Special Topics on Algorithms Modular Arithmetic, Primality Testing

Vangelis Markakis Ioannis Milis and George Zois

- Deals with restricted ranges of integers, e.g., $Z_N = \{0, 1, ..., N-1\}$ for some large N
- Reset a counter to <u>zero</u> when an integer reaches a max value N > 0

If
$$x=qN+r$$
, $0 \le r \le N-1$, $N>0$
x mod N = r

 $x \equiv y \pmod{N} \Leftrightarrow x \mod{N} \equiv y \mod{N}$ x and y are congruent modulo N

Examples:

• $1 \equiv (9+4) \mod 12$

• $253 \equiv 13 \pmod{60}$, since $253 \equiv 4*60+13$ (253 minutes is 4 hours + 13 min)

Claim 1: $x \equiv y \pmod{N}$ iff $N \mid x-y$ Proof:

 $\Rightarrow: \quad x=pN+r, \ y=qN+r \Rightarrow x-y=(p-q)N \Rightarrow N \mid x-y$

$$\Leftarrow: N | x-y \Rightarrow x-y = kN \Rightarrow x=y+kN$$

Let $r=y \mod N$,
that is, $y=qN+r$ \Rightarrow

 $\Rightarrow x=qN+r+kN \Rightarrow x=(q+k)N+r \Rightarrow r=x \text{ mod } N$

mod N is an equivalence relation

 $-a \equiv a \pmod{N}$ Reflexivity $-a \equiv b \pmod{N} \Rightarrow b \equiv a \pmod{N}$ Symmetry $-a \equiv b \pmod{N}, b \equiv c \pmod{N} \Rightarrow a \equiv c \pmod{N}$ Transitivity

Modulo N arithmetic divides Z into N equivalence classes each one of the form $[a]= \{x \mid x \equiv a \pmod{N}\}, 0 \le a \le N-1$ or $[a]= \{kN+a \mid k \in Z\}, \text{ since } x=kN+a, 0 \le a \le N-1$

Example:

There are 5 equivalence classes modulo 5 $Z_5 = \{0, 1, 2, 3, 4\}$ $[0]= \{\dots, -15, -10, -5, 0, 5, 10, 15, \dots\}$ $[1]= \{\dots, -14, -9, -4, 1, 6, 11, 16, \dots\}$ $[2]= \{\dots, -13, -8, -3, 2, 7, 12, 17, \dots\}$ $[3]= \{\dots, -12, -7, -2, 3, 8, 13, 18, \dots\}$ $[4]= \{\dots, -11, -6, -1, 4, 9, 14, 19, \dots\}$

All numbers in [a] are congruent mod N (any of them is substitutable by any other)

Modular Addition and Multiplication

Substitution Rule

Let $x \equiv x' \pmod{N}$ and $y \equiv y' \pmod{N}$, then, $x+y \equiv x'+y' \pmod{N}$ and $xy \equiv x'y' \pmod{N}$

The following properties also hold: i) $x+(y+z) \equiv (x+y)+z \pmod{N}$ ii) $xy \equiv yx \pmod{N}$ iii) $x(y+z) \equiv xy+xz \pmod{N}$

Associativity Commutativity Distributivity

Hence:

in performing a sequence of additions and multiplications (mod N) we can reduce intermediate results to their remainders mod N <u>in any stage</u>

<u>Example:</u> $2^{345} \equiv (2^5)^{69} \equiv 32^{69} \equiv 1^{69} \equiv 1 \pmod{31}$ **<u>Common arithmetic:</u>** inverse of $\alpha \neq 0$: x=1/ α , α x=1

<u>Modular</u> arithmetic: multiplicative inverse of α , modulo N:

- $x \in Z$ such that $\alpha x \equiv 1 \pmod{N}$
- We can also write $x \equiv \alpha^{-1} \pmod{N}$
- does not always exist!

<u>Claim 2</u>: For $1 \le a < N$, a has a multiplicative inverse mod N iff gcd(a, N) = 1

i)Assume a has a multiplicative inverse mod N. By contradiction, if gcd(a,N) > 1, it must hold that $gcd(a,N) \mid ax \mod N$, for every x. Thus, it does not hold that $\alpha x \equiv 1 \pmod{N}$ ii)If gcd(a,N) = 1, then by applying ExtEUCLID(a,N) ... **Example:** $2x \equiv 1 \pmod{6}$ gcd(2,6) = 2 \Rightarrow 2 does not have an inverse mod 6

How can we find multiplicative inverses when they exist? If gcd(a,N)=1 then ExtEUCLID returns integers x,y such that $ax + Ny = 1 \Rightarrow ax \equiv 1 \pmod{N}$

Example: $11x \equiv 1 \pmod{25}$

ExtEUCLID(11, 25) returns x = -34 (=16 mod 25), y = 15, gcd(11, 25) = 1, and thus $11^{*}(-34) \equiv 1 \pmod{25}$

If gcd(a,N)=1 we say that a, N are relatively primes or coprimes <u>**Hence:**</u> α has a multiplicative inverse modulo N iff a, N are coprimes.

Prime Numbers

- A number p is prime iff its only divisors are the trivial divisors 1 and p
- $\neq N: N \mid p, 2 \le N \le p-1$
- By convention, 1 is not a prime
- P= {2, 3, 5, 7, 11, 13, 17, 19,.....}
- Prime numbers play a special role in number theory and its applications
- A number that is not prime is called composite

Goldbach conjecture:

Any even integer greater than 3 can be written as the sum of two primes

Prime Numbers

- Some big prime numbers:
 - $(333+10^{793})10^{791}+1$ (1585 digits, identified in 1987)
 - 2¹²⁵⁷⁷⁸⁷ 1 (378.632 digits, 1996)
 - 2^{77,232,917}-1(around 23 million digits, Dec 2017)
 - Mersenne primes: prime numbers in the form 2^m 1
 - Not all numbers of this form are primes
 - Fermat primes: prime numbers in the form $2^{2^n} + 1$
 - Again, not all numbers of this form are primes

Fundamental theorem of arithmetic (or unique factorization theorem):

Every natural number \geq 2, can be written in a unique way as a product of prime powers:

$$n = p_1^{e_1} p_2^{e_2} \dots p_r^{e_r}$$

- where each p_i is prime, $p_1 < p_2 < \cdots < p_r$ and each e_i is a positive integer
- 6000 is uniquely decomposed as $2^4 \cdot 3 \cdot 5^3$
- Proof by (strong) induction
- Corollary: If p is prime and p|ab → p|a or p|b (not true when p is not prime)

<u>CLAIM 1 (Euclid's theorem)</u>: There are infinitely many primes

Proof: Suppose that $P = \{p_1, p_2, ..., p_n\}$ for some n

Let $p = p_1 \cdot p_2 \cdot p_3 \cdot \dots \cdot p_n + 1$

- If <u>p is prime</u>, contradiction, since we assumed no other primes
- If <u>p is not prime</u>

By the fundamental theorem, there exists a prime that divides p

But p mod p_i =1, $\forall i, 1 \le i \le n$ again a contradiction.

- Relatively prime numbers
 - Two integers a, b are relatively prime (or coprimes) if gcd(a, b) = 1.
 - E.g., 8 and 15 are relatively prime,
 - By Euclid's algorithm we can decide in polynomial time if 2 numbers are relatively prime with each other

Euler's phi function

Definition: For every $n \ge 2$, $\varphi(n) =$ number of integers between 1 and n that are relatively prime with n

Properties:

- For any prime number p: $\varphi(p) = p-1$
- $\phi(p^{\alpha}) = p^{\alpha} p^{\alpha-1} = p^{\alpha} (1-1/p)$
- $\phi(mn) = \phi(m)\phi(n), \text{ iff } gcd(m,n) = 1$

Corollary: For every n≥2

$$j(n) = n \widetilde{O}_{p|n}^{\mathcal{X}} - \frac{1}{p^{\circ}}$$

(where p refers to all prime numbers that divide n)

Prime Numbers

Euler's phi function

- The properties help in simplifying the calculations
 - $\phi(45) = 24$, since the prime factors of 45 are 3 and 5

 $- \phi(45) = 45^{*}(1-1/3)(1-1/5) = 45^{*}(2/3)(4/5) = 24$

•
$$\varphi(1512) = \varphi(2^{3*}3^{3*}7) = \varphi(2^{3})^* \varphi(3^{3})^* \varphi(7) =$$

 $(2^{3}-2^{2})^* (3^{3}-3^{2})^*(7-1) = 4^* 18^* 6 = 432$

• Hence there are 432 numbers between 1 and 1512 that are relatively prime with 1512

2 useful properties for simplifying calculations

Fermat's Little theorem [around 1640] If p is prime then for every α such that $1 \le \alpha \le p-1$ $\alpha^{p-1} \equiv 1 \pmod{p}$

A generalization: Euler's theorem

For every integer n>1, $\alpha^{\varphi(n)} \equiv 1 \pmod{n}$ for every α such that $gcd(\alpha, n) = 1$ [if n is prime, $\varphi(n) = n-1$]

For example: Find $2^{26} \mod 7$ $2^{26} = 2^2 \cdot 2^{24} = 2^2 \cdot (2^6)^4 \equiv 2^2 \cdot 1 \mod 7 \equiv 4 \mod 7$ **<u>Fermat's Little theorem</u>** [around 1640] If p is prime then for every α such that $1 \le \alpha \le p-1$ $\alpha^{p-1} \equiv 1 \pmod{p}$

Proof:

Let S = {1, 2, 3, ..., p-1} all possible non-zero mod p integers
Main observation: By multiplying integers in S by a (mod p) we simply re-permute them!

• It is an implication of the fact that α has a multiplicative inverse mod p, since gcd(α , p)=1

Prime Numbers

Example:

 $\alpha = 3, p = 7, \alpha^6 \equiv 1 \pmod{7}$

$$\{1,2,3,4,5,6\} = \{1\cdot3, 2\cdot3, 3\cdot3, 4\cdot3, 5\cdot3, 6\cdot3 \pmod{7}\}$$

Taking products: $6! \equiv 3^6 \cdot 6! \pmod{7}$ 6! is relatively prime to $7 \Rightarrow 3^6 \equiv 1 \pmod{7}$

Prime Numbers

Proof continued (for general α and prime p)

Consider 2 distinct numbers

 $i, j \in S \Rightarrow i \neq j, i, j \le p-1, i, j \neq 0$

The numbers resulting by multiplying the elements of S by α (mod p) are:

• Distinct

if not: $\alpha \cdot i \equiv \alpha \cdot j \pmod{p} \Rightarrow i \equiv j \pmod{p} \Rightarrow i \equiv j$, contradiction

- Non zero mod p if $\alpha \cdot i \equiv 0 \pmod{p} \Rightarrow i=0$, contradiction
- In the range [1, p-1]

Hence, they are a permutation of S $\Rightarrow (p-1)! \equiv \alpha^{p-1} \cdot (p-1)! \pmod{p} \Rightarrow \alpha^{p-1} \equiv 1 \pmod{p}$

Problem Primes:

- I: An integer N > 1
- Q: Answer whether or not N is prime

One of the most fundamental problems in Computer Science

A naive approach: Trial division

- Try to see if any of the numbers 2, 3, 4,..., N-1 divides N
- •Actually it suffices to try only with the numbers 2, 3, ..., $\lfloor \sqrt{N} \rfloor$
 - If N is composite it has a factor, which is at most \sqrt{N}
- In fact, since N is odd, we can also remove the even numbers
- •Worst case complexity: $\sqrt{N/2}$, hence O(\sqrt{N}), exponential since $\sqrt{N} = 2^{\log N/2}$
- •Effective only for small values of N (for RSA, N has 512 bits or even more)

Primality Testing

A different approach

• Faster but with a small probability of error

Fermat Test

Algorithm PRIME (N) Pick a positive integer α <N at random if $\alpha^{N-1} \equiv 1 \pmod{N}$ then return YES // we hope yes else return NO // definite no

Complexity: only need to use the algorithm for exponentiation mod N (repeated squaring), hence O(logN) multiplications

Primality Testing

The algorithm can make errors but only of one kind:

- If it says that N is composite, then it is correct
- If it says that N is prime then it may be wrong
- $gcd(\alpha, N) > 1$: N is not prime, and N fails the test
- $gcd(\alpha, N) = 1$
 - if N is prime: passes the test
 - if N is composite: can pass the test for some α 's! e.g. 341 = 11*31 and $2^{340} \equiv 1 \pmod{341}$
 - if N is a Carmichael number: passes the test for all α ' s!!

e.g.
$$561 = 3*11*17$$
 and $\alpha^{560} \equiv 1 \pmod{561}$
for every α for which: $gcd(\alpha,n)=1!$

Carmichael numbers

- Actually due to Korselt
- They are the composite numbers that pass the Fermat test *for all* a's that are relatively prime to them
- Alternative definition: A number n is a Carmichael number if it is not divisible by the square of a prime and, for all prime divisors p of n, it is true that p–1 | n–1
- They are extremely rare (561, 1105, 1729, 2465,...)
- 561 = 3.11.17
- There are only 255 of them less than 10⁸
- There are 20,138,200 Carmichael numbers between 1 and 10²¹ (approximately one in 50 billion numbers)
- Ignore them for now (see Miller-Rabin test for a better algorithm to test primality)

Primality Testing

N <u>Prime:</u> passes the Fermat test <u>Composite:</u> passes or fails the test depending on α , but <u>there is an α for which it fails</u> if it is not a Carmichael number

If N is composite and not a Carmichael number, for how many values of α does it fail the test?

<u>CLAIM 3:</u> If a number N fails the Fermat test for some value of α , then N **also fails the test for at least half of the choices of** α < N

Primality Testing

Prime,
$$\alpha^{N-1} \equiv 1 \pmod{N}$$
, for all $\alpha < N$
not Prime, $\alpha^{N-1} \equiv 1 \pmod{N}$, for at most half
of the values $\alpha < N$

Pr[Fermat test returns YES, when N is Prime]=1 Pr[Fermat test returns YES, when N is not Prime] $\leq 1/2$

Repeat the algorithm k times for different $\alpha_1, \alpha_2, ..., \alpha_k$ Pr[Fermat test returns YES, when N is not Prime] $\leq 1/2^k$

Density of prime numbers

- Very important to be able to find prime numbers quickly
- How should we search for prime numbers?
- <u>Theorem</u>: For every n≥1, there is always a prime between n and 2n
- Initial proof: Chebyshev (1850)
- Simpler proof: Erdos (1932), at the age of 19!!
- Thus primes are relatively dense within the natural numbers

<u>Prime number Theorem (Conjectured by Legendre et al.</u> ~1797-1798, proved in 1896)

Lex
$$\pi(x)$$
 be the number of primes $\leq x$. Then
 $p(x) \sim \frac{x}{\ln x}$ or $\lim_{x \in \mathbb{Y}} \frac{p(x)}{x / \ln x} = 1$

If N is a random integer of n bits (hence $\leq 2^n$), it has roughly a one-in-n chance of being prime:

$$p = \Pr[N \text{ is prime}] = \frac{2^n / \ln 2^n}{2^n} = \frac{1}{\ln 2^n} = \frac{\log e}{\log 2^n} = \frac{\log e}{n} = \frac{1.44}{n}$$

<u>Algorithm</u>

Repeat

Pick a random n-bit integer N Run the Fermat test on N Until N passes

How many iterations? (Waiting for the first success)

Analysis on the number of iterations

- Let k= #trials until first success
- Let p = success probability of each trial = Pr[randomly chosen N is prime]
- Pr[k=j] = probability that we succeed in the j-th trial (and hence fail in previous ones)
- $\Pr[k=j]=(1-p)^{j-1}p$

$$E[k] = \sum_{j=1}^{\infty} j \Pr[k=j] = \sum_{j=1}^{\infty} j(1-p)^{j-1} p = \frac{p}{p-1} \sum_{j=1}^{\infty} j(1-p)^{j}$$
$$= \frac{p}{p-1} \frac{1-p}{p^2} = \frac{1}{p} = \frac{n}{1.44}$$

 $\Pr[a \ composite \le 25 \cdot 10^9 \ passes \ the \ test] \approx \frac{20.000}{10^9} = 2 \cdot 10^{-5}$

Linear equations in modular arithmetic

- Around 100 A.D.
- Question: Is there an integer x such that in a parade of x soldiers, when they align themselves in
- 1. Groups of 3, there is only 1 remaining soldier in the last row
- 2. Groups of 4, there are 3 remaining soldiers
- 3. Groups of 5, there are 3 remaining soldiers

Theorem:

- Let n_1 , n_2 , ..., n_k be positive integers that are relatively prime with each other, hence $gcd(n_i, n_j) = 1$, $\forall i \neq j$.

- Then for any integers $a_1, a_2, ..., a_k$, the system

$$x \equiv a_1 \mod n_1$$
, $x \equiv a_2 \mod n_2$, ..., $x \equiv a_k \mod n_k$,

has a unique solution within Z_n , where $n = n_1 \cdot n_2 \cdot \ldots \cdot n_k$

<u>Corollary</u>: If n_1 , n_2 , ..., n_k , are positive integers that are relatively prime with each other, then for any x and a: x = a mod n_i for i = 1, 2, ..., k iff x = a mod n where n = $n_1 \cdot n_2 \cdot ... \cdot n_k$

Proof:

- Let n₁, n₂, ..., n_k be relatively prime with each other
- Let $a_1, a_2, ..., a_k$ be arbitrary integers
- $\forall i \text{ define } c_i = n/n_i.$
- $gcd(c_i, n_i) = 1 \rightarrow c_i$ has an inverse mod $n_{i.}$
- Let d_i be the inverse, hence $c_i d_i \mod n_i = 1$
- The number $x^* = a_1c_1d_1 + a_2c_2d_2 + ... + a_kc_kd_k$ satisfies all the equations
- Complexity: polynomial since we are just using the extended Euclidean algorithm

Example

- Which x satisfies the following equations?
 - $x \equiv 2 \pmod{5}$
 - $x \equiv 3 \pmod{13}$
- a₁=2, n₁=5, a₂=3, n₂=13
- We have $n=n_1*n_2=5*13=65$, $c_1 = 65/5 = 13$, $c_2 = 5$
- Since $13^{-1} \equiv 2 \pmod{5}$ and $5^{-1} \equiv 8 \pmod{13}$, $d_1=2$, $d_2=8$

• Then,
$$x = a_1c_1d_1 + a_2c_2d_2$$

 $x \equiv 2 \cdot 2 \cdot 13 \cdot + 3 \cdot 5 \cdot 8$ (mod 65)
 $\equiv 52 + 120 = 42$ (mod 65)

All the solutions are in the form x(t)=42+65t, t \in Z