

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Special Topics on Algorithms Introduction

Vangelis Markakis

Special Topics on Algorithms

- A continuation of the Algorithms course
- Emphasis on topics not covered during the Algorithms course and also on some more modern topics and applications
- You can take this course during your 3rd year or later
- Prerequisites:
	- You have passed the Algorithms course
	- You liked the Algorithms course

Content – Topics to be covered

- **Introduction**
	- Some basic concepts
	- Distinction between polynomial, pseudopolynomial and exponential time algorithms
- Problems on numbers
	- Exponentiation/Fibonacci/Euclid's Algorithm for GCD
	- Modular arithmetic, prime numbers, primality testing
	- Applications: public key cryptosystems, RSA and digital signatures

Content – Topics to be covered

- Average case analysis
	- Sorting: Insertionsort, Quicksort
	- Binary Search Trees, hashing
- Coping with NP-completeness Approximation algorithms
	- Greedy and other combinatorial algorithms
		- Vertex Cover, Set Cover, Maximum Coverage, TSP
		- Partition, Knapsack, Scheduling, Bin Packing
		- **SAT**
- Randomized Algorithms
	- Max Cut, Min Cut, Max k-SAT

Content – Topics to be covered

- Flows and Matchings
	- Algorithms for the Maximum Flow in a network graph and the Maximum Matching in bipartite graphs.
- (Integer) Linear Programming
	- Applications and LP based Approximation Algorithms
	- LP duality
- Invited lectures
	- We may have 2 lectures by other faculty members and collaborators on some applications

Bibliography

- [DPV] S. Dasgupta, C. H. Papadimitriou, U. V. Vazirani : "Algorithms"
- [CLRS] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein: "Introduction to Algorithms"
- [KT] J. Kleinberg, E. Tardos: "Algorithm Design"

• **and many resources on the WWW**

• …

Communication

- Office hours:
	- Tuesdays: 12:00 14:00
	- Fridays: 13:00 14:00
- You can always email me regarding questions – If I do not reply within 3 days, send it again
- Eclass: Ειδικά Θέματα Αλγορίθμων
	- Please check the announcements there at least once per week

Tutorials

- Teaching Assistant: Panagiotis Tsamopoulos
- Office hours for the TA to be announced soon
- Tutorials starting next week

Grading

Final exam 75%

Midterm exam 20%

Individual Assignments (x2) 15%

Note: The midterm is used only if it helps your final grade, otherwise the final exam will count as 95%

Date of midterm: (probably) first week of December 9

Introductory concepts: Polynomial, Pseudo-Polynomial and Exponential Algorithms

What are we interested in?

Problems to be solved by a machine: precisely defined; no ambiguities

- We want to transform appropriately the input data (problem instances) to output data
- Two subcategories are decision and optimization problems.

COMPUTATIONAL PROBLEM

A problem where we are given **input** instances and some computational question and we want to find an answer/**output**: E.g., given a graph we wish to compute the set of vertices of odd degree, or to compute a set of k vertices where every pair of them is connected by an edge.

Examples of Problems

EXP(onentiation) FIBONACCI NUMBERS

I: positive integers a,n I: a positive integer n Q: calculate aⁿ

Q: calculate the n-th Fibonacci number F_n

SUBSET SUM

I: a set S={ a_1 , a_2 , ..., a_n } of n positive integers and an integer B Q: is there a subset $A \subseteq S$ s. t. $\sum_{i \in A} a_i = B$? $\in A$ \mathcal{L}_l

SAT(isfiability)

I: a boolean formula φ

Q: Is φ satisfiable ?

(is there a value assignment to its variables making ϕ TRUE ? = truth assignment)

Algorithms

Three crucial questions about any algorithm for any problem:

1. Is it correct ?

- Does it always terminate?
- Does it give a correct answer for any instance of the problem ?
- **2. How much time/space does it take, as a function of its input?**
	- "time" = number of steps / "space" = number of bits in memory
	- "time" independent of language/implementation/machine
	- We mostly focus on time, expressed as a function $T(n)$, where n is the size of the instance we try to solve
	- Interested in asymptotic behavior of $T(n)$
	- Notation: O, Ω, Θ, ο, ω
- **3. Can we do better ?**

Time Complexity of an algorithm

There are many instances of the same size How does the algorithm work over all these instances?

Best-case complexity

- The minimum number of steps taken on any instance of size n
- Not useful, too optimistic

Worst-case complexity

- The maximum number of steps taken on any instance of size n
- An upper bound on the complexity of the problem
- The most usual analysis

Average case complexity

- The average number of steps taken on any instance of size n
- Depends on the distribution of instances (use of probabilities)

Time Complexity of a problem and lower bounds

Complexity of a problem Π: T_Π(n)

The (worst case) complexity of the best (known) algorithm A

$$
T_{\mathsf{P}}(n) = \min_{A} \{ T_A(n) \}
$$

Obtaining a lower bound on a problem's complexity L_Π(n):

- By proving that there is no algorithm with $T_A(n) < L_n(n)$
- Rare results (e.g., log(n!) for sorting).

Optimal algorithm

- An algorithm A, for which $T_A(n) = L_{\Pi}(n)$
- For many problems we still do not know if we have found an optimal algorithm
- Even for well-studied problems, new improvements arise over the years

Algorithm Analysis

- Evaluation of time complexity
	- Average, worst, best case
- Appropriate solution depending on the application requirements

Benefits of theoretical analysis:

- Do not require experimental evaluation but only concrete description of the algorithm
- Results into general conclusions easy to verify, by considering all input instances, determining the time complexity as function of the input size

Mathematical background: discrete math (graphs, recurrence relations, combinatorics), mathematical logic, induction in all its forms (simple, strong, structural)

Asymptotic Notation

In pictures:

 $f(n) = \Theta(g(n))$ $f(n) = O(g(n))$ $f(n) = \Omega(g(n))$

Asymptotic Notation

More formally:

• A function f(n) is $O(g(n))$ if there exist positive constants c_0 and n_0 such that f(n) \leq c₀g(n) for every $n \geq n_0$

- $-$ The constant c_o might be large (but still constant, **independent of** n)
- Examples:
	- 2n + 10 is O(n). It suffices to set $c_0 = 3$ and $n_0 = 10$
	- 4nlogn + 150n + 3000sqrt(logn) = $O(n \log n)$. Set c_0 = 3154, n_0 = 1
- A function f(n) is $\Omega(g(n))$ if there exist positive constants c_0 and n_0 such that f(n) $\geq c_0$ g(n) for every $n \geq n_0$
- A function f(n) is $\Theta(g(n))$ if f(n) is $\Theta(g(n))$ and f(n) is $\Omega(g(n))$

Growth of various functions

Size of instance and complexity

Consider the description of an instance (i.e., of all the parameters and constraints)

 $|1|$ = length of encoded instance/input

 $Instance \ \ \ \frac{1}{1}$ encoded instance I encoding e.g. in decimal / binary / unary

 $|1| = #$ of digits of the encoded input

Size of instance and complexity

- We typically use the binary encoding
	- but there are reasons to consider other encodings too in complexity theory
- Hence, unless otherwise stated, $|1| = #$ of bits of the encoded input
- Let also $N(I)$ = the largest number in the input
	- Applicable only for problems that have numeric parameters in their input, like Knapsack
- Classification of algorithms
	- \triangleright Polynomial algorithms: running time O(poly(|I|)
	- ➢ Exponential algorithms: running time Θ(exp(|I|)
	- ➢ Pseudo-Polynomial algorithms: Θ(poly(N(I)), which in worst case is Θ(exp(|I|)
		- We can say that they are O(poly(|I|)) if we consider I encoded in unary ! (i.e, polynomial when N(I) not too large)
		- Example: Knapsack admits a dynamic programming algorithm with running time $O(n^2 v_{max})$, where v_{max} is max value in the instance
		- Only relevant for problems with numeric parameters!
		- Not relevant for SAT

Recap from the Algorithms course: Analyzing Recurrence Relations

The Master Theorem

- How do we analyze recurrence relations?
- There are various methods
- The substitution method:
	- Keep substituting until you guess the solution
	- Use induction to prove it formally

Example: $T(n) = T(n-1) + n$, $T(1) = 1$

- $T(n) = T(n-1) + n$
- $= (T(n-2) + n-1) + n$
- $= T(n-2) + n + n-1$
- $= (T(n-3) + n-2) + n + n-1$
- \bullet = \bullet ...
- $= n + n 1 + n 2 + ... + 2 + 1 = O(n^2)$

Is there a general result that could be applicable to the recurrence relations we will encounter?

The Master Theorem

If T(n) = aT($\mid n/b \mid$) + O(n^d) for some constants a > 0, b > 1, d ≥ 0, then

$$
T(n) = \begin{cases} \Theta(n^d), & \text{if } d > \log_b a \quad (b^d > a) \\ \Theta(n^d \log_b n), & \text{if } d = \log_b a \quad (b^d = a) \\ \Theta(n^{\log_b a}), & \text{if } d < \log_b a \quad (b^d < a) \end{cases}
$$

- Usually convenient to think of n as a power of b, so that n/b is an integer.
- In many cases of interest, $b = 2$
- More general versions of this theorem are available as well

The Master Theorem - Examples

• Naive integer multiplication (by divide and conquer)

$$
-T(n) = 4T(n/2) + O(n)
$$

- $-$ a = 4, b = 2, log_b a = log₂ 4 = 2
- d = $1 < 2 = log_b a$
- $-$ Case (iii) applies: $T(n) = \Theta\left(n^{\log_b{a}}\right) = \Theta(n^2)$
- Karatsuba's algorithm for integer multiplication
	- $-$ T(n) = 3T(n/2) + O(n)
	- $a = 3$, $b = 2$, $log_b a = log_2 3 = 1.59$
	- $d = 1 < log_b a$
	- $-$ Case (iii) applies again: $T(n) = \Theta\left(n^{\log_b{a}}\right) = \Theta(n^{1.59})$

The Master Theorem - Examples

- $T(n) = 5T(n/25) + O(n^2)$
	- $-$ a = 5, b = 25, log_b a = log₂₅5 = 0.5
	- $d = 2 > 0.5 = log_b a$
	- $-$ case (i) applies: $T(n) = \Theta\big(n^d$ $\big) = \Theta(n^2)$
- $T(n) = T(2n/3) + O(1)$
	- $-$ a = 1, b = 3/2, $log_b a = log_{3/2} 1 = 0$
	- $d = 0 = log_b a$
	- $\hbox{\bf -} \quad$ case (ii) applies: $T(n) = \Theta\bigl(n^0\log_{3/2} n\bigr) {=} \Theta(\log n)$
- $T(n) = 9T(n/3) + O(n)$
	- $a = 9$, $b = 3$, $log_b a = log_3 9 = 2$
	- $d = 1 < 2 = log_b a$
	- $-$ case (iii) applies: $T(n) = \Theta\big(n^{\log_b a}\big) {=} \Theta(n^2)$