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Linear Programming
• Nothing to do with programming!
• A particular way of formulating certain optimization problems 

with linear constraints and a linear objective function
• One of the most useful tools in Algorithms and Operations 

Research
• Extremely useful also in the design of approximation 

algorithms
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Linear Programming
Applications of Linear Programming: Too many to enumerate!

• Operations Research
• Theory of Algorithms and Combinatorial Optimization
• Game theory and Microeconomics
• Medicine
• And many more...
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Linear Programming Examples
Example 1:
• A farmer possesses a land of 10 km2

• He wants to  plant the land with wheat, or barley or a combination of 
them

• The farmer has a limited amount of fertilizer, say 16 kgs
• And a limited amount of pesticide, say 18 kgs
• Each square km of wheat requires 1kg of fertilizer and 2 kgs of pesticide
• Each square km of barley requires 2kg of fertilizer and 1.2 kgs of pesticide
• Revenue to the farmer: 3 (thousand $) from each square km of wheat and 

4 (thousand $) from each square km of barley
• Find out what the farmer should do (i.e., how many square km of barley 

and how many of wheat he should plant) to maximize his revenue.
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Linear Programming Examples
Formulation as a linear program:
First step: We need to define the decision variables of our 
problem
• x1 = number of square km for wheat
• x2 = number of square km for barley
• Often multiple ways for doing this step
• Objective function: maximize 3x1 + 4x2

• Observe that: objective function is linear
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Linear Programming Examples
Formulation as a linear program:
Second step: formulation of constraints on the variables x1, x2
•Area constraint: x1 + x2 ≤ 10 
•Constraint for fertilizer: x1 + 2x2 ≤ 16 
•Constraint for pesticide: 2x1 + 1.2x2 ≤ 18
•Nonnegativity constraints: x1 ≥ 0, x2 ≥ 0 (cannot plant an area with negative 
surface)
•Observe: all constraints are also linear



Linear Programming Examples
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Usual writing style:

max  3x1 + 4x2

s.t.   x1 + x2 ≤10
       x1 + 2x2 ≤16
       2x1 +1.2x2 ≤18
       x1, x2 ≥ 0

Objective function

constraints

• It can be either a minimization or a maximization problem
• Feasible space (or region): the set of all pairs (x1, x2) that satisfy the constraints
• In the example: the feasible region is a subset of R2
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Geometrically:

10

10 x1

x2

x1 + x2 = 10

2x1 + 1.2x2 = 18

x1 + 2x2 = 16

Feasible 
region

The feasible region is a 
polyhedron in R2, where 
n = number of variables
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Linear Programming Examples
Example 2:
• A manufacturing company selling glass and aluminum products is trying to 

invest in launching 2 new products
• The company has 3 plants

– Plant 1: for processing aluminum
– Plant 2: for processing glass
– Plant 3: for assembling and finalizing products

• Product 1 requires processing in Plant 1 and Plant 3
• Product 2 requires processing in Plant 2 and Plant 3
• Since the company processes other products as well, there are constraints 

on the amount of time available in each plant.
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Linear Programming Examples

• Goal: Decide how many batches of Product 1 and Product 2 to produce so 
as 

– Not to exceed the available time capacity  in each plant
– Maximize total revenue from the batches produced

Plant

Time needed per batch (hours)
Total available 
time per week 
(hours)

Product

1 2

1 1 0 4

2 0 2 12

3 3 2 18

Profit per batch 3000 5000
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Linear Programming Examples
Formulation as a linear program:
First step: determine the decision variables of our problem
•x1 = number of batches of product 1, produced per week
•x2 = number of batches of product 2, produced per week

Second step: formulation of constraints on the variables x1, x2
•Time constraints for Plant 1: x1 ≤ 4 
•Time constraints for Plant 2: 2x2 ≤ 12 
•Time constraints for Plant 3: 3x1 + 2x2 ≤ 18
•Nonnegativity constraints: x1 ≥ 0, x2 ≥ 0 (number of batches produced 
cannot be negative)

Objective function: maximize 3x1 + 5x2
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Hence:

max  3x1 + 5x2

s.t.   x1 ≤ 4
       2x2 ≤12
       3x1 + 2x2 ≤18
       x1, x2 ≥ 0

Objective function

constraints
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Geometrically:

6

4 x1

x2
2x2 = 12

3x1 + 2x2 = 18

x1 = 4

Feasible 
region

Again the feasible region 
is a polyhedron in R2

-

-

-

- -
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A more succinct notation (canonical form)
We can represent Example 2 as:

 c =
3
5
⎛

⎝
⎜
⎞

⎠
⎟,b =

4
12
18

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
,

max. cTx
s.t.

Ax ≤ b
x ≥ 0

A =
1        0
0       2
3       2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

where x =
x1

x2

⎛

⎝
⎜

⎞

⎠
⎟,

Notation: x ≥ 0 for a vector x means that the inequality should hold 
component-wise (for every coordinate)
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General Form of Linear Programs
Given:
•c1, c2, ..., cn

•b1, b2, ..., bm

•The constraint matrix A = (aij) with 1 ≤ i ≤ m, 1 ≤ j ≤ n,  
We want to:
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General Form of Linear Programs
More concisely:

Where:
• c and x are n-dimensional vectors
• b is an m-dimensional vector
• n decision variables
• m inequality constraints
• n nonnegativity constraints 
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Linear Programming
Other forms of LPs we could encounter:
1. Minimization problem instead of maximization
2. >= inequalities in the constraints
3. Equality constraints
4. Absence of nonnegativity constraints

Claim: All these are equivalent forms, and can be reduced to one another

• If we have a minimization problem: revert the signs in the coefficients of 
the objective function and maximize the new function.

• >= constraints: again revert signs to bring them to <= constraints
• Equality constraints: replace them by 2 constraints (one with >=, and one 

with <=)
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Geometry of Linear Programming
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Geometry of Linear Programming
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Geometry of Linear Programming
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• Key property: The optimum is achieved at a vertex of 
the feasible region

• The only exceptions are cases in which there is no optimum

1. The LP is infeasible 
too tight constraints; impossible to satisfy all of them
e.g.  x1≤1, x1≥2

2. The LP is unbounded;
too loose constraints;  the feasible region is unbounded
e.g.   arbitrarily high objective values

max x1 + x2
x1,x2 ≥0 

Geometry of Linear Programming
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The Graphical Method
• Applicable for linear programs with 2 or 3 decision variables
• It helps us understand how to think about solving problems in higher 

dimensions

Solving Example 2:
• Step 1: Draw the feasible region
• Step 2: “Guess” a value Z for the objective function and draw the line 3x1 + 

5x2 = Z
• If this line intersects the feasible region, it means we have at least one 

feasible solution with value Z
• Trial and error: Keep doing this, increasing Z till the line gets out of the 

feasible region 
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The Graphical Method
Solving Example 2:
•Step 1: Draw the feasible region
•Step 2: Trial and error: “Guess” a value Z for the objective function and draw 
the line 3x1 + 5x2 = Z

6

4 x1

x2
2x2 = 12

3x1 + 2x2 = 18

x1 = 4

Feasible 
region-

-

-

- -3x1 + 5x2 = 10

• We could start with Z=0 since 
there exists a feasible solution 
with 0 value

• With Z=10, we see there are still 
a lot of feasible solutions with 
this value 
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The Graphical Method
Solving Example 2:
• We can now keep examining higher values for Z, until we get out of the 

feasible region

6

4 x1

x2
2x2 = 12

3x1 + 2x2 = 18

x1 = 4

Feasible 
region-

-

-

- -3x1 + 5x2 = 10

• We keep moving the dashed 
line higher and higher

• All lines have the same slope, 
since for every Z:

x2 = -3/5 x1 + 1/5 Z
• slope = -3/5
• Eventually, we stop at Z = 36

3x1 + 5x2 = 20

3x1 + 5x2 = 30

3x1 + 5x2 = 36
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The Graphical Method
Observations:
• In 2 dimensions, the feasible region is a polygon
• We stop only when the dashed line intersects the feasible region in a 

corner point of the polygon
– Or in degenerate cases, when the line coincides with one of the sides of the polygon 

• How can we compute the values of x1, x2 when we stop?
– A corner point is the intersection of 2 sides, hence they satisfy 2 constraints with 

equality

• In Example 2, we stop at Z=36
• The solution of 

– 2x2 = 12
– 3x1 + 2x2 = 18

• Hence, x1 = 2, x2 = 6 
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The Graphical Method
Can the graphical method keep going without ever terminating? 
• YES, when the polyhedron is unbounded 
• But if this happens, the optimal solution is +¥

2 x1

x2

-x1 + 2x2 = 0

3x1 - x2 = 0

x1 = 2

Feasible 
region

-

-

-

-

Example of an unbounded 
feasible region:
max Z = 4x1 + 2x2

s.t.
x1 ≥ 2
3x1 – x2 ≥ 0
-x1 + 2x2 ≥ 0
x1, x2 ≥ 0
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The Graphical Method
• Insights gained from the graphical method:

– If an optimal solution exists, it is attained at a corner point of the 
polygon

• What about higher dimensions?
• Many real world problems have hundreds of variables

– In higher dimensions, the feasible region is still a polyhedron
– Again, it suffices to look at the corner points of the polyhedron
– Till 3 dimensions, we can do this geometrically
– When n ≥ 4, we should do it algebraically

• Idea for higher dimensional problems: Try to examine corner 
points of the polyhedron till we reach the optimal one
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The Graphical Method

• Q: What is a corner point in higher dimensions?
– Definition: A feasible solution of a linear program with n variables is a 

corner point (or vertex) if it satisfies n linearly independent 
inequalities with exact equality

• Q: Could we enumerate all corner point solutions and pick the 
best one?
– Not an efficient algorithm, polyhedra can have exponentially many 

corner points.

• BUT: We can try to think of a more clever way to search for 
the best corner point
– Essentially what simplex does



The Simplex Method

• Designed by Dantzig (1947)

– One of the most important algorithms of the 20th

century

– An algorithm that behaves extremely well in practice 
despite its exponential complexity in worst case

– The design of the algorithm  and the quest for better 
algorithms also contributed to building a rich theory 
around linear programming

30
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The Simplex Method
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The Simplex Method
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The Simplex Method



The Simplex Method
Why are we interested in checking only neighboring corner 
points?

Optimality test for linear programs:

Consider an LP with at least one optimal solution. If a corner point
solution has no adjacent corner point solutions that are better, 
according to the objective function, then it must be an optimal solution

34

• Hence, local optimality Þ global optimality

• Very important property for linear programming

- Also generalizes to continuous, convex functions



Complexity of Simplex

Extremely well-behaved in practice

• Empirically, number of iterations in simplex looks 
proportional to number of constraints

• Can we have a good theoretical upper bound on the number 
of iterations?

• NO! There are examples that need an exponential (2n) 
number of iterations, discovered first by [Klee, Minty ’72]

• Despite that, it is still one of the preferred algorithms for 
solving linear programs!
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Other Algorithms
•The ellipsoid method: The first polynomial time algorithm

– By [Kachiyan ’79], however not well behaved in practice
•Interior point methods: also polynomial time algorithms

– First conceived by Karmarkar [1984]
– Main ideas: 

• Again keep moving from a feasible solution to a better one
• But this time, we move along solutions in the interior of the polytope
• The current solution keeps getting closer and closer to a vertex of the polytope

36

6

4 x1

x2
2x2 = 12

3x1 + 2x2 = 18

x1 = 4-

-

-

- -(0, 0)

� �
�
�
�



Simplex vs Interior Point Algorithms
• Comparisons

– In theory: interior point methods are polynomial time algorithms (for 
any n and m), simplex may need exponential time

– In practice: average case complexity of simplex very low compared to 
worst case

– One iteration of interior point methods needs much more 
computation time than in simplex to decide the next feasible solution

– But: as the number of constraints increases, interior point methods do 
not need much more iterations

• Interior point methods go through the internal part of the polytope
• Adding more constraints reduces the feasible region, by adding more constraint 

boundaries

37



Integer Programming
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What is an integer program?
• A way to model problems where some variables take integer values
• Also referred to as Integer Linear Program (ILP):
• Almost the same as Linear Programs

• Linear objective function
• Linear constraints 

Applications:
• Comparable to applications of Linear Programming
• Operations Research
• Airline scheduling problems
• Medicine
• etc

Integer Programming
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xi =
1, if item i is in the solution 
0, otherwise                      

⎧
⎨
⎪

⎩⎪

• It is not always clear how to model a problem as an integer program
• The tricky part is how to express the objective function using integer 

variables
• Usually: Assign a binary variable xi to a candidate object that can be 

included in a solution  
• Interpretation:

Integer Programming Formulations
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Integer Programming Formulations

Examples:

0-1 KNAPSACK:
I: A set of objects S = {1,…,n}, each with a positive 
integer weight wi, and a value vi, i=1,…,n, and a 
positive integer W
Q: find A Í S  s.t. and          is maximized

Equivalent IP formulation:
max   Σi vi xi

s.t.
Σi wi xi ≤ W   
xi Î {0,1}     " i Î {1,...,n}

Ww
Ai

i £å
Î
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Integer Programming Formulations

Examples:

Equivalent IP formulation:
min   Σu xu

s.t.
xu + xv ≥ 1    " (u, v) Î E
xu Î {0,1}     " u Î V

VERTEX COVER (VC):
I: A graph G = (V,E)
Q: Find S Í V s.t. " (u, v) Î E  either uÎS or vÎS (or 
both) and |S| is maximized
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Integer Programming Formulations
Examples:
MAKESPAN (P||Cmax ) 
I: A set of objects S = {1,…,n}, each with a positive integer weight 
wi, i = 1,…,n, and a positive integer M 

Q: find a partition of S into A1, A2,…, AM s.t. is 
minimized
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Integer Programming Formulations
Examples:
MAKESPAN:
• Better to think of it as a job scheduling problem
• Items correspond to jobs that should be assigned to machines
• The weight corresponds to the processing time
• How do we model that a job j is assigned to machine i? 

Equivalent IP formulation:
min   t
s.t.

Σj wj xij ≤ t    " i Î {1,...,m} (The total processing time in each machine should be 
less or equal than the makespan

Σi xij = 1        " j Î {1,...,n}  (every job must be assigned to exactly one machine) 
xij Î {0,1}     " j Î {1,...,n}, i Î {1,...,m} 



Complexity of Integer Programming

• Modeling a problem as an integer program does not 
provide any guarantee that we can solve it

Theorem: Integer Programming is NP-complete

• In fact many problems in discrete optimization are NP-
complete

• Partly due to the discrete nature
• All such problems can be reduced to SAT and vice versa

Is this the end of the world?
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