until you get stuck.



Greedy algorithm.

- Start with f(e) = 0 for every edge $e \in E$.
- Find an s-t path P where each edge has f(e) < c(e).</p>
- Augment flow along path P.
- Repeat until you get stuck.

 $^{\frown}$ locally optimality \Rightarrow global optimality



We need an algorithm with more flexibility Desired operations:

- Push flow forward along a non-saturated path
- Push flow backwards (i.e., undo some units of flow when necessary)
 - in order to to divert flow to a different direction

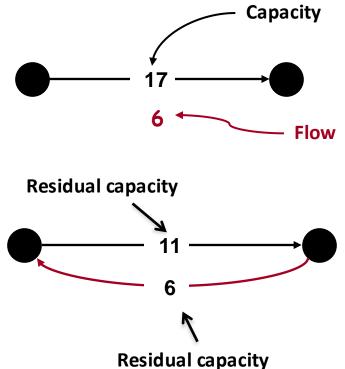
The residual graph:

Given the initial graph G, and a fesible flow f, the residual graph G_f has

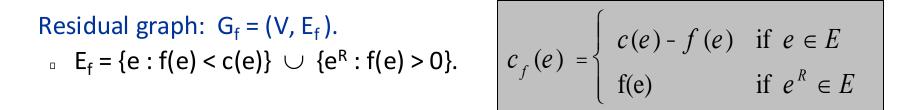
- the same set of nodes as G
- forward edges: for every edge e = (u, v) of G with f(e) < c(e), we include the same edge in G_f with residual capacity c(e) – f(e)
- backward edges: for every edge e = (u, v) of G with f(e) > 0, we include the edge (v, u) in G_f with residual capacity f(e)

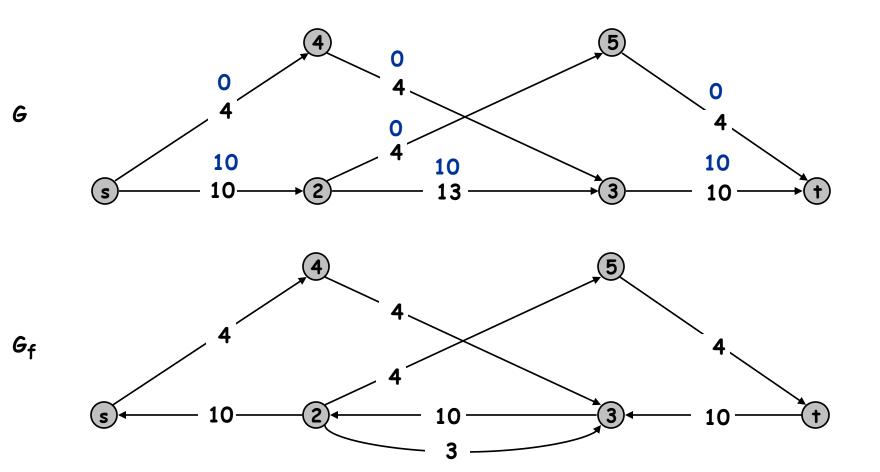
Simple Facts:

- Given G and f, the graph G_f can be constructed efficiently
- G_f has at most twice as many edges as G
- Capacities in G_f are strictly positive



Residual Graph and Augmenting Paths



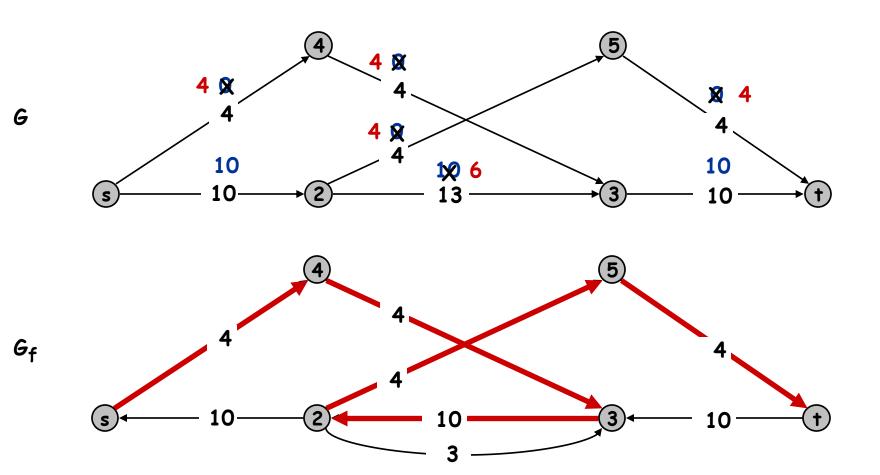


25

Augmenting Path

Augmenting path = path in residual graph

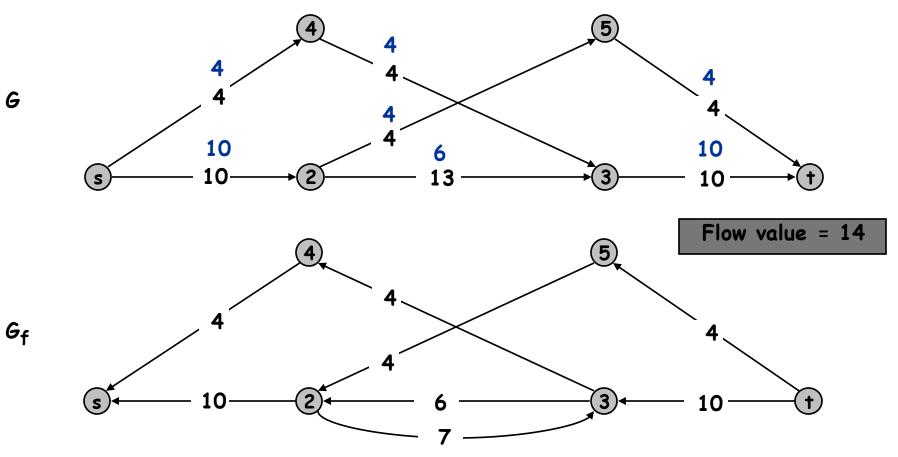
- ^D Allows to undo some flow units from current solution
- And produce a flow of higher value



Augmenting Path

Augmenting path = path in residual graph.

Max flow \IDRA no augmenting paths ???



Augmenting Path Algorithm

```
Augment(f, c, P) {

b \leftarrow bottleneck(P)

foreach e \in P {

if (e \in E) f(e) \leftarrow f(e) + b

else f(e<sup>R</sup>) \leftarrow f(e) - b

}

return f

}
```

Bottleneck is the minimum residual capacity of any edge in P

forward edge

reverse edge

```
Ford-Fulkerson(G, s, t, c) {
   foreach e \in E f(e) \leftarrow 0
   G<sub>f</sub> \leftarrow residual graph
   while (there exists augmenting path P) {
      f \leftarrow Augment(f, c, P)
      update G<sub>f</sub>
   }
   return f
}
```

[Ford, Fulkerson '56]: Theorem 1 (algorithm correctness): A feasible flow is optimal if and only if there is no augmenting path (i.e., no s-t path in the residual graph)

Theorem 2 (the max-flow min-cut theorem): For any flow graph G = (V, E) with capacities on its edges, value of max flow = capacity of min s-t cut

We will prove both theorems together

Proof sketch:

Let f be a feasible flow computed by the algorithm. We prove that the following are equivalent:

- (i) The flow f is optimal
- (ii) There is no augmenting path with respect to f (i.e., no s-t path in the residual graph)
- (iii) There exists a cut (A, B) such that v(f) = cap(A, B)

Proof sketch:

(i) \Rightarrow (ii)

trivial, if there was an augmenting path, we would increase the flow and f would not be optimal

(ii) \Rightarrow (iii)

- ^D Let f be a flow with no augmenting paths
- $_{\scriptscriptstyle \rm D}$ Let A be the set of vertices reachable from s in the residual graph $G_{\rm f}$
- Let $B := V \setminus A$
- By definition of A, $s \in A$
- [□] By our assumption on f (no augmenting paths), t ∉ A
- Hence (A, B) is a valid s-t cut

Proof sketch: (ii) \Rightarrow (iii) cont'd

- ^D Claim 1: for an edge e = (u, v) with $u \in A$ and $v \in B$, f(e) = c(e)
 - Otherwise, v is reachable in G_f from s (since $u \in A$)
- ^D Claim 2: for an edge e = (u, v) with $u \in B$ and $v \in A$, f(e) = 0
 - Otherwise, there is a backward edge (v, u) in G_f , and hence u is reachable from s

$$v(f) = \mathop{\text{a}}_{e \text{ out of } A} f(e) - \mathop{\text{a}}_{e \text{ in to } A} f(e) \quad \text{(From Lemma 1)}$$

$$= \mathop{\text{a}}_{e \text{ out of } A} c(e)$$

$$= cap(A, B)$$

(iii) \Rightarrow (i)

^a follows by the Corollary 2 on certificates of optimality

Running time

Assumption: Assume all capacities are integers

Claim 1: All flow values and residual capacities are integers throughout the execution of the algorithm

Claim 2: In every iteration of the while loop, the flow increases by at least 1 unit

Claim 3: Let
$$C = \overset{\circ}{a}_{(s,u) \in E} c(s,u)$$
. Then max flow $\leq C$

Total running time: O((m+n) C) pseudopolynomial algorithm Corollary: If all capacities are 0 or 1, then running time is O(mn)

important special case in some applications

Improving the running time

Worst case scenarios:

With integer capacities, the algorithm may need to do C augmentations

If capacities are irrational, algorithm not even guaranteed to terminate!

Some improvements

.

[Edmonds-Karp 1972, Dinitz 1970]:

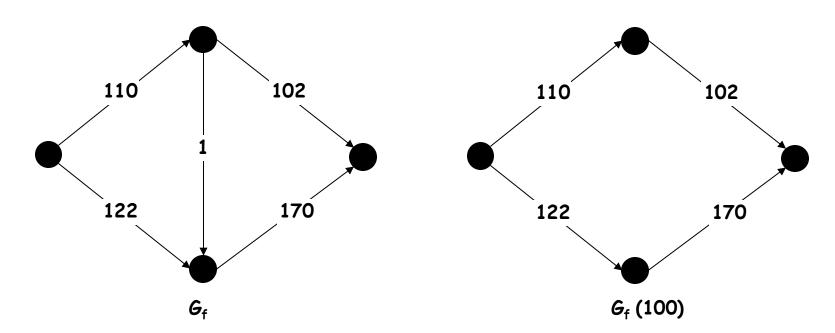
Choose augmenting paths with:

- Max bottleneck capacity
- Sufficiently large bottleneck capacity
- Fewest number of edges

Capacity Scaling

Intuition: Choosing a path with the highest bottleneck capacity increases flow by max possible amount.

- Actually, don't worry about finding the exact highest bottleneck path (this may slow down the algorithm)
- ${\scriptstyle \square}$ Maintain a scaling parameter $\Delta.$
- Let $G_f(\Delta)$ be the subgraph of the residual graph consisting only of arcs with capacity at least Δ



Capacity Scaling

```
Scaling-Max-Flow(G, s, t, c) {
    foreach e \in E f(e) \leftarrow 0
    \Delta \leftarrow smallest power of 2 less than or equal to C
    G_f \leftarrow residual graph
    while (\Delta \ge 1) {
        G_{f}(\Delta) \leftarrow \Delta-residual graph
        while (there exists an augmenting path P in G_f(\Delta)) {
            f \leftarrow augment(f, c, P)
            update G_f(\Delta)
        }
        \Delta \leftarrow \Delta / 2
    }
    return f
}
```

Correctness and running time

Assume integer capacities

Correctness:

- ${}_{\mbox{\tiny B}}$ Eventually, when Δ = 1 \implies ${\rm G_f}(\Delta)$ = ${\rm G_f}$
- ^B Hence the algorithm stops when there are no s-t paths in G_f
- The flow must be optimal by the correctness analysis of Ford-Fulkerson

Running time analysis

Lemma 1: The outer while loop runs for $1 + \lceil \log_2 C \rceil$ iterations Proof: Initially $C \le \Delta < 2C$. Δ decreases by a factor of 2 in each iteration of the outer while loop

Correctness and running time

Assume integer capacities **Running time analysis (cont'd) Lemma 2:** Let f be the flow at the end of a Δ -scaling phase. Then the value of the maximum flow is at most v(f) + m Δ Proof: do it as an exercise

Lemma 3: There are at most 2m augmentations per scaling phase Proof: Consider the beginning of a scaling phase with parameter Δ Let f be the flow at the end of the previous scaling phase Lemma 2 \Rightarrow v(f*) \leq v(f) + m (2 Δ) [previous is twice the current Δ] Each augmentation in a Δ -phase increases v(f) by at least Δ

Theorem: The capacity scaling max-flow algorithm finds a max flow in O(m log C) augmentations. It can be implemented to run in O(m² log C) time

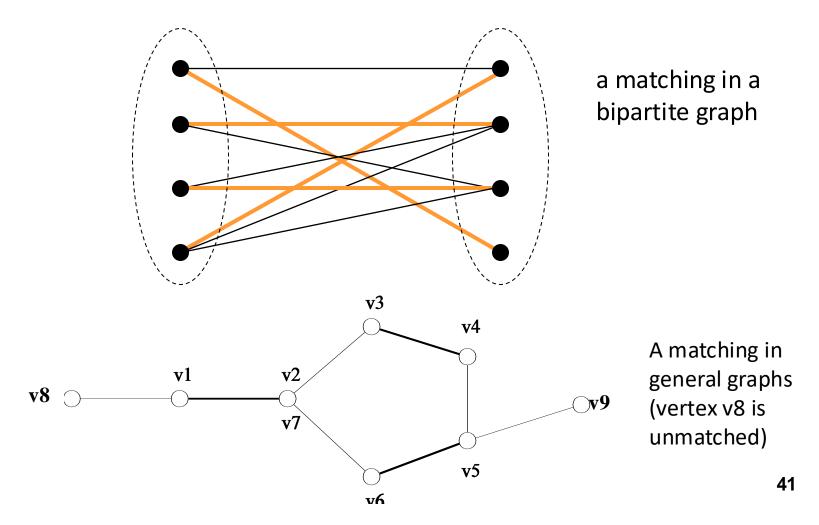
Application to Matching problems

Consider an undirected graph G = (V, E)

Definition: A matching M is a collection of edges $M \subseteq E$, such that no 2 edges share a common vertex

Given a matching M, a vertex u is called *matched* if there exists an edge $e \in M$ such that e has u as one of its endpoints

Examples



Types of matching problems that arise in optimization:

Maximal matching: find a matching where no more edges can be added Maximum matching: find a matching with the maximum possible number of edges

- Perfect matching: find a matching where every vertex is matched (if one exists)
- Maximum weight matching: given a weighted graph, find a matching with maximum possible total weight

Minimum weight perfect matching: given a weighted graph, find a perfect matching with minimum cost

All the above problems can be solved in polynomial time (several algorithms and publications over the last decades)

Trivial algorithm for maximal matching:

- $_{\scriptscriptstyle \rm D}~$ Start from the empty set of edges
- Keep adding edges that do not have common endpoints to the current solution
- Stop when it is not possible to add an edge that does not have any common endpoint with the edges already picked
- The selected set of edges forms a maximal matching

More sophisticated algorithms are required for maximum matching and perfect matching

[Edmonds '65]: first algorithm for maximum matching in general graphs

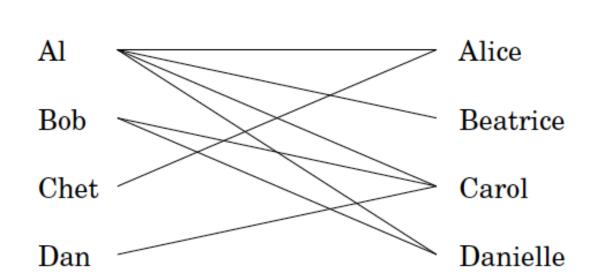
Also first mention of polynomial time solvability as a measure of efficiency

Matching in Bipartite Graphs

An interesting special case for matching problems: A graph G = (V, E) is called bipartite if V can be partitioned into 2 sets V_1 , V_2 such that all edges connect a vertex from V_1 with a vertex from V_2

GIRLS

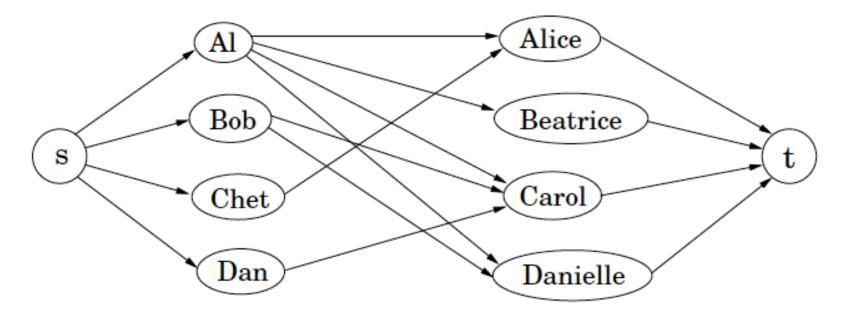
BOYS



Q: How can we find a maximum matching in a bipartite graph?

Matching in Bipartite Graphs

We can reduce this to a max-flow problem



- Orient all edges from left to right
- Add a source node s, connect it to all of V₁
- Add a sink node t, connect all of V₂ to t
- Capacities: set them to 1 for all edges

Matching in Bipartite Graphs

Hence:

- a maximum matching for bipartite graphs can be computed in polynomial time

- The graph has a perfect matching if and only if the max flow in the modified graph equals n

But wait a minute...

- What if the max flow assigns a flow of 0.65 to an edge?
- Fortunately this can be avoided

Theorem: If all the capacities of a graph are integral, then there is an integral optimal flow and our algorithms compute such an integral optimal flow