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Outline

– Introductory examples

• FINDMAX

• BINARY COUNTER INCREMENT

• INSERTION SORT

– QUICKSORT

– BINARY SEARCH TREES

– HASHING
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Outline

– Worst case examples may often not appear in practice

– Performing an average case analysis can be meaningful

– But: for such an analysis, we need an assumption on the 
input 

• input = random data according to some probability distribution

– Usually analysis is done by assuming a uniform 
distribution on all possible configurations of the input
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Finding the MAX 

Complexity:
• Number of steps

Worst case = average case = Ο(n) (we have to execute the for loop)

• What about the commands inside the loop?

• Let T(n) = # of assignments = number of times (*) is executed 
Best case:   T(n) = 1
Worst case:   T(n) = n
Average case: ?

Algorithm max(A[1..n])

Input: An array of n elements Α[1..n]
Output: the position of the maximum element
max= A[1], position=1
for i=2 to n 

if A[i] > max  max=A[i], position=i
return position

(*)
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Finding the MAX (# assignments)  

Average case analysis: Need a probabilistic assumption on the data 
• There are n! possible orderings of n numbers: Natural to assume all 

orderings are equiprobable
– true if each number has been picked independently from the uniform 

probability distribution

• Define a random variable for each iteration i, call it Ti
• Ti = 1, if assignment in the ith iteration, 0 otherwise
• Pr [assignment in the ith iteration] = Pr [ A[j] < A[i], "j<i ] = 1/i
• Hence Pr[Ti = 1] = 1/i

Algorithm max(A[1..n])

Input: An array of n elements Α[1..n]
Output: the position of the maximum element
max= A[1], position=1
for i=2 to n 

if A[i] > max  max=A[i], position=i
return position

(*)



6

Finding the MAX (# assignments)  

Average case analysis: Need a probabilistic assumption on the data 
• Pr [no assignment in the ith iteration] = Pr [ $ j<i : A[j] > A[i] ] = (i-1)/I
• Expected value of Ti: 1⋅ Pr[Ti = 1] + 0⋅ Pr[Ti = 0] 
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Algorithm max(A[1..n])

Input: An array of n elements Α[1..n]
Output: the position of the maximum element
max= A[1], position=1
for i=2 to n 

if A[i] > max  max=A[i], position=i
return position

(*)
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Finding the MAX (# assignments) 

Average case analysis: 

T(n) : total # of assignments 
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Algorithm max(A[1..n])

Input: An array of n elements Α[1..n]
Output: the position of the maximum element
max= A[1], position=1
for i=2 to n 

if A[i] > max  max=A[i], position=i
return position

(*)



Complexity: We care for  # of bit flips
• Best case: O(1), the LSB is 0 and only this is flipped 
• Worst case: O(k), that is O(log n);  all the bits are flipped 
• Average case: ?

Incrementing a binary counter
Problem: Increment a binary counter  by 1
Input: An array A of k bits, A[0], A[1], ..., A[k-1], representing the 

counter of value  x, 0 ≤ x ≤ n :
Output: Increase the counter by 1
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INCREMENT(A);
i = 0;
while i < k and A[i] = 1 do

A[i] = 0;
i = i+1;

if i < k then A[i] = 1 else overflow

8
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Incrementing a binary counter

A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0] value 
0 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 1 1 
0 0 0 0 0 0 1 0 2 
0 0 0 0 0 0 1 1 3 
0 0 0 0 0 1 0 0 4 
0 0 0 0 0 1 0 1 5 
0 0 0 0 0 1 1 0 6 
0 0 0 0 0 1 1 1 7 
0 0 0 0 1 0 0 0 8 
0 0 0 0 1 0 0 1 9 
0 0 0 0 1 0 1 0 10 
0 0 0 0 1 0 1 1 11 
0 0 0 0 1 1 0 0 12 
0 0 0 0 1 1 0 1 13 
0 0 0 0 1 1 1 0 14 
0 0 0 0 1 1 1 1 15 
0 0 0 1 0 0 0 0 16 

 

The # of bit flips depends on the value of the counter



Binary Number Bit flips  (xi ) Probability (pi )
......0 1 1/2
......01 2 1/4

....011 3 1/8
. . .
. . .

i 1/2i

Incrementing a binary counter
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Assumption for average case analysis: All numbers 
with k bits equiprobable

Let 
X = #bit flips



11

InsertionSort

T(n) = # of comparisons
Best case: Array already sorted

1 comparison per iteration
T(n) = n-1

Worst case: Array sorted in reverse order
The ith iteration requires i comparisons

Average case: ?
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Algorithm SelectionSort (A[1..n])
A[0] := -∞ //only for technical convenience
for i:=2 to n do

j := i;
while A[j]<A[j-1] do

swap (A[j], A[j-1]);
j := j-1;
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InsertionSort

ith iteration

Final position of A[i] :  i ,   i-1 , … ,       2 ,    1
# of comparisons :  1 ,     2 , … ,     i-1 ,    i

Pr[A[i] goes to position j] :        ,           , … ,              ,

• Assumption for avg case analysis: All permutations of the n 
numbers are equiprobable

• Expected number of comparisons in the ith iteration =
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InsertionSort
Summing over all iterations
Expected number of comparisons:

• Around n2/4 
• Almost half of the worst case, but again O(n2)
• Here average case does not provide significant 

improvements
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Quick Sort
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QuickSort (A, p, r)
if p < r:

select pivot x;
q = Partition (A,p,r)
//split A into A[p,q-1],A[q+1,r];
// A[i] ≤ x, p ≤ i ≤ q-1
// x ≤ A[i], q+1 ≤ i ≤ r
// q is the final position of x
QuickSort (A[p,q-1]);
QuickSort (A[q+1,r]);

q rp

T. Hoare, 1960

R. Sedgewick
Ph.D. thesis, 1975



Quick Sort
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Partition (A, p, r)
x=A[r]
i=p-1
for j=p to r-1:

if A[j]≤x: i=i+1
swap(A[i],A[j])

swap(A[i+1],A[r])
q=i+1
return q

Complexity of Partition: O(n)
(n-1 iterations)



Quick Sort

16

2



Quick Sort
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QuickSort (A, p, r)
if p < r:

select pivot x;
q = Partition (A,p,r)
//split A into A[p,q-1],A[q+1,r];
// A[i] ≤ x, p ≤ i ≤ q-1
// x ≤ A[i], q+1 ≤ i ≤ r
// q is the final position of x
QuickSort (A[p,q-1]);
QuickSort (A[q+1,r]);

• Difficult to control the possible divisions into subproblems
Partition (A,q,r):  Ο(n), with n = r – p + 1 

• Combining the solutions of the subproblems: easy, 
Nothing to do !

• For simplicity, suppose p=1, r=n 

???      :Complexity )()()1()( nOqnTqTnT +-+-=



Quick Sort - Worst Case

• When we partition into in every step

• Pivot is the min (or the max)
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1 n-1

q

If we choose as pivot = A[r], when does the worst case occur?



Quick Sort - Best Case
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Quick Sort - Best Case

• Quicksort behaves well even if the partitioning at every 
step is quite unbalanced

• For example, suppose we partition into 90/10 proportions 
every time

• Or generally partition into in every 
step for some constant k

• Depth of recursion = loga n, a = k/k-1 Þ loga n = O(logn)
• Þ T(n) = O(nlogn)
• True for any partitioning with constant k (independent of n)
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Quick Sort - Best Case
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k=10



Quick Sort - Average Case
Assumptions:
• All permutations of the n numbers are equiprobable
• All numbers of A[1..n] are distinct

Then, the pivot can end up in any position equiprobably
– q: final position of the pivot after running Partition
– Pr[Partition(A, p, r) = q] = 1/n for every q
– Complexity if pivot ends up at q: 

• Hence, expected complexity: 

T (q−1)+T (n− q)+ (n−1)

22

T(n) = 1
n [T (q−1)+T (n− q)+ (n−1

q=1
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Quick Sort - Average Case
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n-q: 0,1,2,..,n-2,n-1

q-1: n-1,n-2,…2,1,0



Quick Sort - Average Case
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(1) * n:

(2) for n-1: 

(2) – (3):

(1)

(2)

(3)



Quick Sort - Average Case
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Lower bound for sorting 
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A lower bound applicable for all algorithms that use comparisons
• Pairwise comparisons
• Every such sorting algorithm corresponds to a binary decision tree

Tree leaves = possible orderings (permutations)

Complexity = tree height



Lower bound for sorting
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#  leaves ≥ # possible permutations = n!
No permutation can be absent
•If yes, what would the algorithm answer if the input corresponded to such 
a permutation?

Let d = tree height,  d = Ω(?)



Lower bound for sorting
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Every binary tree of height d has at most 2d leaves 

Hence:

)!log(2! ndn d ³Þ£



Lower bound for sorting
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at least Ω(nlogn) 



Median and Selection
SELECTION
I: n distinct numbers, a parameter k, 1£ k £ n
Q: the k-th largest element

k = n: find minimum,    k = 1: find maximum

k = ë(n+1)/2û à MEDIAN (half the elements smaller, the other 
half bigger)

k  odd:   x x x M x x x      (n=7,  k= 4)
k even:  x x x M x x x x   (n=8,  k= 4 - lower median)

Obvious algorithm:  Ο(n log n) – why?

30



Selection – Divide and Conquer

31

Select (A, p, r, k)
if p = r: return A[p]
select pivot x;
q = Partition (A,p,r)
//split A into A[p,q-1],A[q+1,r];
// A[i] ≤ x, p ≤ i ≤ q-1
// x ≤ A[i], q+1 ≤ i ≤ r
// q is the final position of x
m=q-p+1
if k=m: then return A[q]
else: if k < m Select(A,p,q-1,k)

else: Select (A,q+1,r, k-m)

q rp

k=1,2,3 k=4
MEDIAN

k=5,6,7,8



Selection – Divide and Conquer
Selection vs. Quicksort
• Quicksort: divide and examine recursively both segments 

of the array
• Selection: divide and examine recursively only one 

segment

If we always end up at the largest segment:

Best case: T(n) = T(n/2) + O(n) Þ O(n) 
Worst case:  T(n) = T(n-1) + O(n) Þ O(n2)
Average case:  ?

)1(}),1(max{T(n)   :Complexity -+--£ nqnqT
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Selection - D&C Average Case
Assumptions:
• All permutations of the n numbers are equiprobable
• All numbers of A[1..n] are distinct

Then, the pivot can end up in any position equiprobably
– q: final position of the pivot after running Partition
– Pr[Partition(A, p, r) = q] = 1/n for every q

• Expected complexity: 

• T(n) = O(n)   (similar analysis with Quicksort) 33
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WORST AVERAGE

Finding the max
( # of asignments)

O(n) O(logn)

Increment a binary
counter

O(n) O(1)

Insertionsort O(n2) O(n2)
Quicksort O(n2) O(nlogn)

Selection O(n2) O(n)

AVERAGE CASE ANALYSIS 

16
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ΕΚΤΟΣ ΥΛΗΣ

Average case analysis for Binary Search Trees and
Hashing
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DICTIONARY ADT
A data structure for maintaining a dynamic set S 

• A data set that keeps changing (items being inserted 
or deleted over time)

• Each item comes with a key

Supports  the following operations
• SEARCH (S,k) //search according to a key k
• INSERT (S,x) //insert an element x
• DELETE (S,k) //delete an element with key k

NAIVE IMPLEMENTATIONS:
• Arrays or lists: O(n) both for average and worst case
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DICTIONARY ADT
• SEARCH (S,k) //search according to a key k
• INSERT (S,x) //insert an element x
• DELETE (S,k) //delete an element with key k

BETTER IMPLEMENTATIONS:
• Binary Search Trees (BSTs): 

• O(n) worst case
• O(logn) average case

• Balanced BSTs (AVL, Red-Black, 2-3-4 trees):
• O(logn) worst case

• Splay trees: 
• O(logn) amortized 

• Hash Tables  
• O(n) worst case
• O(1) average case (under reasonable assumptions) 



An implementation of Dictionary

38

BINARY SEARCH TREES (BSTs)

α

< α > α

BST

RSTLST
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BSTs - Complexity of operations
The complexity of any operation is O(pk)  where
pk = depth of operation= path length from root to a node k

Best case: O(log n) balanced tree

Worst case: O(n)   chain

Average case:  ? 

S ofheight  )(max
S

==
Î

hpkk



40

BSTs - Average case
• Suppose a BST is built by inserting consecutively n 

distinct elements (assume integer keys)
• Assume all n! permutations of the keys equiprobable 
• Assume we have a successful search operation (and 

equiprobable to search for any of the keys)
• Unsuccessful search costs just 1 more

P(i) = average path length in a BST of i nodes (average  # of nodes       
on a path from the root to any node – not only to the leaves)

P(0) = 0
P(1) = 1
We want to estimate P(n)
α: the first element inserted = the root of the BST

equiprobable to be the 1st, 2nd, ..., ith, ..., nth in the 
sorted order of the n elements
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BSTs - Average case

equiprobable 
permutations

P(i)

α

i 
elements

n-i-1
elements

root

< α

> αLST

RST

equiprobable 
permutations

P(n-i-1)
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BSTs - Average case
For a given i:
P(n,i) = Average path length when we search key x, if the LST has i 

nodes:
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BSTs - Average case
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BSTs - Average case
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BSTs - Average case
4logn1P(n) +£

11log41  ,1)1(  :1 =+== Pn
Induction basis

Induction hypothesis
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BSTs - Average case
Inductive step
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BSTs - Average case
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BSTs - Average case 
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HASH TABLES

[CLRS 11.1, 11.2, 11.4]

An alterative implementation of DICTIONARY ADT

Recall we care to implement the operations
• SEARCH (S,k) //search according to a key k
• INSERT (S,x) //insert an element x
• DELETE (S,k) //delete an element with key k

2 main approaches used in hashing:

1. Chaining 

2. Open addressing
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Direct Addressing 
• We want to store objects that have a key field
• Let U = {0,1,2,3,…} the set of all possible key numbers –

assume integer keys

• Allocate an array that has a position for each key 
T[0..|U|-1]

• T[k] corresponds to (the element of) key k

• Operations: 
– search(k):  return T[k]
– insert(x):  T[x.key]=x
– delete(k):  T[k]=null

• Complexity: O(1) in worst case for all operations
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Direct Addressing 

actual keys used 

universe of keys U={0, 1,…,9} direct-access table

3

2 5

7
9

4

8

1 0

6

0
1
2
3
4
5

7
6

8
9

U

K

key
Problems:
• We may have objects with the same key
• Not all possible keys are used, we waste too much 
memory if U is huge
• actually stored keys  |K| << |U|
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Hashing
• Map the universe U of keys onto a small range of integers

• Hash function  h: U ® {0,1,...,m-1}, for some integer m

• Use an array of size m: T[0...m-1] ( m << |U|)

• Hash collision: when h(k)=h(k’) for k¹k’

• Goal: Obtain a hash function that is 
– cheap to evaluate (e.g., h(k) = ak mod m)
– assumption:  h(k) is computed in  Θ(1)
– minimizes collisions

• n = # of stored elements
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Hashing

h(k2)= h(k3)

actual keys

universe of keys hash table

k2
k1
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K
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h(k1)

h(k4)

collisionhash function
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Collisions 
• No matter how good  the hash function is, the probability of 

no collision is very low even for small n (birthday paradox) 
• For m=365 and n ³50 this probability goes to 0

• How to treat hash collisions when they occur?
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Chaining
Put all keys that hash to the same integer in a linked list

k2
k1

0

m-1

U

K
k3k4

k1

k2 k3

k4

Use array of m lists: T[0], T[1], T[2],...,T[m-1]
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Chaining – worst case
• DICTIONARY  implementation: 

– search(k): search for an element with key k in the list T[h(k)]
– insert(x): put element x at the front of list T[h(x.key)] (we 

do not keep the lists sorted)
– delete(k): delete element with key k from list T[h(k)]

• Complexity  
– search(k):   Θ ( | Τ([h(k)]| )
– insert(x):  Θ(1) (no check if  element x is already present)
– delete(k):    Θ ( | Τ([h(k)]| )

• Worst case:  all keys are hashed onto the same slot
– search(k):   Θ(n )
– insert(x):  Θ(1) (no check if  element x is already present)
– delete(k):    Θ(n)  
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Chaining - Average case
• Assumption: uniform hashing

– each key is equally likely hashed into any of the m 
slots, independently of where any other element has 
hashed to

• Filling degree of hash table  T: α(n,m)= n/m 
– the average length of list T[j] is α

• Εxpected number of elements examined in T[h(k)] to 
search key k?
Distinguish between
– unsuccessful search
– successful  search
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Chaining - Average case
Unsuccessful search

• Expected time to search for key k
= expected time to search till the end of list T[h(k)]

• T[h(k)] has expected length α

• The computation of h(k) takes Θ(1) time

that is a total of  Θ(1+α)
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Chaining - Average case  
Successful search

• Suppose keys were inserted in the order k1, k2,..., kn
• ki:  the ith inserted key 
• A(ki): the expected time to search ki

A(ki) = 1 + average # of keys inserted in T[h(ki)]
after ki was inserted

• Due to uniform hashing:

# of keys inserted in T[h(ki)] after ki

• average over all n inserted keys  
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Chaining - Average case
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• Better than in the unsuccessful case
• But overall Θ(1+α) 

Successful search
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Chaining - Average case

• Assume that n is O(m)  (e.g., think of n = 5m or cm for a 
small constant c)

• Then, 

• Hence: all dictionary operations take O(1) time on average
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Open addressing
• ALL elements are stored in the array T itself
• Each entry of T contains either an element or null 
• n ≤ m, α ≤ 1

• Insertion of a key k:
– Probe the entries of the hash table until an empty slot is found

• Sequence of slots probed depends on key k to be inserted

• The hash function depends on the key k and the probe #, i  

• The probe sequence generated for a key k 
h(k,0), h(k,1), h(k,2), …, h(k,m-1)

should be a permutation of  0, 1, 2, 3,…, m-1
(this guarantees that all slots are eventually considered)

}1,...1,0{}1,...,1,0{: -®-´ mmUh
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Open addressing – Insert

Insert (T, k);
// i = probe #
i=0;
repeat

j=h(k,i); // compute (i+1)th probe
if T[j]=null then T[j]=k;  return j; 

else i=i+1;
until (i=T.length);  
return full
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Open addressing – Search  

Search (T, k);  
// i = probe # 
i=0; 
repeat

j=h(k,i);  
if T[j]=k then return j

else i=i+1;
until (i=T.length or T[j]==null);

return null

probes the same slots as insertion (with no deletions)
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Open addressing – Delete
• Just setting T[i]=null for deletion is inappropriate!

• If at insertion of k, a visited slot i was occupied, and then the 
element there is deleted there is no way to retrieve k anymore !

• Solution: T[i]=DELETED(a special value) 

• Insert needs to be adapted to treat such slots as empty

• Search remains unchanged as DELETED slots are ignored

• Search times now no longer depend on filling degree α only

If keys are to be often deleted, chaining is more commonly 
used than open addressing
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Open addressing – Hash functions
• Requirement: for a given key k,generate a  probing sequence

h(k,0), h(k,1), h(k,2),… , h(k,m-1)
which is  a permutation of  0, 1, 2, 3,…, m-1 (in worst case all 
elements of the array need to be examined at insertion)

• Several policies/functions 
– Linear probing: h(k, i) = (h’(k) + i) mod m, for some appropriate 

single-parameter hash function (what se saw in Data Structures)
– Quadratic probing: h(k, i) = (h’(k) + ci + ci2) mod m
– Double hashing: use a 2nd hash function for the probe

• Quality is judged by the number of different probe sequences each 
policy can generate
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Open addressing – Hash function
• Assumption for our analysis: Uniform hashing

– For each key considered, each of the m! permutations is equally 
likely as a probing sequence

– too expensive or even unrealistic to implement in practice
– But useful for analysis

• In practice: double hashing achieves a good 
approximation to uniform hashing
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Open addressing – average case
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Ai : the event {the ith probe  is to an occupied slot}

Unsuccessful search

(recall that n<m) 

X=  # of probes in unsuccessful search
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Open addressing – average case  
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Intuition:
•1 probe is always made
•With probability α, the 1st probe finds an occupied slot and a 2nd probe is 
made
•With probability  » α2, the 1st and the 2nd probe find occupied slots and a 3nd

probe is made
•and so on...



70

Open addressing – average case  
Successful search
• Follows the same probe sequence as insert
• Insert = unsuccessful search + placement  à 1/(1-α)
• Xi+1 = average # of probes for the (i+1)th inserted key

= 1/(1-i/m)
• X=  # of probes in unsuccessful search over all n keys
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Open addressing – average case  
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Efficiency of open addressing

Summary: Under the assumption of uniform hashing:

• An unsuccessful search takes                 time on average

– If the hash table is half full, 2 probes are necessary on average
– If the hash table is 90% full, 10 probes are necessary on average

• A successful search takes                      time on average
– If the hash table is half full, 1.39 probes are necessary on average
– If the hash table is 90% full, 2.56 probes are necessary on 

average

• Recall that for chaining this was Θ(1+α) for both cases
• Hence: as long as a = O(1), we have O(1) complexity on 

average for all the desired operations!
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