Special Topics on Algorithms Modular Arithmetic, Primality Testing

Vangelis Markakis Ioannis Milis and George Zois

- Deals with restricted ranges of integers, e.g., $Z_N = \{0, 1, 1\}$..., N-1} for some large N
- Reset a counter to zero when an integer reaches a max value $N > 0$

If
$$
x= qN + r
$$
, $0 \le r \le N-1$, $N>0$
x mod $N = r$

 $x \equiv y \pmod{N} \Leftrightarrow x \mod{N} = y \mod{N}$ x and y are congruent modulo N

Examples:

• $1 \equiv (9+4) \mod 12$

• $253 \equiv 13 \pmod{60}$, since $253 = 4*60+13$ (253 minutes is 4 hours + 13 min)

Claim 1: $x \equiv y \pmod{N}$ iff N|x-y **Proof :** \Rightarrow : x=pN+r, y=qN+r \Rightarrow x-y=(p-q)N \Rightarrow N | x-y $\Leftrightarrow: N \mid x-y \Rightarrow x-y = kN \Rightarrow x=y+kN$

Let $r = y \mod N$, that is, $y=qN+r$ }

 \Rightarrow x=qN+r+kN \Rightarrow x=(q+k)N+r \Rightarrow r= x mod N

$mod N$ is an equivalence relation

- $a \equiv a \pmod{N}$ Reflexivity $-a \equiv b \pmod{N} \Rightarrow b \equiv a \pmod{N}$ Symmetry $-a \equiv b \pmod{N}$, $b \equiv c \pmod{N} \Rightarrow a \equiv c \pmod{N}$ Transitivity

Modulo N arithmetic divides Z into N equivalence classes each one of the form $[a] = \{x \mid x \equiv a \pmod{N}\}\,$, $0 \le a \le N-1$ or [a]= {kN+a | k \in Z }, since x=kN+a, $0 \le a \le N-1$

Example:

There are 5 equivalence classes modulo 5 $Z_5 = \{0, 1, 2, 3, 4\}$ $[0] = \{..., -15, -10, -5, 0, 5, 10, 15, ...\}$ $[1] = \{..., -14, -9, -4, 1, 6, 11, 16, ...\}$ $[2] = \{..., -13, -8, -3, 2, 7, 12, 17, ...\}$ $[3] = \{..., -12, -7, -2, 3, 8, 13, 18, ...\}$ $[4] = \{..., -11, -6, -1, 4, 9, 14, 19, ...\}$

All numbers in [a] are congruent mod N (any of them is substitutable by any other)

Modular Addition and Multiplication

Substitution Rule

Let $x \equiv x' \pmod{N}$ and $y \equiv y' \pmod{N}$, then, $x+y \equiv x'+y' \pmod{N}$ and $xy \equiv x'y' \pmod{N}$

The following properties also hold: i) $x+(y+z) \equiv (x+y)+z \pmod{N}$ Associativity ii) $xy \equiv yx \pmod{N}$ Commutativity iii) $x(y+z) \equiv xy+xz \pmod{N}$ Distributivity

Hence:

in performing a sequence of additions and multiplications (mod N) we can reduce intermediate results to their remainders mod N in any stage

Example: $2^{345} \equiv (2^5)^{69} \equiv 32^{69} \equiv 1^{69} \equiv 1 \pmod{31}$

Common arithmetic: inverse of $\alpha \neq 0$: $x=1/\alpha$, $\alpha x=1$

Modular arithmetic: multiplicative inverse of α, modulo N:

- $x \in Z$ such that $\alpha x \equiv 1 \pmod{N}$
- We can also write $x \equiv \alpha^{-1} \pmod{N}$
- does not always exist!

Claim 2: For $1 \le a \le N$, a has a multiplicative inverse mod N iff $gcd(a, N) = 1$

i)Assume a has a multiplicative inverse mod N. By contradiction, if $\text{gcd}(a,N) > 1$, it must hold that $\text{gcd}(a,N)$ ax mod N, for every x. Thus, it does not hold that $ax \equiv 1 \pmod{N}$ ii)If $gcd(a,N) = 1$, then by applying $ExtEUCLID(a,N)$...

Example: $2x \equiv 1 \pmod{6}$ $gcd(2,6) = 2 \Rightarrow 2$ does not have an inverse mod 6

How can we find multiplicative inverses when they exist? If $gcd(a,N)=1$ then ExtEUCLID returns integers x,y such that $ax + Ny = 1 \Rightarrow ax \equiv 1 \pmod{N}$

Example: $11x \equiv 1 \pmod{25}$

ExtEUCLID(11, 25) returns $x = -34$ (=16 mod 25), $y = 15$, gcd(11, $(25) = 1$, and thus $11^*(-34) \equiv 1 \pmod{25}$

If $gcd(a,N)=1$ we say that a, N are relatively primes or coprimes **Hence:** α has a multiplicative inverse modulo N iff a, N are coprimes.

Prime Numbers

- A number p is prime iff its only divisors are the trivial divisors 1 and p
- \sharp N: N|p, $2 \le N \le p-1$
- By convention, 1 is not a prime
- $P = \{2, 3, 5, 7, 11, 13, 17, 19, \ldots \}$
- Prime numbers play a special role in number theory and its applications
- A number that is not prime is called composite

Goldbach conjecture:

 Any even integer greater than 3 can be written as the sum of two primes

Prime Numbers

- Some big prime numbers:
	- $(333+10^{793})10^{791} + 1$ (1585 digits, identified in 1987)
	- 2¹²⁵⁷⁷⁸⁷ 1 (378.632 digits, 1996)
	- \cdot 2^{77,232,917}-1 (around 23 million digits, Dec 2017)
	- Mersenne primes: prime numbers in the form $2^m 1$
		- Not all numbers of this form are primes
	- Fermat primes: prime numbers in the form 2^{2^n} + 1
		- Again, not all numbers of this form are primes

Fundamental theorem of arithmetic (or unique factorization theorem):

Every natural number ≥ 2 , can be written in a unique way as a product of prime powers:

$$
n = p_1^{e_1} p_2^{e_2} ... p_r^{e_r}
$$

- where each p_i is prime, $p_1 < p_2 < \cdots < p_r$ and each e_i is a positive integer
- $-$ 6000 is uniquely decomposed as 2⁴ \cdot 3 \cdot 5³
- Proof by (strong) induction
- Corollary: If p is prime and p|ab → p|a or p|b (not true when p is not prime)

CLAIM 1 (Euclid's theorem): There are infinitely many primes

<u>Proof:</u> Suppose that $P = \{p_1, p_2, ..., p_n\}$ for some n

Let $p = p_1 \cdot p_2 \cdot p_3 \cdot ... \cdot p_n + 1$

- If p is prime, contradiction, since we assumed no other primes
- If p is not prime

By the fundamental theorem, there exists a prime that divides p

But p mod $p_i = 1$, $\forall i, 1 \le i \le n$ again a contradiction.

- Relatively prime numbers
	- Two integers a, b are relatively prime (or coprimes) if $gcd(a, b) = 1$.
		- E.g., 8 and 15 are relatively prime,
		- By Euclid's algorithm we can decide in polynomial time if 2 numbers are relatively prime with each other

Euler's phi function

Definition: For every $n \ge 2$, $\varphi(n)$ = number of integers between 1 and n that are relatively prime with n

Properties:

- For any prime number p: $\varphi(p) = p-1$
- $φ(p^α) = p^α p^{α-1} = p^α (1-1/p)$
- φ (mn) = φ (m) φ (n), iff gcd(m,n) = 1

Corollary: For every n≥2

$$
f(n) = n \bigodot_{p|n}^{n} \underset{\Theta}{\overset{\circ}{\mathcal{C}}} 1 - \frac{1}{p} \underset{p|}{\overset{\circ}{\mathcal{C}}}
$$

(where p refers to all prime numbers that divide n)

Prime Numbers

Euler's phi function

- The properties help in simplifying the calculations
	- $\varphi(45) = 24$, since the prime factors of 45 are 3 and 5

– φ(45)=45*(1-1/3)(1-1/5)=45*(2/3)(4/5)=24

•
$$
\varphi(1512) = \varphi(2^{3*}3^{3*}7) = \varphi(2^{3})^{*} \varphi(3^{3})^{*} \varphi(7) =
$$

 $(2^{3} - 2^{2})^{*} (3^{3} - 3^{2})^{*}(7 - 1) = 4^{*} 18^{*} 6 = 432$

• Hence there are 432 numbers between 1 and 1512 that are relatively prime with 1512

2 useful properties for simplifying calculations

Fermat'**s Little theorem** [around 1640] If p is prime then for every α such that $1 \le \alpha \le p-1$ $\alpha^{p-1} \equiv 1 \pmod{p}$

A generalization: Euler's theorem

For every integer n>1, $\alpha^{\varphi(n)} \equiv 1 \pmod{n}$ for every α such that $gcd(\alpha, n) = 1$ [if n is prime, $\varphi(n) = n-1$]

For example: Find 2²⁶ mod 7 $2^{26} = 2^2 \cdot 2^{24} = 2^2 \cdot (2^6)^4 \equiv 2^2 \cdot 1 \mod 7 \equiv 4 \mod 7$

Fermat'**s Little theorem** [around 1640] If p is prime then for every α such that $1 \le \alpha \le p-1$ $\alpha^{p-1} \equiv 1 \pmod{p}$

Proof:

• Let $S = \{1, 2, 3, ..., p-1\}$ all possible non-zero mod p integers •Main observation: By multiplying integers in S by a (mod p) we simply re-permute them!

It is an implication of the fact that α has a multiplicative inverse mod p, since $gcd(\alpha, p)=1$

Prime Numbers

Example:

 $\alpha = 3, p = 7, \alpha^6 \equiv 1 \pmod{7}$

$$
\{1,2,3,4,5,6\} = \{\underbrace{1 \cdot 3, 2 \cdot 3, 3 \cdot 3, 4 \cdot 3, 5 \cdot 3, 6 \cdot 3 \text{ (mod 7)}\}
$$

Taking products: $6! \equiv 3^6 \cdot 6! \pmod{7}$ 6! is relatively prime to $7 \Rightarrow 3^6 \equiv 1 \pmod{7}$

Prime Numbers

Proof continued (for general α and prime p)

Consider 2 distinct numbers

i, j ∈ S \Rightarrow i≠j, i, j ≤ p-1, i,j≠0

The numbers resulting by multiplying the elements of S by α (mod p) are:

• **Distinct**

if not: $\alpha \cdot i \equiv \alpha \cdot j \pmod{p} \Rightarrow i \equiv j \pmod{p} \Rightarrow i \equiv j$, contradiction

- **Non zero mod p** if $\alpha \cdot i \equiv 0 \pmod{p} \Rightarrow i=0$, contradiction
- **In the range [1, p-1]**

Hence, they are a permutation of S \Rightarrow (p-1)! = $\alpha^{p-1} \cdot$ (p-1)! (mod p) \Rightarrow $\alpha^{p-1} \equiv 1 \pmod{p}$

Problem Primes:

- I: An integer $N > 1$
- Q: Answer whether or not N is prime

One of the most fundamental problems in Computer Science

A naive approach: Trial division

- Try to see if any of the numbers 2, 3, 4, ..., N-1 divides N
- Actually it suffices to try only with the numbers 2, 3, ..., $\lfloor \sqrt{N} \rfloor$
	- If N is composite it has a factor, which is at most \sqrt{N}
- •In fact, since N is odd, we can also remove the even numbers
- Worst case complexity: $\sqrt{N/2}$, hence $O(\sqrt{N})$, exponential since \sqrt{N} = $2^{\log(N/2)}$
- Effective only for small values of N (for RSA, N has 512 bits or even more)

Primality Testing

A different approach

•Faster but with a small probability of error

Fermat Test

Algorithm PRIME (N) Pick a positive integer α <N at random if $\alpha^{N-1} \equiv 1 \pmod{N}$ then return YES // we hope yes else return NO // definite no

Complexity: only need to use the algorithm for exponentiation mod N (repeated squaring), hence O(logN) multiplications

Primality Testing

The algorithm can make errors but only of one kind:

- If it says that N is composite, then it is correct
- If it says that N is prime then it may be wrong
- $gcd(\alpha, N) > 1$: N is not prime, and N fails the test
- $gcd(\alpha, N) = 1$
	- if N is prime: passes the test
	- if N is composite: can pass the test for some α' s! e.g. $341 = 11*31$ and $2^{340} \equiv 1 \pmod{341}$
		- if N is a Carmichael number: passes the test for all α' s‼

e.g.
$$
561 = 3 \times 11 \times 17
$$
 and $\alpha^{560} \equiv 1 \pmod{561}$
for every α for which: $gcd(\alpha, n)=1!$

Carmichael numbers

- Actually due to Korselt
- They are the composite numbers that pass the Fermat test *for all* a's that are relatively prime to them
- Alternative definition: A number n is a Carmichael number if it is not divisible by the square of a prime and, for all prime divisors p of n, it is true that p−1 | n−1
- They are extremely rare (561, 1105, 1729, 2465,…)
- $561 = 3.11.17$
- There are only 255 of them less than 10^8
- There are 20,138,200 Carmichael numbers between 1 and 10^{21} (approximately one in 50 billion numbers)
- Ignore them for now (see Miller-Rabin test for a better algorithm to test primality)

Primality Testing

Prime: passes the Fermat test Composite: passes or fails the test depending on α , but there is an α for which it fails if it is not a Carmichael number N

If N is composite and not a Carmichael number, for how many values of α does it fail the test?

CLAIM 3: If a number N fails the Fermat test for some value of α , then N also fails the test for at least half of **the choices of** α **< N**

Primality Testing

$$
N\begin{cases}\n\text{Prime,} & \alpha^{N-1} \equiv 1 \pmod{N}, \text{ for all } \alpha < N \\
\text{not Prime, } \alpha^{N-1} \equiv 1 \pmod{N}, \text{ for at most half} \\
\text{of the values } \alpha \leq N\n\end{cases}
$$

Pr[Fermat test returns YES, when N is Prime]=1 Pr[Fermat test returns YES, when N is not Prime] $\leq 1/2$

Repeat the algorithm k times for different α_1 , α_2 ,..., $\alpha_{\rm k}$ Pr[Fermat test returns YES, when N is not Prime] $\leq 1/2^k$

Density of prime numbers

- Very important to be able to find prime numbers quickly
- How should we search for prime numbers?
- Theorem: For every $n\geq 1$, there is always a prime between n and 2n
- Initial proof: Chebyshev (1850)
- Simpler proof: Erdos (1932), at the age of 19!!
- Thus primes are relatively dense within the natural numbers

Prime number Theorem (Conjectured by Legendre et al. ~1797-1798, proved in 1896)

$$
Lex π(x) be the number of primes ≤ x. Then
$$

$$
p(x) \sim \frac{x}{\ln x} \quad \text{or} \quad \lim_{x \otimes y} \frac{p(x)}{x / \ln x} = 1
$$

If N is a random integer of n bits (hence $\leq 2^n$), it has roughly a one-in-n chance of being prime:

$$
p = Pr[N \text{ is prime}] = \frac{2^{n} / \ln 2^{n}}{2^{n}} = \frac{1}{\ln 2^{n}} = \frac{\log e}{\log 2^{n}} = \frac{\log e}{n} = \frac{1.44}{n}
$$

Algorithm

Repeat

 Pick a random n-bit integer N Run the Fermat test on N Until N passes

How many iterations? (Waiting for the first success)

Analysis on the number of iterations

- Let k= #trials until first success
- Let p = success probability of each trial = $Pr[$ randomly chosen N is prime]
- $Pr[k=j]$ = probability that we succeed in the *j*-th trial (and hence fail in previous ones)
- Pr [k=j]= (1-p)j-1∙*p*

$$
E[k] = \sum_{j=1}^{\infty} j \Pr[k = j] = \sum_{j=1}^{\infty} j(1-p)^{j-1} p = \frac{p}{p-1} \sum_{j=1}^{\infty} j(1-p)^{j}
$$

=
$$
\frac{p}{p-1} \frac{1-p}{p^2} = \frac{1}{p} = \frac{n}{1.44}
$$

5 ⁹ passes the test] $\approx \frac{20.000}{10^9} = 2.10^{-5}$ 10^9 $Pr[a \text{ composite } \leq 25 \cdot 10^9 \text{ passes the test}] \approx \frac{20.000}{10^9} = 2 \cdot 10^{-5}$

Linear equations in modular arithmetic

- Around 100 A.D.
- Question: Is there an integer x such that in a parade of x soldiers, when they align themselves in
- 1. Groups of 3, there is only 1 remaining soldier in the last row
- 2. Groups of 4, there are 3 remaining soldiers
- 3. Groups of 5, there are 3 remaining soldiers

Theorem:

- $-$ Let n_1 , n_2 , ..., n_k be positive integers that are relatively prime with each other, hence gcd(n_i , n_j) = 1, \forall i≠j.
- $-$ Then for any integers a_1 , a_2 , ..., a_k , the system

$$
x \equiv a_1 \mod n_1, x \equiv a_2 \mod n_2, \ldots, x \equiv a_k \mod n_k,
$$

has a unique solution within Z_{n} , where $n = n_{1} \cdot n_{2} \cdot ... \cdot n_{k}$

Corollary: If n_1 , n_2 , ..., n_k , are positive integers that are relatively prime with each other, then for any x and a: $x \equiv a \mod n$ for i = 1, 2, ..., k iff $x \equiv a \mod n$ where $n = n_1 \cdot n_2 \cdot ... \cdot n_k$

Proof:

- Let n_1 , n_2 , ..., n_k be relatively prime with each other
- Let $a_1, a_2, ..., a_k$ be arbitrary integers
- $\forall i$ define $c_i = n/n_i$.
- gcd(c_i, n_i) = 1 \rightarrow c_i has an inverse mod n_{i.}
- Let d_i be the inverse, hence c_i d_i mod $n_i = 1$
- The number $x^* = a_1c_1d_1 + a_2c_2d_2 + ... + a_kc_kd_k$ satisfies all the equations
- Complexity: polynomial since we are just using the extended Euclidean algorithm

Example

- Which x satisfies the following equations?
	- $x \equiv 2 \pmod{5}$
	- $x \equiv 3 \pmod{13}$
- $a_1=2$, $n_1=5$, $a_2=3$, $n_2=13$
- We have $n=n_1 n_2=5 n 13=65$, $c_1 = 65/5 = 13$, $c_2 = 5$
- Since $13^{-1} \equiv 2 \pmod{5}$ and $5^{-1} \equiv 8 \pmod{13}$, $d_1 = 2$, $d_2 = 8$

• Then,
$$
x = a_1c_1d_1 + a_2c_2d_2
$$

\n $x \equiv 2 \cdot 2 \cdot 13 \cdot 3 \cdot 5 \cdot 8$ (mod 65)
\n $\equiv 52 + 120 = 42$ (mod 65)

All the solutions are in the form $x(t)=42+65t$, $t \in Z$