Special Topics on Algorithms Number-theoretic problems: Exponentiation, Fibonacci numbers and GCD

Vangelis Markakis, Ioannis Milis and George Zois

Exponentiation

- <u>Exponentiation:</u>
- I: Two positive integers a,n

Q: Find aⁿ

- Main operation in many cryptographic protocols (e.g., RSA)
- Very important to be able to compute this fast

Complexity: O(n)

Suppose $a \le n$ (or that a is of the same magnitude as n) $|I| = \Theta(\log n) \Rightarrow n = \Theta(2^{|I|}), O(n) \text{ is } O(2^{|I|}) = O(\exp(I)) \text{ NOT POLYNOMIAL }$ $N(I) = n, O(n) \text{ is } O(\operatorname{poly}(N(I)) \text{ PSEUDO-POLYNOMIAL }$

Is there a polynomial algorithm for EXP ?

Exponentiation

Repeated Squaring Consider n in *binary*, n = $b_k b_{k-1} \dots b_2 b_1 b_0$, e.g. 29 = 11101 => 29 = 16+8+4+1 $a^{29} = a^{16} \cdot a^8 \cdot a^4 \cdot a^1$

Idea: Compute sequentially the powers a, a², a⁴, a⁸,...

and keep track which ones are needed

```
Exp2(a,n)
p=1;
z=a;
for i=0 to k do
        { if b<sub>i</sub>=1 then p=p · z;
        z=z<sup>2</sup>; }
Return p;
```

Time: O(k) = **O(logn)** ! O(poly|I|) !

Exponentiation

Or equivalently:

Exp3(a,n)

p=1;					
z=a;					
while n>0 do {					
if n is odd then $p=p \cdot z$;					
$z=z^2;$					
$n = \lfloor n/2 \rfloor; \}$					
Return p;					

3 1 1 1 msb 0

<u>29</u>

14

7

1

0

1

lsb

Time: O(logn)

Exponentiation – Even more...

- Or yet another implementation
- Based on the recurrence relation:

Exp4(a,n) if n=0 then return 1; $z=Exp4(a, \lfloor n/2 \rfloor);$ if n is even then return z^2 else return $a \cdot z^2$

Complexity: T(n) = T(n/2) + O(1)

Solving the recurrence (with the Master theorem) \Rightarrow **O(logn)**

Fibonacci Numbers

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89...

Definition:
$$F_n = F_{n-1} + F_{n-2}$$
, $F_0 = 0$, $F_1 = 1$

Problem <u>Fibonacci</u>: I: a natural number $n \in N$ Q: Find F_n

Direct Implementation of Recurrence

Fib1(n)
if n<2 then return n
else return Fib1(n-1) + Fib1(n-2)</pre>

Complexity of Fib1(n): T(0) = T(1) = 1, T(n) = T(n-1) + T(n-2) + O(1)

Fibonacci Numbers

Fibonacci Numbers / Dynamic Programming

Save Space: No need for an array

Fib3(n); if n<2 then return n a=0; b=1; for i=2 to n do { f=b+a; a=b; b=f; } Return f;} Time: Θ(n) Space: Θ(n) Big improvement over Fib 1 But: *NOT* O(poly(|I|)), recall |I|=O(logn)

Time: still $\Theta(n)$, *NOT* O(poly(|I|))Space: $\Theta(1)$ (we only use 3 variables)

Fibonacci Numbers / Closed Form Formula

• Relation to the golden ratio:

$$F_{n} = \frac{\phi^{n}}{\sqrt{5}} - \frac{\hat{\phi}^{n}}{\sqrt{5}}, \text{ where } \phi = \frac{1 + \sqrt{5}}{2} = 1.618 \text{ (golden ratio)}$$

and $\hat{\phi} = \frac{1 - \sqrt{5}}{2} = -0.618$
(roots of $x^{2} - x - 1 = 0, \quad \hat{\phi} = 1 - \phi = -\frac{1}{\phi}, \quad \phi^{2} = \phi + 1$)

• To simplify a bit, let ε be:

$$\mathcal{C} = \left| \frac{\int^{n}}{\sqrt{5}} \right| < \frac{1}{2}, \text{"} n^{3} 0 \qquad \begin{array}{c} \overset{\text{aff}}{\varsigma} \left| f \right| < 1 \rightleftharpoons \left| f \right|^{n} < 1 \bowtie \left| f \right|^{n} \right| < 1 \overset{\text{ij}}{\downarrow} \\ \overset{\text{f}}{\varsigma} & 1/\sqrt{5} < 1/2 \overset{\text{ij}}{\flat} \end{array} \vdash \left| \frac{\int^{n}}{\sqrt{5}} \right| < \frac{1}{2} \overset{\text{ij}}{\overset{\text{c}}{\vartheta}}$$

Fibonacci Numbers / Closed Form Formula

)

Recall F_n is an integer number

$$F_{n} = \frac{\phi^{n}}{\sqrt{5}} - \frac{\hat{\phi}^{n}}{\sqrt{5}} \Rightarrow \begin{cases} F_{n} = \frac{\phi^{n}}{\sqrt{5}} + \varepsilon, & n \text{ odd} \\ F_{n} = \frac{\phi^{n}}{\sqrt{5}} - \varepsilon, & n \text{ even} \end{cases} \Rightarrow F_{n} = round\left(\frac{\phi^{n}}{\sqrt{5}}\right)$$
or
$$F_{n} = \left\lfloor \frac{\phi^{n}}{\sqrt{5}} + \frac{1}{2} \right\rfloor \qquad F_{n} \text{ is } \Theta(\phi^{n})$$

Consequences:

- 1. Better lower bound for Fib1:
 - $T(n) = T(n-1) + T(n-2) + O(1) \ge F_n$
 - $T(n) = \Omega(\varphi^n)$ that is $\Omega(1.6^n)$
- We can calculate F_n by using the Exponentiation algorithm, Exp2(φ,n) ← Complexity: O(logn)

<u>But we don 't like</u> <u>real (irrational)</u> <u>numbers!</u>

Fibonacci Numbers / Exponentiation

- We can work only with integer/rational arithmetic
- Use the Exponentiation algorithm again, but to an array this time!

Matrix representation:

- Hence, just need to compute Aⁿ
- Use the exponentiation algorithm
 - Exactly as before but replacing number multiplication by matrix multiplication (multiplications of 2 x 2 matrices)
- All intermediate results in the run of the algorithm are integer numbers
- Complexity: O(logn)

- Divisibility
 - d | a : d divides a (d is a divisor of a)
 - Hence, a = kd for some integer k
 - Every integer divides 0
 - If a > 0 and $d \mid a$, then $|d| \le |a|$
 - Every integer a (with $a \neq 0$) has as trivial divisors 1 and a itself
 - The non-trivial divisors of a are called factors
 - Factors of 20 : 2, 4, 5, and 10

- Simple facts:
 - $-a|b \Rightarrow a|bc$ for every integer c

$$- a|b \Rightarrow |a| \le |b| \text{ or } b = 0$$

$$- a|b \wedge b|c \Rightarrow a|c$$

- $-a|b \wedge a|c \Rightarrow a|(b + c) and a|(b c)$
- $-a|b \wedge a|c \Rightarrow a|(bx + cy)$ for all integers x, y
- $a|b \wedge b|a \Rightarrow |a| = |b|$

- <u>Division theorem:</u>
 - For every pair of integers *a*, *b* with b≠0, there are unique integers *q* and *r* such that

$$a = qb + r (0 \le r < |b|)$$

- $q = quotient = \hat{\underline{e}} \frac{\mathbf{a}}{\mathbf{b}} \hat{\underline{u}}$
- $r = a \mod b = remainder$
- Proof:
 - Existence: either by induction or by looking into the smallest nonnegative integer in the sequence

...., a-3b, a-2b, a-b, a, a+b, a+2b, a+3b,...

- Uniqueness: by contradiction

- Common divisors
 - If d I a, and d I b, then d is a common divisor of a and b
 - e.g., the divisors of 30 are 1, 2, 3, 5, 6, 10, 15, 30
 - divisors of 24: 1, 2, 3, 4, 6, 8, 12, 24
 - Common divisors of 24 and 30: 1, 2, 3, and 6
 - 1 is a common divisor for any 2 integers
 - Every common divisor of a and b is at most min (|a|, |b|)

Greatest Common Divisor (GCD)

- Greatest common divisor
 - gcd(a,b): The biggest among the common divisors (sometimes also written as (a, b)).
 - If a ≠ 0, and b ≠ 0, then gcd(a, b) is an integer between 1 and min(|a|, |b|)
 - Convention:
 - gcd(0, 0) = 0
 - Simple properties:
 - gcd(a,b) = gcd(b,a)
 - gcd(a,b) = gcd(|a|, |b|)
 - gcd(a,0) = |a|
 - gcd(a, ak) = |a| for every $k \in Z$

Greatest Common Divisor (GCD)

<u>GCD</u>

I: $a, b \in \mathbb{N}$ Q: Find gcd(a, b)

```
A simple algorithm:

GCD (a,b)

while a≠b do

if a>b then a=a-b

else b=b-a

return a
```

Greatest Common Divisor (GCD)

Correctness of GCD(a,b) Claim 1: if a > b then gcd(a,b) = gcd(a-b,b)Proof: Let g = gcd(a,b), and g' = gcd(a-b,b)Then, a=gx and b=gy for some $x, y \Rightarrow g \mid a-b \Rightarrow g' \ge g$

Also, a-b = g'z and b=g'w for some $z, w \Rightarrow a = g'(z+w) \Rightarrow g' \mid a \Rightarrow g \ge g'$. Hence g = g'

Complexity of GCD(a,b)

Worst case (either a=1 or b=1): Complexity **O(w)**, with w=max{a,b} |I|= O(loga + logb) = **O(logw) O(w) is not O(poly**|I|)!

Euclid's Algorithm

<u>A</u>	<u>Example</u>		
	FIICT TD (a b) (with ab)	a	b
	$d_{a,b}$ (with a/b)	55	34
	II D=0 then return a	34	21
	else return EUCLID(b, a mod b)	21	13
		13	8
	8	5	
(5	3	
	3	2	
	2	1	
		1	0
			1

Euclid's Algorithm

More examples:

- a = 1742, b = 494
- 1742 = 3·494 + 260
- 494 = 1.260 + 234
- 260 = 1.234 + 26
- 234 = 9.26
- gcd(1742, 494) = 26

- a = 132, b = 35
- 132 = 3.35 + 27
- 35 = 1.27 + 8
- $27 = 3 \cdot 8 + 3$
- $8 = 2 \cdot 3 + 2$
- $3 = 1 \cdot 2 + 1$
- $2 = 2 \cdot 1$
- gcd(132, 35) = 1

"We might call it the granddaddy of all algorithms because it is the oldest nontrivial algorithm that has survived to the present day", (D. Knuth)

Euclid Algorithm

Complexity of EUCLID(a,b)

- •One of a and b is at least halved at every call
- •Both a and b are at least halved after any two recursive calls

a/2

а

b

a mod b

At most k = loga + logb calls, that is **O(loga+logb)**

How many Euclid calls for Fibonacci Numbers?

Tight example on the complexity

	$EUCLID(F_{k+1},F_k) (=EUCLID(F_k))$	Fk, Fk+1 mod Fk))
k-1	EUCLID(Fk,Fk-1)	
k-2	EUCLID(Fk-1,Fk-2)	
• •	• • • • • • • • • • • • • • • • • • • •	
	• • • • • • • • • • • • • • • • • • • •	Ekil mod Ek=
2	$EUCLID(F_3,F_2)$ (= $EUCLID(2,$	1)) $(F_{k+F_{k-1}}) \mod F_{k}=$
1	EUCLID(1,0) =1	$F_k \mod F_k + F_{k-1} \mod F_k =$
		$0+Fk-1 \mod Fk = Fk-1$

=k-1 recursive calls

Complexity: O(logF_{k+1}+logF_k)

EUCLID and Fibonacci numbers

If Euclid needs k calls, can we extract more information about a and b?

$$b=0 \Rightarrow k=0$$
 calls
 $a=b \Rightarrow k=1$ calls

Lemma: For a>b>0, if EUCLID(a,b) performs $\underline{k \ge 1}$ recursive calls, then a $\ge F_{k+2}$ and b $\ge F_{k+1}$

Proof: By induction on k

Induction base: for k=1 call:

 $b > 0 \Longrightarrow b \ge 1 = F_2 \Longrightarrow \qquad b \ge F_2$ $a > b \Longrightarrow a \ge 2 = F_3 \Longrightarrow \qquad a \ge F_3$

Inductive hypothesis: suppose true for k-1 calls:

 $a \ge F_{k+1}, \ b \ge F_k$

EUCLID and Fibonacci numbers

Inductive step: suppose the algorithm needed k calls

- $k > 0 \Rightarrow b > 0 \Rightarrow EUCLID(a,b)$ calls EUCLID(b, a mod b)
- -b = a', a mod b = b': EUCLID(a', b') performs k-1 calls
- By hypothesis a' $\geq F_{k+1} \Rightarrow b \geq F_{k+1}$ and b' $\geq F_k \Rightarrow a \mod b \geq F_k$ Also, a > b and by the division theorem $\Rightarrow a \geq b + (a \mod b)$ $\Rightarrow a \geq b + F_k \geq F_{k+1} + F_k = F_{k+2} \Rightarrow a \geq F_{k+2}$

Corollary: Lame's Theorem

For $k \ge 1$, if a > b > 0, and $b < F_{k+1}$ EUCLID(a,b) performs <u>at most</u> k-1 recursive calls

EUCLID and Fibonacci numbers

$k \text{ calls} \Rightarrow$

$$\phi^{k+1} \leq b\sqrt{5} \Rightarrow$$

$$k + 1 \le \log_{\phi}(b\sqrt{5}) = \log_{\phi}b + \log_{\phi}\sqrt{5} = \log_{\phi}b + 1.672 \Longrightarrow$$
$$k \le \log_{\phi}b + 0.672 \Longrightarrow$$
$$k \text{ is O(log b)}$$

- Hence, even better complexity than **O(loga+logb)**
- The smallest of the two numbers determines the number of calls

Extended Euclid's Algorithm

- Let a, b be "large" integers
- It is useful to understand further how gcd(a, b) looks like
- If someone claims that gcd(a, b) = d, how can we check this?
- It is not enough to check if d | a and d | b !
 - (this would show that d is a divisor of a and b, but not necessarily the greatest)

Extended Euclid's Algorithm

Claim 3: If d|a, d|b and d = xa+yb, x,y
$$\in \mathbb{Z}$$
, then
gcd(a,b) = d
Proof:
 $\int gcd(a,b) \ge d$

d | a and d | b
$$\Rightarrow$$

$$\begin{cases} gcd(a,b) \ge d \\ gcd(a,b) | xa+yb = d \Rightarrow gcd(a,b) \le d \end{cases}$$

Even further: <u>Claim 4:</u> gcd(a, b) is the smallest positive integer from the set {ax +by : x, y \in Z} of the linear combinations of *a* and *b*

Useful in certain applications to compute these coefficients (e.g., cryptosystems)

Extended Euclid's Algorithm –Correctness

Example: gcd(13,4) = 1, since 13*1 + 4*(-3) = 1

Existence of integer coefficients x, y for every pair of integers a, b, a>b:

Proof by strong induction on b:

Base: For b=0, we have that $gcd(a,0) = a = a^*x + 0^*y$, which holds for x=1 and every integer y

By induction hypothesis, assume that it holds for any integer <b: let gcd(b, a mod b) = bx' + (a mod b)y'

InductionThen $gcd(a,b) = gcd(b, a \mod b) = bx' + (a \mod b)y'$ Step:|a|

$$= bx' + (a - \left\lfloor \frac{a}{b} \right\rfloor b) y' = ay' + b(x' - \left\lfloor \frac{a}{b} \right\rfloor y')$$

Hence, x = y' and y = x' - a/b y'

Extended Euclid's Algorithm - Examples

One way to think at it is to run Euclid backwards:

- a = 1742, b = 494
- 1742 = 3.494 + 260
- 494 = 1.260 + 234
- 260 = 1.234 + 26
- 234 = 9.26
- (1742, 494) = 26
- 26 = 260 234= 260 - (494 - 260)= $2 \cdot 260 - 494$ = $2 \cdot (1742 - 3 \cdot 494) - 494$
 - = 2.1742 7.494

- a = 132, b = 35
- 132 = 3·35 + 27
- 35 = 1.27 + 8
- $27 = 3 \cdot 8 + 3$
- $8 = 2 \cdot 3 + 2$
- $3 = 1 \cdot 2 + 1$
- 2 = 2·1
- (132, 35) = 1

•
$$1 = 3 - 2$$

= $3 - (8 - 2 \cdot 3)$
= $3 \cdot 3 - 8$
= $3 \cdot (27 - 3 \cdot 8) - 8$
= $3 \cdot 27 - 10 \cdot 8$
= $3 \cdot 27 - 10 \cdot (35 - 27)$
= $13 \cdot 27 - 10 \cdot 35$
= $13 \cdot (132 - 3 \cdot 35) - 10 \cdot 35$
= $13 \cdot 132 - 49 \cdot 35$

Extended Euclid's Algorithm

ExtEUCLID(a,b)

Input: a, b $\in \mathbb{N}$; a \geq b \geq 0; Output: x,y,d $\in \mathbb{Z}$: gcd(a,b)=d=ax+by if b=0 then return (1,0,a) else (x',y',d)=ExtEUCLID(b, a mod b); return (y', x'- $\left\lfloor \frac{a}{b} \right\rfloor$ y',d)

Correctness: follows by the existence proof **Complexity:** O(logb) as EUCLID(a,b)

Extended Euclid's Algorithm a **y**' Х'**y**' **Example** b <u>a/b</u> d b X a ax + by = d99(-11) + 78*14 =-1089+1092=3