OIKONOMIKO ΠΑΝΕΠΙΣΤΗΜΙΟ **AOHNON**

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Special Topics on Algorithms Algorithms for flows and matchings Vangelis Markakis – George Zois

Contents

- The maximum flow problem
- The minimum cut problem
- The max-flow min-cut theorem
- Augmenting path algorithms
- . Applications to matching problems

The maximum flow problem

Maximum Flow and Minimum Cut

Max flow and min cut.

- Two very rich algorithmic problems.
- Cornerstone problems in combinatorial optimization. \Box
- Beautiful mathematical duality.

Nontrivial applications / reductions.

- Data mining. \Box
- Project selection. \Box
- Airline scheduling. \Box
- Bipartite matching. \Box
- Image segmentation. \Box
- Network connectivity.
- Network reliability. \Box
- Distributed computing. \Box
- Security of statistical data. \Box
- Many many more . . . \Box

Flow network

- Abstraction for material flowing through the edges. \Box
- $G = (V, E) =$ directed graph, no parallel edges. \Box
- Two distinguished nodes: $s = source, t = sink.$ \Box
- $c(e)$ = capacity of edge e.

The max flow problem

A feasible flow is an assignment of a flow f(e) to every edge so that

 $1.f(e) \le c(e)$ (capacity constraints) 2.For every node other than source and sink:

incoming flow = outgoing flow (preservation of flow)

Goal: find a feasible flow so as to maximize the total amount of flow coming out of s (or equivalently going into t)

Flow going out of s: $v(f) = \hat{d}$ $f(s, u)$ (s, u) ^{\hat{I}} E

By preservation of flow this equals: \hat{d} $f(u,t)$ (u,t) \hat{I} *E*

Flows

Constraints:

Flows

Constraints:

The Maximum Flow Problem

Optimal flow: 28 units of flow from s to t

Cuts

Def. An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

Def. The capacity of a cut (A, B) is: $cap(A, B) = \hat{d}$ $c(e)$

e out of *A*

Cuts

Def. An s-t cut is a partition (A, B) of V with $s \in A$ and $t \in B$.

Def. The capacity of a cut (A, B) is: $cap(A, B) = \mathcal{A}$ $c(e)$ *e* out of *A*

The Minimum Cut Problem

Min s-t cut problem. Find an s-t cut of minimum capacity.

Lemma 1. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

Lemma 1. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

Lemma 1. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

Lemma 1. Let f be any flow, and let (A, B) be any s-t cut. Then, the net flow sent across the cut is equal to the amount leaving s.

$$
\hat{d}_{\text{out of }A} f(e) - \hat{d}_{\text{in to }A} f(e) = v(f)
$$

Pf.

by flow conservation, all terms except $v = s$ are 0

$$
v(f) = \sum_{e \text{ out of } s} f(e)
$$

\n
$$
\rightarrow = \sum_{v \in A} \left(\sum_{e \text{ out of } v} f(e) - \sum_{e \text{ into } v} f(e) \right)
$$

\n
$$
= \sum_{e \text{ out of } v} f(e) - \sum_{e \text{ into } v} f(e).
$$

to A

$$
e \t{out of } A \t{e in}
$$

Lemma 2. Let f be any flow, and let (A, B) be any s-t cut. Then the value of the flow is at most the capacity of the cut.

Cut capacity = $30 \implies$ Flow value ≤ 30

Lemma 2. Let f be any flow. Then, for any s-t cut (A, B) we have $v(f) \leq cap(A, B)$.

Pf.

$$
v(f) = \int_{e \text{ out of } A}^{e} f(e) - \int_{e \text{ in to } A}^{e} f(e)
$$

$$
= \int_{e \text{ out of } A}^{e} f(e)
$$

$$
= \int_{e \text{ out of } A}^{e} c(e)
$$

$$
= \int_{e \text{ out of } A}^{e} f(e)
$$

$$
= \int_{e \text{ out of } A}^{e} f(e)
$$

Certificate of Optimality

Corollary 1. Max flow is at most equal to the capacity of the min cut (i.e., max flow is a lower bound to min cut) Corollary 2. Let f be any flow, and let (A, B) be any cut. If $v(f) = cap(A, B)$, then f is a max flow and (A, B) is a min cut.

Greedy algorithm.

- Start with $f(e) = 0$ for every edge $e \in E$. \Box
- Find an s-t path P where each edge has $f(e) < c(e)$. \Box
- Augment flow along path P. \Box
- Repeat until you get stuck. \Box

Greedy algorithm.

- Start with $f(e) = 0$ for every edge $e \in E$. \Box
- Find an s-t path P where each edge has $f(e) < c(e)$. \Box
- Augment flow along path P. \Box
- Repeat until you get stuck. \Box

Greedy algorithm.

- Start with $f(e) = 0$ for every edge $e \in E$. \Box
- Find an s-t path P where each edge has $f(e) < c(e)$. \Box
- Augment flow along path P. \Box
- Repeat until you get stuck. \Box

 \searrow locally optimality \neq global optimality

We need an algorithm with more flexibility Desired operations:

- Push flow forward along a non-saturated path \Box
- Push flow backwards (i.e., undo some units of flow when necessary) \Box
	- in order to to divert flow to a different direction

The residual graph:

Given the initial graph G, and a fesible flow f, the residual graph G_f has

- the same set of nodes as G
- forward edges: for every edge $e = (u, v)$ of G with $f(e) < c(e)$, we include \Box the same edge in G_f with residual capacity $c(e) - f(e)$
- backward edges: for every edge $e = (u, v)$ of G with $f(e) > 0$, we include the \Box edge (v, u) in G_f with residual capacity $f(e)$

Simple Facts:

- Given G and f, the graph G_f can be constructed \Box efficiently
- G_f has at most twice as many edges as G \Box
- Capacities in G_f are strictly positive **values** and the strictly positive \Box

Residual Graph and Augmenting Paths

Augmenting Path

Augmenting path = path in residual graph

- Allows to undo some flow units from current solution
- And produce a flow of higher value

Augmenting Path

Augmenting path = path in residual graph.

 \Box Max flow \Leftrightarrow no augmenting paths ???

Augmenting Path Algorithm

```
Augment(f, c, P) {
    \mathbf{b} \leftarrow \text{bottleneck}(\mathbf{P}) foreach e \in P {
        if (e \in E) f(e) \leftarrow f(e) + bf(e^R) \leftarrow f(e) - b }
     return f
}
```
Bottleneck is the minimum residual capacity of any edge in P

forward edge

reverse edge

```
Ford-Fulkerson(G, s, t, c) {
   foreach e \in E f(e) \leftarrow 0 Gf  residual graph
    while (there exists augmenting path P) {
       f \leftarrow \text{Augment}(f, c, P)update G_f }
    return f
}
```
[Ford, Fulkerson '56]: Theorem 1 (algorithm correctness): A feasible flow is optimal if and only if there is no augmenting path (i.e., no s-t path in the residual graph)

Theorem 2 (the max-flow min-cut theorem): For any flow graph $G = (V, E)$ with capacities on its edges, value of max flow = capacity of min s-t cut

We will prove both theorems together

Proof sketch:

Let f be a feasible flow computed by the algorithm. We prove that the following are equivalent:

- (i) The flow f is optimal
- \lim There is no augmenting path with respect to f (i.e., no s-t path in the residual graph)
- (iii) There exists a cut (A, B) such that $v(f) = cap(A, B)$

Proof sketch:

 $(ii) \implies (ii)$

trivial, if there was an augmenting path, we would increase the flow and f would not be optimal

$(ii) \Rightarrow (iii)$

- Let f be a flow with no augmenting paths
- Let A be the set of vertices reachable from s in the residual graph G_f \Box
- L Let B := $V \setminus A$
- By definition of A, $s \in A$ \Box
- By our assumption on f (no augmenting paths), $t \notin A$ \Box
- Hence (A, B) is a valid s-t cut \Box

Proof sketch: $(iii) \Rightarrow (iii)$ cont'd

- **Claim 1: for an edge e = (u, v) with** $u \in A$ **and** $v \in B$ **, f(e) = c(e)**
	- $-$ Otherwise, v is reachable in G_f from s (since $u \in A$)
- Claim 2: for an edge $e = (u, v)$ with $u \in B$ and $v \in A$, $f(e) = 0$ \Box
	- $-$ Otherwise, there is a backward edge (v, u) in G_f , and hence u is reachable from s

$$
v(f) = \hat{a} f(e) - \hat{a} f(e)
$$
 (From Lemma 1)
\ne out of A
\n= $\hat{a} c(e)$
\ne out of A
\n= $cap(A, B)$

 $(iii) \Rightarrow (i)$

follows by the Corollary 2 on certificates of optimality

Running time

Assumption: Assume all capacities are integers

Claim 1: All flow values and residual capacities are integers throughout the execution of the algorithm

Claim 2: In every iteration of the while loop, the flow increases by at least 1 unit

Claim 3: Let
$$
C = \bigcup_{(s,u)\in E} c(s,u)
$$
. Then max flow $\leq C$

Total running time: O((m+n) C) pseudopolynomial algorithm Corollary: If all capacities are 0 or 1, then running time is O(mn)

important special case in some applications \Box

Improving the running time

Worst case scenarios:

With integer capacities, the algorithm may need to do C augmentations

If capacities are irrational, algorithm not even guaranteed to terminate!

Some improvements

[Edmonds-Karp 1972, Dinitz 1970]:

Choose augmenting paths with:

- Max bottleneck capacity \mathbb{R}
- Sufficiently large bottleneck capacity $\overline{2}$
- Fewest number of edges $\overline{2}$

Capacity Scaling

Intuition: Choosing a path with the highest bottleneck capacity increases flow by max possible amount.

- Actually, don't worry about finding the exact highest bottleneck path (this may slow down the algorithm)
- Maintain a scaling parameter Δ . \Box
- Let $G_f(\Delta)$ be the subgraph of the residual graph consisting only of arcs \Box with capacity at least Δ

Capacity Scaling

```
Scaling-Max-Flow(G, s, t, c) {
    foreach e \in E f(e) \leftarrow 0\Delta \leftarrow smallest power of 2 less than or equal to C
    Gf  residual graph
    while (\Delta \geq 1) {
       G_f(\Delta) \leftarrow \Delta-residual graph
         while (there exists an augmenting path P in G_f(\Delta)) {
            f \leftarrow \text{augment}(f, c, P) update G_f(\Delta) }
       \Delta \leftarrow \Delta / 2 }
     return f
}
```
Correctness and running time

Assume integer capacities

Correctness:

- Eventually, when $\Delta = 1 \implies G_f(\Delta) = G_f$ $\overline{2}$
- Hence the algorithm stops when there are no s-t paths in G_f $\overline{2}$
- The flow must be optimal by the correctness analysis of Ford-Fulkerson $\overline{2}$

Running time analysis

Lemma 1: The outer while loop runs for $1 + \lceil \log_2 C \rceil$ iterations Proof: Initially $C \leq \Delta < 2C$. Δ decreases by a factor of 2 in each iteration of the outer while loop

Correctness and running time

Assume integer capacities Running time analysis (cont'd) Lemma 2: Let f be the flow at the end of a Δ -scaling phase. Then the value of the maximum flow is at most $v(f) + m \Delta$ Proof: do it as an exercise

Lemma 3: There are at most 2m augmentations per scaling phase Proof: Consider the beginning of a scaling phase with parameter Δ Let f be the flow at the end of the previous scaling phase **Examma 2** \Rightarrow v(f^{*}) ≤ v(f) + m (2Δ) [previous is twice the current Δ] . Each augmentation in a Δ -phase increases v(f) by at least Δ

Theorem: The capacity scaling max-flow algorithm finds a max flow in O(m log C) augmentations. It can be implemented to run in O(m² log C) time

Application to Matching problems

Consider an undirected graph $G = (V, E)$

Definition: A matching M is a collection of edges $M \subseteq E$, such that no 2 edges share a common vertex

Given a matching M, a vertex u is called *matched* if there exists an edge $e \in M$ such that e has u as one of its endpoints

Examples

Types of matching problems that arise in optimization:

Maximal matching: find a matching where no more edges can be added Maximum matching: find a matching with the maximum possible number of edges

- Perfect matching: find a matching where every vertex is matched (if one exists)
- Maximum weight matching: given a weighted graph, find a matching with maximum possible total weight

Minimum weight perfect matching: given a weighted graph, find a perfect matching with minimum cost

All the above problems can be solved in polynomial time (several algorithms and publications over the last decades)

Trivial algorithm for maximal matching:

- start from the empty set of edges
- Keep adding edges that do not have common endpoints to the current solution
- Stop when it is not possible to add an edge that does not have any common endpoint with the edges already picked
- The selected set of edges forms a maximal matching

More sophisticated algorithms are required for maximum matching and perfect matching

[Edmonds '65]: first algorithm for maximum matching in general graphs

Also first mention of polynomial time solvability as a measure of efficiency

Matching in Bipartite Graphs

An interesting special case for matching problems: A graph G = (V, E) is called bipartite if V can be partitioned into 2 sets V₁, V₂ such that all edges connect a vertex from V_1 with a vertex from V_2

Q: How can we find a maximum matching in a bipartite graph?

Matching in Bipartite Graphs

We can reduce this to a max-flow problem

- Orient all edges from left to right
- Add a source node s, connect it to all of V_1
- Add a sink node t, connect all of V_2 to t
- Capacities: set them to 1 for all edges

Matching in Bipartite Graphs

Hence:

- a maximum matching for bipartite graphs can be computed in polynomial time

- The graph has a perfect matching if and only if the max flow in the modified graph equals n

But wait a minute...

- What if the max flow assigns a flow of 0.65 to an edge?
- Fortunately this can be avoided

Theorem: If all the capacities of a graph are integral, then there is an integral optimal flow and our algorithms compute such an integral optimal flow