
Special Topics on Algorithms

Applications of Linear and Integer
Programming

Vangelis Markakis Ioannis Milis
George Zois

2

Linear Programming
Quick applications of LP:

1. Flows in networks

2. Matching in bipartite graphs

3

Flows in Networks
Recall the max flow problem:
Consider a graph G = (V, E), with a source node s Î V, and a sink node t Î V
Capacity constraints: for every edge e Î E, there is a capacity ce

A feasible flow is an assignment of a flow fe to every edge so
that
1.fe ≤ ce
2.For every node other than source and sink:

incoming flow = outgoing flow (preservation of flow)

Goal: find a feasible flow so as to maximize the total
amount of flow coming out of s (or equivalently going into t)

Flow going out of s: fsu
(s,u)∈E
∑

By preservation of flow this equals: fut
(u,t)∈E
∑

4

Flows in Networks
Example:
• Figure (a): network with capacities
• Figure (b): a feasible flow
• In fact, the flow in (b) is optimal (7 units)

5

Flows in Networks
Finding a max flow via Linear Programming:
• Suppose we use a variable fuv for the flow carried by each edge
• Then, the objective function and all the constraints are linear

Objective function:

Constraints
1.Capacity constraints:

fuv ≤ cuv, for every (u, v) Î E
2. Flow preservation:

, for every node u ≠ s, t

fsu
(s,u)∈E
∑

fwu
(w,u)∈E
∑ = fuv

(u,v)∈E
∑

3. Non-negativity constraints:
fuv ≥ 0, for every (u, v) Î E

6

Flows in Networks
In the example of Figure (a):

max fsa + fsb + fsc

s.t.
11 capacity constraints
11 non-negativity constraints

5 flow preservation constraints
27 constraints in total

Solving this => max flow = 7

Note: There are more efficient algorithms for solving max flow (not covered
here)
•O(|V| |E|2) [Edmonds, Karp ’72]
•O(|V|2 |E|) [Goldberg ’87]
•O(|V| |E| log(|V|2/|E|)) [Goldberg, Tarjan ’86]

7

Flows in Networks

Recall the max-flow min-cut theorem:
For any graph G = (V, E) with capacities on its edges,

max flow = capacity of minimum s-t cut

In our example, the cut (L, R) shows immediately that the flow of 7 units in
Figure (b) is optimal!

The proof of the max-flow min-cut theorem can be done using the LP
formulation of the problem (in particular using LP-Duality)

8

Matching Problems
Types of matching problems that arise in optimization:

• Maximal matching: find a matching where no more edges can be added
• Maximum matching: find a matching with the maximum possible number

of edges
• Perfect matching: find a matching where every vertex is matched (if one

exists)
• Maximum weight matching: given a weighted graph, find a matching with

maximum possible total weight
• Minimum weight perfect matching: given a weighted graph, find a perfect

matching with minimum cost

All the above problems can be solved in polynomial time (several algorithms
and publications over the last decades)

9

Matching in Bipartite Graphs
An interesting special case for matching problems:
A graph G = (V, E) is called bipartite if V can be partitioned into 2 sets V1, V2
such that all edges connect a vertex from V1 with a vertex from V2

Q: How can we find a maximum matching in a bipartite
graph?

10

Matching in Bipartite Graphs
We can reduce this to a max-flow problem, and hence to Linear
Programming

• Orient all edges from left to right
• Add a source node s, connect it to all of U
• Add a sink node t, connect all of V to t
• Capacities: set them to 1 for all edges

11

Matching in Bipartite Graphs
Hence:
• a maximum matching for bipartite graphs can be computed in polynomial

time
• The graph has a perfect matching if and only if the max flow in the

modified graph equals n

Observation: It can be proved that when the capacities are integer
numbers, we get an integral flow as an optimal solution, and hence
a proper matching as our output

12

Matching in Bipartite Graphs
An approach without going through flows
• Start with the integer program that describes the matching problem
• Integer programming formulation:

– Use an integer variable xe for every edge eÎE
– Let N(v) = edges that come out of node v, the matching should select at most one of

them

LP relaxation:
•just set xe ≥ 0
•No need to add xe ≤ 1, it is implied by the other constraints

13

Matching in Bipartite Graphs
Constraint matrix of the LP relaxation
• We only have the constraints

• This is precisely the node-arc incidence matrix for undirected graphs
• Given a node k, and an edge e = (u, v), the entry at row k and column e

equals
– 0, if k ≠ u, k ≠ v
– 1, if k =u, or k = v

14

Matching in Bipartite Graphs
Theorem:
For bipartite graphs, the corner points of the polyhedron described
by the matching constraints are integral

(proof based on the notion of total unimodularity, which is a
sufficient condition for integrality of LP solutions)

Corollary: We can compute a maximum matching for bipartite
graphs, by solving the LP relaxation
• Recall: the LP algorithms we have discussed identify a corner

point optimal solution
• Total unimodularity guarantees that they will return a 0/1

solution

1515

Approximation Algorithms for
Vertex Cover and Set Cover

1616

Recall the (optimization) version:

VERTEX COVER (VC):
I: A graph G = (V,E)
Q: Find a cover C Í V of maximum size, i.e., a set C Í V, s.t. " (u, v) Î E,

either u Î C or v Î C (or both)

Weighted version:

WEIGHTED VERTEX COVER (WVC):
I: A graph G = (V,E), and a weight w(u) for every vertex uÎV
Q: Find a subset C Í V covering all edges of G, s.t. is minimized

Many different approximation techniques have been “tested” on vertex cover

Vertex Cover (VC)

W = w(u)
u∈C
∑

1717

Vertex Cover (VC)
Recall: Greedy-any-edge algorithm (which computes a maximal matching on the
input graph) achieves a tight 2-approximation factor and is almost the best
known algorithm for VC

Is there a better approximation algorithm ?

We know a lower bound of 1.36 on the approximation factor for VC,
i.e.,
Unless P=NP, VC cannot be approximated with a ratio smaller than 1.36

1.36 ?
BEST KNOWN
LOWER BOUND

BEST KNOWN
APPROXIMATION RATIO

Big open problem!!

)log/1(2 nQ-

1818

• The Greedy-any-edge algorithm does not apply to the weighted case, i.e.,
a maximal matching does not guarantee anything about the total weight
of the solution returned

• Can we have constant approximations here as well?

Recall:
Theorem. The pricing method is 2-approximation for WVC.

Next, we will apply techniques from (Integer) Linear Programming for WVC

Weighted Vertex Cover (WVC)

19

• Modeling Vertex Cover as an integer program:

Integer Programming Formulations

Weighted Vertex Cover

min Σu w(u) xu
s.t.

xu + xv ≥ 1 " (u, v) Î E
xu Î {0,1} " u Î V

LP relaxation: Set xu Î [0,1]
Main observation:
•For minimization problems: LP-OPT ≤ IP-OPT (Why?)

20

• Solving the LP, we get a fractional solution
• But what can we do with it? It is after all not a valid solution for our original

problem
• E.g., what is the meaning of having xu = 0.8 for a vertex cover instance?
• LP-rounding: the process of constructing an integral solution to the original

problem, given an optimal fractional solution of the corresponding LP
• The process is problem-specific, but there are some general guidelines
• A natural first idea: objects with a high fractional value may be preferred

(e.g., if in the LP, xu = 0.8, it may be beneficial to include vertex u in an
integral solution)

Linear Programming Relaxations

21

Linear Programming Relaxations

General scheme for LP rounding:

1. Write down an IP for the problem we want to solve
2. Convert IP to LP
3. Solve LP in O(poly) time to obtain a fractional solution
4. Find a way to convert the fractional solution to an integral one

• The constructed solution should not lose much in the objective
function from LP-OPT

5. Prove that the integral solution has a good approximation
guarantee
• Exploit the main observation to derive bounds with respect to

OPT

LP Rounding for WVC

22

min Σu w(u) xu

s.t.
xu + xv ≥ 1 " (u, v) Î E
xu Î [0,1] " u Î V

1. First solve:

2. Let {xv}vÎV be the optimal fractional solution

3. Rounding: Include in the cover all vertices v, for which xv ≥ ½
Rationale: Vertices with a high fractional value are more likely to be
important for the cover. We also stay “close” in value to LP-OPT

Theorem: The LP rounding algorithm achieves a 2-approximation for
the Weighted Vertex Cover problem

Rounding for WVC

23

Let C be the collection of vertices picked

Claim 1: C is a valid vertex cover
•We started with a feasible LP solution
•Hence, for every edge (u, v), xu + xv ≥ 1
•Thus either xu ≥ ½ or xv ≥ ½
•By the way we constructed our solution, either u or v belongs to C
•Hence, every edge is covered

Rounding for WVC

24

Claim2: C achieves a 2-approximation for WVC

Let C be the collection of vertices picked
C corresponds to the integral solution: yu = 1 if u Î C, yu = 0 otherwise

Note: yu ≤ 2 xu, for every u Î V

Given this and the main observation:

Set Cover
SET COVER (SC):
I: a set U of n elements

a family F = {S1, S2, …,Sm} of subsets of U
Q: Find a minimum size subset C Í F covering all elements of U, i.e.:

Weighted version:

WEIGHTED SET COVER (WSC):
I: a set U of n elements

a family F = {S1, S2, …, Sm} of subsets of U
a weight w(Si) for each set Si

Q: Find a minimum weight subset C Í F covering all elements of U, i.e.,

2525

minimized is)(Wand SwUS
CS

i
CS

i
ii

å
ÎÎ

==!

minimized is |C| and US
CS

i
i

=
Î
!

26

• (weighted) vertex cover is a special case of (weighted) set cover
• Consider a vertex cover instance on a graph G = (V, E)
• Let U = E (i.e., we need to cover the edges)
• One set per vertex, Su ={(u,v) | (u,v) Î E }, |F| = |V|
• In the weighted case, weight of set Su = w(u)

WSC

WVC

SC

VC

Set Cover vs Vertex Cover

27

• fu = frequency of an element u Î U = # of sets Si that u belongs to

• f = maxu ∈ U { fu } = frequency of the most frequent element

• If f=2 (and w(Si) =1) then (W)SC reduces to (W)VC:
– G=(V,E), V= F, E= { (u,v) | Su ∩ Sv ≠ 0 }

We have seen an approximation algorithm for WSC,
and hence, for SC, WVC and VC:
• Greedy best set is O(log n) (n: the size of the universe U) approximation by a greedy

approach

• Next, we will see a LP-based f-approximation for WSC, using an LP rounding approach
while extending the 2-approximation for weighted vertex cover

Set Cover vs Vertex Cover

Rounding for WSC

28

LP relaxation for Set Cover:

Q: How should we round a fractional solution?

Rounding for WSC

29

Theorem: The LP Rounding algorithm achieves an
approximation ratio of f for the WSC problem

LP rounding:

• Solve the LP relaxation
• Fractional solution x = {xS}sÎF of cost LP-OPT
• Rounding: if xS ≥ 1/f, then include S in the cover

Rounding for WSC
Proof:
Let C be the collection of sets picked

Claim 1: C is a valid set cover

30

 xS <
1
f

| {S :u∈ S} |
S:u∈S
∑ =

1
f
fu ≤

1
f
f =1

Assume not
• Then there exists some u that is not covered
• => For each set S for which uÎS, xS < 1/f
• But then:

• a contradiction since we found a violated LP constraint

Rounding for WSC
Proof:
Let C be the collection of sets picked

Claim 2: C achieves an f-approximation

Proof very similar to the proof for WVC

31

Bibliography on Linear Programming

32

[DPV] S. Dasgupta, C. H. Papadimitriou, U. V. Vazirani :
“Algorithms”

Chapter 7, Sections 7.1 – 7.3
Representative exercises: 7.1 – 7.4, 7.6, 7.7, 7.28(a,b), 7.29, 7.30

[Vazirani] V. Vazirani: “Approximation Algorithms”
Chapters: 14,16
Representative exercises: 14.4, 14.7

