OIKONOMIKO MANEMIETHMIO AOHN』N

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Special Topics on Algorithms

 Fall 2023Average Case Analysis
Vangelis Markakis
Ioannis Milis

Outline

- Introductory examples
- FINDMAX
- BINARY COUNTER INCREMENT
- INSERTION SORT
- QUICKSORT
- BINARY SEARCH TREES
- HASHING

Outline

- Worst case examples may often not appear in practice
- Performing an average case analysis can be meaningful
- But: for such an analysis, we need an assumption on the input
- input = random data according to some probability distribution
- Usually analysis is done by assuming a uniform distribution on all possible configurations of the input

Finding the MAX

```
Algorithm max(A[1..n])
Input: An array of n elements A[1..n]
Output: the position of the maximum element
max= A[1], position=1
for i=2 to n
    if A[i] > max max=A[i], position=i
return position
```

Complexity:

- Number of steps

Worst case $=$ average case $=O(n)($ we have to execute the for loop)

- What about the commands inside the loop?
- Let $T(n)=\#$ of assignments = number of times $\left(^{*}\right)$ is executed Best case: $\quad T(n)=1$ Worst case: $\quad T(n)=n$ Average case: ?

Finding the MAX (\# assignments)

```
Algorithm max(A[1..n])
Input: An array of n elements A[1..n]
Output: the position of the maximum element
max= A[1], position=1
for i=2 to n
    if A[i] > max max=A[i], position=i
return position
```

Average case analysis: Need a probabilistic assumption on the data

- There are n ! possible orderings of n numbers: Natural to assume all orderings are equiprobable
- true if each number has been picked independently from the uniform probability distribution
- Define a random variable for each iteration i, call it T_{i}
- $\mathrm{T}_{\mathrm{i}}=1$, if assignment in the $\mathrm{it}^{\text {th }}$ iteration, 0 otherwise
- $\operatorname{Pr}\left[\right.$ assignment in the $\mathrm{it}^{\text {th }}$ iteration $]=\operatorname{Pr}[\mathrm{A}[\mathrm{j}]<\mathrm{A}[\mathrm{i}], \forall \mathrm{j}<\mathrm{i}]=1 / \mathrm{i}$
- Hence $\operatorname{Pr}\left[T_{i}=1\right]=1 / \mathrm{i}$

Finding the MAX (\# assignments)

```
Algorithm max(A[1..n])
Input: An array of n elements A[1..n]
Output: the position of the maximum element
max= A[1], position=1
for i=2 to n
    if A[i] > max max=A[i], position=i
return position
```

Average case analysis: Need a probabilistic assumption on the data

- $\operatorname{Pr}\left[\right.$ no assignment in the $i^{\text {th }}$ iteration $]=\operatorname{Pr}[\exists j<i: A[j]>A[i]]=(i-1) / l$
- Expected value of $\mathrm{T}_{\mathrm{i}}: 1 \cdot \operatorname{Pr}\left[\mathrm{~T}_{\mathrm{i}}=1\right]+0 \cdot \operatorname{Pr}\left[\mathrm{~T}_{\mathrm{i}}=0\right]$

$$
\mathbf{E}\left[T_{i}\right]=1 \frac{1}{i}+0 \frac{i-1}{i}=\frac{1}{i}
$$

Finding the MAX (\# assignments)

```
Algorithm max(A[1..n])
Input: An array of n elements A[1..n]
Output: the position of the maximum element
max= A[1], position=1
for i=2 to n
    if A[i] > max max=A[i], position=i
return position
```

Average case analysis:
$\mathrm{T}(\mathrm{n})$: total \# of assignments $T(n)=\sum_{i=1}^{n} T_{i}$

$$
\begin{gathered}
\mathbf{E}[T(n)]=\mathbf{E}\left[\sum_{i=1}^{n} T_{i}\right]=\sum_{i=1}^{n} \mathbf{E}\left[T_{i}\right]=\sum_{i=1}^{n} \frac{1}{i}=H_{n}=O(\log n) \\
\text { Linearity of Expectation }
\end{gathered}
$$

Incrementing a binary counter

Problem: Increment a binary counter by 1
Input: An array A of k bits, $\mathrm{A}[0], \mathrm{A}[1], \ldots, \mathrm{A}[\mathrm{k}-1]$, representing the counter of value $x, 0 \leq x \leq n: x=\sum_{i=0}^{k-1} A[i] \cdot 2^{i} \quad(k=\lfloor\log n\rfloor+1)$
Output: Increase the counter by 1

```
INCREMENT (A);
i = 0;
while i < k and A[i] = 1 do
    A[i] = 0;
    i = i+1;
if i < k then A[i] = 1 else overflow
```

Complexity: We care for \# of bit flips

- Best case: $O(1)$, the LSB is 0 and only this is flipped
- Worst case: $\mathrm{O}(\mathrm{k})$, that is $\mathrm{O}(\log \mathrm{n})$; all the bits are flipped
- Average case: ?

Incrementing a binary counter

The \# of bit flips depends on the value of the counter

$\mathbf{A}[\mathbf{7]}$	$\mathbf{A}[6]$	$\mathbf{A}[5]$	$\mathbf{A}[4]$	$\mathbf{A}[3]$	$\mathbf{A}[\mathbf{2]}$	$\mathbf{A}[1]$	$\mathbf{A}[\mathbf{0}]$	value
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	1	0	2
0	0	0	0	0	0	1	1	3
0	0	0	0	0	1	0	0	4
0	0	0	0	0	1	0	1	5
0	0	0	0	0	1	1	0	6
0	0	0	0	0	1	1	1	7
0	0	0	0	1	0	0	0	8
0	0	0	0	1	0	0	1	9
0	0	0	0	1	0	1	0	10
0	0	0	0	1	0	1	1	11
0	0	0	0	1	1	0	0	12
0	0	0	0	1	1	0	1	13
0	0	0	0	1	1	1	0	14
0	0	0	0	1	1	1	1	15
0	0	0	1	0	0	0	0	16

Incrementing a binary counter

Assumption for average case analysis: All numbers with k bits equiprobable

Binary Number	Bit flips $\left(\mathrm{x}_{\mathrm{i}}\right)$	Probability $\left(\mathrm{p}_{\mathrm{i}}\right)$
$\ldots \ldots 0$	1	$1 / 2$
$\ldots \ldots .01$	2	$1 / 4$
$\ldots .011$	3	$1 / 8$
.	.	.
.	.	.
$\underbrace{0111 \ldots 111}_{\mathrm{i}-1}$	i	$1 / 2^{\mathrm{i}}$

Let
X = \#bit flips

$$
E(X)=\sum_{i=1}^{k} p_{i} x_{i}=\sum_{i=1}^{k} i \frac{1}{2^{i}} \leq \sum_{i=0}^{\infty} i \frac{1}{2^{i}}=\frac{\frac{1}{2}}{\left(1-\frac{1}{2}\right)^{2}}=2=O(1)!
$$

InsertionSort

```
Algorithm SelectionSort (A[1..n])
A[0] := -\infty //only for technical convenience
for i:=2 to n do
    j := i;
    while A[j]<A[j-1] do
        swap (A[j], A[j-1]);
        j := j-1;
```

T(n) = \# of comparisons
Best case: Array already sorted
1 comparison per iteration
$T(n)=n-1$
Worst case: Array sorted in reverse order
The $i^{\text {th }}$ iteration requires i comparisons

$$
T(n)=\sum_{i=2}^{n} i=\frac{n(n+1)}{2}-1 \sim O\left(n^{2}\right)
$$

Average case: ?

InsertionSort

$i^{\text {th }}$ iteration

Final position of A [i]
\# of comparisons
$\operatorname{Pr}[A[i]$ goes to position $j]: \frac{1}{i}, \frac{1}{i}, \ldots, \frac{1}{i}, \frac{1}{i}$

- Assumption for avg case analysis: All permutations of the n numbers are equiprobable
- Expected number of comparisons in the $i^{\text {th }}$ iteration $=$

$$
T_{i}=\sum_{k=1}^{i} k \cdot \frac{1}{i}=\frac{i(i+1)}{2} \cdot \frac{1}{i}=\frac{i+1}{2}
$$

InsertionSort

Summing over all iterations

Expected number of comparisons:

$$
\begin{aligned}
E[T(n)] & =E\left[\sum_{i=2}^{n} T_{i}\right]=\sum_{i=2}^{n} E\left[T_{i}\right]= \\
& =\sum_{i=2}^{n} \frac{i+1}{2}=\frac{1}{2}\left(\frac{(n+1)(n+2)}{2}-3\right) \\
& =\frac{n(n+1)}{4}+\frac{n-2}{2}
\end{aligned}
$$

- Around $\mathrm{n}^{2} / 4$
- Almost half of the worst case, but again $O\left(\mathrm{n}^{2}\right)$
- Here average case does not provide significant improvements

Quick Sort

```
QuickSort (A, p, r)
if p < r:
    select pivot x;
    \Gammaq = Partition (A,p,r)
    //split A into A[p,q-1],A[q+1,r];
    // A[i] \leq x, p \leq i \leq q-1
    // x \leq A[i], q+1 \leq i \leq r
    // q is the final position of x
    QuickSort (A[p,q-1]);
    QuickSort (A[q+1,r]);
```


T. Hoare, 1960

R. Sedgewick Ph.D. thesis, 1975

Quick Sort

(b) \quad	, $\begin{array}{l}r \\ p, i \\ j\end{array}$							
2	8	7	1	3	5	6	4	

(e) \quad	p						
2	1			j			

(g) \quad| p | i | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 2 | 1 | 3 | 8 | 7 | 5 | 6 | 4 |

(h)

(i)

Quick Sort

7	6	12	3	11	8	$\overline{2}$	1	15	13	17	5	16	14	9	4	10
7	6	4	3	9	8	2	1	5	10	17	15	16	14	11	12	13
1	2	4	3	5	8	6	7	9	10	12	11	13	14	15	17	16
1	2	3	4	5	8	6	7	9	10	11	12	13	14	15	16	17
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17

Quick Sort

```
QuickSort (A, P, r)
if p < r:
    select pivot x;
    q = Partition (A,p,r)
    //split A into A[p,q-1],A[q+1,r];
    // A[i] \leq x, p \leq i \leq q-1
    // x \leq A[i], q+1 \leq i \leq r
    // q is the final position of x
    QuickSort (A[p,q-1]);
    QuickSort (A[q+1,r]);
```

- Difficult to control the possible divisions into subproblems Partition (A, q, r): $O(n)$, with $n=r-p+1$
- Combining the solutions of the subproblems: easy, Nothing to do!
- For simplicity, suppose $p=1, r=n$

Complexity : $T(n)=T(q-1)+T(n-q)+O(n)$???

Quick Sort - Worst Case

- When we partition into

in every step
- Pivot is the min (or the max)

$$
T(n)=T(n-1)+n=\sum_{k=1}^{n} k=\frac{n(n+1)}{2}=O\left(n^{2}\right)
$$

If we choose as pivot $=\mathrm{A}[r]$, when does the worst case occur?

Quick Sort - Best Case

- Partition into $\quad\lfloor n / 2\rfloor$ in every step
- Pivot is the median

$$
T(n)=2 T\left(\frac{n}{2}\right)+O(n)=O(n \log n)
$$

Quick Sort - Best Case

- Quicksort behaves well even if the partitioning at every step is quite unbalanced
- For example, suppose we partition into 90/10 proportions every time
- Or generally partition into $\leq n \frac{k-1}{k} \quad \mathbb{Q} \geq \frac{n}{k} \quad$ in every step for some constant k

$$
T(n)=T\left(\frac{k-1}{k} n\right)+T\left(\frac{1}{k} n\right)+O(n)
$$

- Depth of recursion $=\log _{\mathrm{a}} \mathrm{n}, \mathrm{a}=\mathrm{k} / \mathrm{k}-1 \Rightarrow \log _{\mathrm{a}} \mathrm{n}=\mathrm{O}(\log n)$
- $\Rightarrow T(n)=O(n \log n)$
- True for any partitioning with constant k (independent of n)

Quick Sort - Best Case

Quick Sort - Average Case

Assumptions:

- All permutations of the n numbers are equiprobable
- All numbers of $A[1 . . n]$ are distinct

Then, the pivot can end up in any position equiprobably
$-\mathbf{q}$: final position of the pivot after running Partition
$-\operatorname{Pr}[\operatorname{Partition}(A, p, r)=q]=1 / n$ for every q

- Complexity if pivot ends up at $\mathrm{q}: T(q-1)+T(n-q)+(n-1)$
- Hence, expected complexity:

$$
\mathrm{T}(\mathrm{n})=\sum_{q=1}^{n} \frac{1}{n}[T(q-1)+T(n-q)+(n-1)]
$$

Quick Sort - Average Case

$$
\begin{aligned}
T(n) & =\sum_{q=1}^{n} \frac{1}{n}[T(q-1)+T(n-q)+(n-1)] \\
& =\frac{1}{n} \sum_{q=1}^{n}[T(q-1)+T(n-q)]+\frac{1}{n} \sum_{q=1}^{n}(n-1) \\
& =\frac{1}{n} \sum_{q=1}^{n}[T(q-1)+T(n-q)]+\frac{n(n-1)}{n} \\
& =\frac{2}{n} \sum_{q=1}^{n} T(q-1)+(n-1)
\end{aligned}
$$

Quick Sort - Average Case

$$
\begin{array}{ll}
& T(n)=\frac{2}{n} \sum_{q=1}^{n} T(q-1)+n-1 \\
\text { (1) * } \mathrm{n}: \quad & n T(n)=2 \sum_{q=1}^{n} T(q-1)+n(n-1) \\
\text { (2) for n-1: } \quad(n-1) T(n-1)=2 \sum_{q=1}^{n-1} T(q-1)+(n-1)(n-2) \tag{3}\\
& n T(n)-(n-1) T(n-1)=2 T(n-1)+2(n-1) \Rightarrow \\
& \frac{T T(n)=(n+1) T(n-1)+2(n-1) \Rightarrow}{} \begin{array}{l}
n+1
\end{array}, \frac{T(n-1)}{n}+\frac{2(n-1)}{n(n+1)}
\end{array}
$$

Quick Sort - Average Case

$$
\frac{T(n)}{n+1}=\frac{T(n-1)}{n}+\frac{2(n-1)}{n(n+1)}
$$

$$
\text { Ебт } \quad \alpha_{n}=\frac{T(n)}{n+1}, \alpha_{0}=0
$$

$$
\begin{aligned}
\alpha_{n} & =\alpha_{n-1}+\frac{2(n-1)}{n(n+1)}=\alpha_{n-2}+\frac{2(n-2)}{(n-1) n}+\frac{2(n-1)}{n(n+1)}=\ldots=\sum_{i=1}^{n} \frac{2(i-1)}{i(i+1)} \\
& =2 \sum_{i=1}^{n} \frac{i-1}{i(i+1)} \leq 2 \sum_{i=1}^{n} \frac{i}{i(i+1)}=2 \sum_{i=1}^{n} \frac{1}{i+1} \leq 2 \sum_{i=1}^{n} \frac{1}{i}=2 H_{n}
\end{aligned}
$$

$$
T(n)=(n+1) \alpha_{n} \leq(n+1) \cdot 2 H_{n}=O(n \log n)
$$

Lower bound for sorting

A lower bound applicable for all algorithms that use comparisons

- Pairwise comparisons
- Every such sorting algorithm corresponds to a binary decision tree

Tree leaves $=$ possible orderings (permutations)
Complexity = tree height

Lower bound for sorting

\# leaves \geq \# possible permutations $=n$!
No permutation can be absent
-If yes, what would the algorithm answer if the input corresponded to such a permutation?

Let $\mathrm{d}=$ tree height, $\mathrm{d}=\Omega($? $)$

Lower bound for sorting

Every binary tree of height d has at most 2^{d} leaves
Hence:

$$
n!\leq 2^{d} \Rightarrow d \geq \log (n!)
$$

Lower bound for sorting

$$
\begin{aligned}
d \geq \log (n!) & =\log \left(1 \cdot 2 \cdot \ldots \cdot \frac{n}{2} \cdot\left(\frac{n}{2}+1\right) \cdot\left(\frac{n}{2}+2\right) \cdot \ldots \cdot n\right) \geq \log \left(\left(\frac{n}{2}\right)^{\frac{n}{2}}\right) \\
& =\frac{n}{2} \log \left(\frac{n}{2}\right)=\frac{n}{2}(\log n-\log 2)=\frac{n}{2}(\log n-1)=\Omega(n \log n)
\end{aligned}
$$

OR:

$$
\begin{aligned}
d \geq \log (n!) & \stackrel{\text { Stirling }}{\geq} \log \left(\frac{n}{e}\right)^{n}=n \log \left(\frac{n}{e}\right)=n(\log n-\log e) \\
& =n \log n-n \log e=\Omega(n \log n)
\end{aligned}
$$

Thus, any algorithm based on comparisons must have complexity at least Ω (nlogn)

Median and Selection

SELECTION

I: n distinct numbers, a parameter $\mathrm{k}, 1 \leq \mathrm{k} \leq \mathrm{n}$
Q: the k-th largest element
$\mathrm{k}=\mathrm{n}$: find minimum, $\mathrm{k}=1$: find maximum
$\mathrm{k}=\lfloor(\mathrm{n}+1) / 2\rfloor \rightarrow$ MEDIAN (half the elements smaller, the other half bigger)
k odd: $x \times x$ M x xx $\quad(n=7, k=4)$
k even: $\mathrm{xxxM} \times x \times x \quad(\mathrm{n}=8, \mathrm{k}=4$ - lower median)

Obvious algorithm: $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ - why?

Selection - Divide and Conquer

Select (A, $\mathrm{P}, \mathrm{r}, \mathrm{k}$)
if p = r: return $A[p]$
select pivot x;
$\mathrm{q}=$ Partition (A, p, r)
//split A into A[p,q-1],A[q+1,r];
$/ / A[i] \leq x, p \leq i \leq q-1$
$/ / X \leq A[i], q+1 \leq i \leq r$
// q is the final position of x
$m=q-p+1$
if $k=m$: then return $A[q]$
else: if $k<m \operatorname{Select}(A, p, q-1, k)$
else: Select $(A, q+1, r, k-m)$

Selection - Divide and Conquer

Selection vs. Quicksort

- Quicksort: divide and examine recursively both segments of the array
- Selection: divide and examine recursively only one segment

If we always end up at the largest segment:
Complexity: $\mathrm{T}(\mathrm{n}) \leq T(\max \{q-1, n-q\})+(n-1)$

Best case: $\quad T(n)=T(n / 2)+O(n) \Rightarrow O(n)$
Worst case: $T(n)=T(n-1)+O(n) \Rightarrow O\left(n^{2}\right)$
Average case: ?

Selection - D\&C Average Case

Assumptions:

- All permutations of the n numbers are equiprobable
- All numbers of $\mathrm{A}[1 . . \mathrm{n}]$ are distinct

Then, the pivot can end up in any position equiprobably

- \mathbf{q} : final position of the pivot after running Partition
$-\operatorname{Pr}[\operatorname{Partition}(A, p, r)=q]=1 / n$ for every q

$$
\mathrm{T}(\mathrm{n}) \leq T(\max \{q-1, n-q\})+(n-1)
$$

- Expected complexity:

$$
T(n) \leq \sum_{q=1}^{n} \frac{1}{\mathrm{n}} \cdot[T(\max \{q-1, n-q\})+(n-1)]
$$

- $\mathrm{T}(\mathrm{n})=\mathrm{O}(\mathrm{n}) \quad$ (similar analysis with Quicksort)

AVERAGE CASE ANALYSIS

WORST

Finding the max (\# of asignments)

Increment a binary counter

Insertionsort	$O\left(n^{2}\right)$	$O\left(n^{2}\right)$
Quicksort	$O\left(n^{2}\right)$	$O($ nlogn $)$
	$O\left(n^{2}\right)$	$O(n)$

EKTOE YへH亡

Average case analysis for Binary Search Trees and Hashing

DICTIONARY ADT

A data structure for maintaining a dynamic set S

- A data set that keeps changing (items being inserted or deleted over time)
- Each item comes with a key

Supports the following operations

- SEARCH (S, k) //search according to a key k
- INSERT (S, x) //insert an element x
- DELETE (S, k) //delete an element with key k
- Arrays or lists: O(n) both for average and worst case

DICTIONARY ADT

- SEARCH (\mathbf{S}, \mathbf{k}) //search according to a key k
- INSERT $(S, x) / /$ insert an element x
- DELETE (\mathbf{S}, \mathbf{k}) //delete an element with key k

BETTER IMPLEMENTATIONS:

- Binary Search Trees (BSTs):
- O(n) worst case
- O(logn) average case
- Balanced BSTs (AVL, Red-Black, 2-3-4 trees):
- O(logn) worst case
- Splay trees:
- O(logn) amortized
- Hash Tables
- O(n) worst case
- $\mathrm{O}(1)$ average case (under reasonable assumptions)

BINARY SEARCH TREES (BSTs)

An implementation of Dictionary

BSTs - Complexity of operations

The complexity of any operation is $\mathrm{O}\left(\mathrm{p}_{\mathrm{k}}\right)$ where $p_{k}=$ depth of operation= path length from root to a node k

$$
\max _{k \in \mathrm{~S}}\left(p_{k}\right)=h=\text { height of } \mathrm{S}
$$

Best case: $O(\log n)$ balanced tree
Worst case: $\mathrm{O}(\mathrm{n}) \quad$ chain
Average case: ?

BSTs - Average case

- Suppose a BST is built by inserting consecutively n distinct elements (assume integer keys)
- Assume all n! permutations of the keys equiprobable
- Assume we have a successful search operation (and equiprobable to search for any of the keys)
- Unsuccessful search costs just 1 more

P(i) = average path length in a BST of i nodes (average \# of nodes on a path from the root to any node - not only to the leaves)
$P(0)=0$
$P(1)=1$
We want to estimate $P(n)$
α : the first element inserted = the root of the BST equiprobable to be the $1^{\text {st }}, 2^{\text {nd }}, \ldots, i^{\text {th }}, \ldots, n^{\text {th }}$ in the sorted order of the n elements

BSTs - Average case

RST

BSTs - Average case

For a given i :
$P(n, i)=$ Average path length when we search key x, if the LST has i nodes:

$$
\begin{aligned}
& -x=a: P(n, i)=1 \\
& -x \in L S T: P(n, i)=1+P(i) \\
& -x \in R S T: P(n, i)=1+P(n-i-1)
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{Pr}[\text { searching any of the n elements }]=\frac{1}{n} \text { (equiprobable) } \\
& \begin{aligned}
P(n, i) & =\frac{1}{n} \cdot 1+\frac{i}{n}[1+P(i)]+\frac{(n-i-1)}{n}[1+P(n-i-1)] \\
& =\frac{1+i+(n-i-1)}{n}+\frac{i}{n} P(i)+\frac{n-i-1}{n} P(n-i-1) \\
& =1+\frac{i}{n} P(i)+\frac{n-i-1}{n} P(n-i-1)
\end{aligned}
\end{aligned}
$$

BSTs - Average case

Recall: we care for $\mathrm{P}(\mathrm{n})$

$$
P(n)=\sum_{i=0}^{n-1} \operatorname{Pr}[L S T \text { has i nodes }] \cdot P(n, i)
$$

$\operatorname{Pr}[L S T$ has i nodes $]=\operatorname{Pr}\left[\begin{array}{l}\alpha \text { is the }(\mathrm{i}+1)^{\text {th }} \text { element in the } \\ \text { sorted order of the } \mathrm{n} \text { elements }\end{array}\right]=\frac{1}{n}$
Hence: $\quad P(n)=\frac{1}{n} \sum_{i=0}^{n-1} P(n, i)$

BSTs - Average case

$$
\begin{aligned}
P(n) & =\frac{1}{n} \sum_{i=0}^{n-1} P(n, i) \\
& =\frac{1}{n}\left\{\sum_{i=0}^{n-1}\left[1+\frac{i}{n} P(i)+\frac{n-i-1}{n} P(n-i-1)\right]\right\} \\
& =1+\frac{1}{n^{2}} \sum_{i=0}^{n-1}[i P(i)+(n-i-1) \cdot P(n-i-1)] \\
P(n) & =1+\frac{2}{n^{2}} \sum_{i=0}^{n-1} i P(i)
\end{aligned}
$$

We shall show that $P(n) \leq 1+4 \log n \quad$ (by induction on \mathbf{n})

BSTs - Average case

$\mathrm{P}(\mathrm{n}) \leq 1+4 \log \mathrm{n}$
Induction basis

$$
n=1: P(1)=1,1+4 \log 1=1
$$

Induction hypothesis

$$
P(i) \leq 1+4 \log i, \quad \forall \mathrm{i}<\mathrm{n}
$$

BSTs - Average case

Inductive step

$$
\begin{aligned}
P(n) & =1+\frac{2}{n^{2}} \sum_{i=1}^{n-1} i P(i) \\
& \leq 1+\frac{2}{n^{2}} \sum_{i=1}^{n-1} i(1+4 \log i) \\
& \leq 1+\frac{2}{n^{2}} \sum_{i=1}^{n-1} 4 i \log i+\frac{2}{n^{2}} \sum_{i=1}^{n-1} i \\
& \leq 1+\frac{2}{n^{2}} \sum_{i=1}^{n-1} 4 i \log i+\frac{2}{n^{2}} \frac{n^{2}}{2} \Rightarrow \\
P(n) & \leq 2+\frac{8}{n^{2}} \sum_{i=1}^{n-1} i \log i
\end{aligned}
$$

BSTs - Average case

$$
\begin{aligned}
\sum_{i=1}^{n-1} i \log i & =\sum_{i=1}^{\left\lceil\frac{n}{2}\right]-1} i \log i+\sum_{i=\left\lceil\frac{n}{2}\right\rceil}^{n-1} i \log i \\
& \leq \sum_{i=1}^{\left[\frac{n}{2}\right]-1} i \log \frac{n}{2}+\sum_{i=\left[\frac{n}{2}\right\rceil}^{n-1} i \log n \\
& \leq \frac{n^{2}}{8} \log \frac{n}{2}+\frac{3 n^{2}}{8} \log n \\
& =\frac{n^{2}}{8}(\log n-1)+\frac{3 n^{2}}{8} \log n \\
& =\frac{n^{2}}{2} \log n-\frac{n^{2}}{8}
\end{aligned}
$$

BSTs - Average case

Thus,

$$
\begin{aligned}
P(n) & \leq 2+\frac{8}{n^{2}} \sum_{i=1}^{n-1} i \log i \quad \sum_{i=1}^{n-1} i \log i \leq \frac{n^{2}}{2} \log n-\frac{n^{2}}{8} \\
& \leq 2+\frac{8}{n^{2}}\left(\frac{n^{2}}{2} \log n-\frac{n^{2}}{8}\right) \\
& =2+4 \log n-1 \\
& =1+4 \log n \Rightarrow
\end{aligned}
$$

$$
P(n)=O(\log n)
$$

HASH TABLES

[CLRS 11.1, 11.2, 11.4]

An alterative implementation of DICTIONARY ADT
Recall we care to implement the operations

- SEARCH (S, k) //search according to a key k
- INSERT (S, x) //insert an element x
- Delete (S, k) //delete an element with key k

2 main approaches used in hashing:

1. Chaining
2. Open addressing

Direct Addressing

- We want to store objects that have a key field
- Let $U=\{0,1,2,3, \ldots\}$ the set of all possible key numbers assume integer keys
- Allocate an array that has a position for each key T[0..|U|-1]
- $\mathrm{T}[\mathrm{k}$] corresponds to (the element of) key k
- Operations:
- search (k): return $T[k]$
- insert(x): T[x.key]=x
- delete(k): T[k]=null
- Complexity: $\mathrm{O}(1)$ in worst case for all operations

Direct Addressing

universe of keys $U=\{0,1, \ldots, 9\}$

direct-access table
actual keys used

Problems:

- We may have objects with the same key
- Not all possible keys are used, we waste too much memory if U is huge
- actually stored keys $|\mathrm{K}| \ll|\mathrm{U}|$

Hashing

- Map the universe U of keys onto a small range of integers
- Hash function $h: U \rightarrow\{0,1, \ldots, m-1\}$, for some integer m
- Use an array of size $\mathrm{m}: \mathrm{T}[0 \ldots \mathrm{~m}-1] \quad(\mathrm{m} \ll|\mathrm{U}|)$
- Hash collision: when $h(k)=h\left(k^{\prime}\right)$ for $k \neq k^{\prime}$
- Goal: Obtain a hash function that is
- cheap to evaluate (e.g., $h(k)=a k$ mod m)
- assumption: $h(k)$ is computed in $\Theta(1)$
- minimizes collisions
- $\mathrm{n}=$ \# of stored elements

Hashing

universe of keys

hash table

Collisions

- No matter how good the hash function is, the probability of no collision is very low even for small n (birthday paradox)
- For $m=365$ and $n \geq 50$ this probability goes to 0

- How to treat hash collisions when they occur?

Chaining

Put all keys that hash to the same integer in a linked list

Use array of m lists: $T[0], T[1], T[2], \ldots, T[m-1]$

Chaining - worst case

- DICTIONARY implementation:
- search (k): search for an element with key k in the list $T[h(k)]$
- insert (x): put element x at the front of list $T[h(x . k e y)]$ (we do not keep the lists sorted)
- delete (k): delete element with key k from list $T[h(k)]$
- Complexity
- search(k): Ө(|T([h(k)]|)
- insert (x): $\Theta(1)$ (no check if element x is already present)
- delete(k): Ө(|T([h(k)]|)
- Worst case: all keys are hashed onto the same slot
- search(k): $\Theta(n)$
- insert(x): $\Theta(1)$ (no check if element x is already present)
- delete(k): $\Theta(n)$

Chaining - Average case

- Assumption: uniform hashing
- each key is equally likely hashed into any of the m slots, independently of where any other element has hashed to
- Filling degree of hash table $T: \alpha(n, m)=n / m$
- the average length of list $T[j]$ is α
- Expected number of elements examined in $T[h(k)]$ to search key k?
Distinguish between
- unsuccessful search
- successful search

Chaining - Average case

Unsuccessful search

- Expected time to search for key k
$=$ expected time to search till the end of list $T[h(k)]$
- $T[h(k)]$ has expected length α
- The computation of $h(k)$ takes $\Theta(1)$ time
that is a total of $\Theta(1+\alpha)$

Chaining - Average case

Successful search

- Suppose keys were inserted in the order $\mathrm{k}_{1}, \mathrm{k}_{2}, \ldots, \mathrm{k}_{\mathrm{n}}$
- k_{i} : the $i^{\text {th }}$ inserted key
- $A\left(k_{i}\right)$: the expected time to search k_{i}

$$
\begin{aligned}
& \text { A }\left(\mathrm{k}_{\mathrm{i}}\right)=1 \text { + average \# of keys inserted in } \mathrm{T}\left[\mathrm{~h}\left(\mathrm{k}_{\mathrm{i}}\right)\right] \\
& \text { after } \mathrm{k}_{\mathrm{i}} \text { was inserted }
\end{aligned}
$$

- Due to uniform hashing: $A\left(k_{i}\right)=1+\sum_{j=i+1}^{n}=1+\frac{n-i}{m}$
\# of keys inserted in $T\left[\mathrm{~h}\left(\mathbf{k}_{\mathrm{i}}\right]\right]$ after k_{i}
- average over all n inserted keys $E[A]=\frac{1}{n} \sum_{i=1}^{n} A\left(k_{i}\right)$

Chaining - Average case

Successful search

$$
\begin{aligned}
E(A)= & \frac{1}{n} \sum_{i=1}^{n}\left(1+\frac{n-i}{m}\right)=1+\frac{1}{n m} \sum_{i=1}^{n}(n-i)=1+\frac{1}{n m}\left[n^{2}-\sum_{i=1}^{n} i\right] \\
& =1+\frac{1}{n m}\left[n^{2}-\frac{n(n+1)}{2}\right]=1+\frac{n-1}{2 m}=1+\frac{\alpha}{2}-\frac{\alpha}{2 n}
\end{aligned}
$$

- Better than in the unsuccessful case
- But overall $\Theta(1+\alpha)$

Chaining - Average case

- Assume that n is $\mathrm{O}(\mathrm{m})$ (e.g., think of $\mathrm{n}=5 \mathrm{~m}$ or cm for a small constant c)
- Then, $\alpha=\frac{n}{m}=\frac{O(m)}{m}=O(1)$
- Hence: all dictionary operations take O (1) time on average

Open addressing

- ALL elements are stored in the array T itself
- Each entry of T contains either an element or null
- $\mathrm{n} \leq \mathrm{m}, \mathrm{a} \leq 1$
- Insertion of a key k:
- Probe the entries of the hash table until an empty slot is found
- Sequence of slots probed depends on key k to be inserted
- The hash function depends on the key k and the probe \#, i

$$
h: U \times\{0,1, \ldots, m-1\} \rightarrow\{0,1, \ldots m-1\}
$$

- The probe sequence generated for a key k

$$
h(k, 0), h(k, 1), h(k, 2), \ldots, h(k, m-1)
$$

should be a permutation of $0,1,2,3, \ldots, m-1$
(this guarantees that all slots are eventually considered)

Open addressing - Insert

```
Insert (T, k);
// i = probe #
i=0;
repeat
```

```
j=h(k,i); // compute (i+1)th probe
```

j=h(k,i); // compute (i+1)th probe
if T[j]=null then T[j]=k; return j;
if T[j]=null then T[j]=k; return j;
else i=i+1;
else i=i+1;
until (i=T.length);
return full

```

\section*{Open addressing - Search}
```

Search (T, k);
// i = probe \#
i=0;
repeat
j=h(k,i);
if T[j]=k then return j
else i=i+1;
until (i=T.length or T[j]==null);
return null

```
probes the same slots as insertion (with no deletions)

\section*{Open addressing - Delete}
- Just setting \(\mathrm{T}[\mathrm{i}]=\) null for deletion is inappropriate!
- If at insertion of \(k\), a visited slot \(i\) was occupied, and then the element there is deleted there is no way to retrieve \(k\) anymore !
- Solution: T[i] =DELETED (a special value)
- Insert needs to be adapted to treat such slots as empty
- Search remains unchanged as DELETED slots are ignored
- Search times now no longer depend on filling degree \(\alpha\) only

If keys are to be often deleted, chaining is more commonly used than open addressing

\section*{Open addressing - Hash functions}
- Requirement: for a given key \(k\), generate a probing sequence
\[
h(k, 0), h(k, 1), h(k, 2), \ldots, h(k, m-1)
\]
which is a permutation of \(0,1,2,3, \ldots, m-1\) (in worst case all elements of the array need to be examined at insertion)
- Several policies/functions
- Linear probing: \(h(k, i)=\left(h^{\prime}(k)+i\right)\) mod \(m\), for some appropriate single-parameter hash function (what se saw in Data Structures)
- Quadratic probing: \(h(k, i)=\left(h^{\prime}(k)+c i+c^{2}\right) \bmod m\)
- Double hashing: use a \(2^{\text {nd }}\) hash function for the probe
- Quality is judged by the number of different probe sequences each policy can generate

\section*{Open addressing - Hash function}
- Assumption for our analysis: Uniform hashing
- For each key considered, each of the \(m\) ! permutations is equally likely as a probing sequence
- too expensive or even unrealistic to implement in practice
- But useful for analysis
- In practice: double hashing achieves a good approximation to uniform hashing

\section*{Open addressing - average case}

\section*{Unsuccessful search}

X= \# of probes in unsuccessful search
\(\mathrm{A}_{\mathrm{i}}\) : the event \{the \(\mathrm{i}^{\text {th }}\) probe is to an occupied slot\}
\[
\operatorname{Pr}\{X \geq i\}=
\]
\[
=\operatorname{Pr}\left\{A_{1} \cap A_{2} \cap \ldots \cap A_{i-1}\right\}
\]
\[
=\operatorname{Pr}\left\{A_{1}\right\} \cdot \operatorname{Pr}\left\{A_{2} \mid A_{1}\right\} \cdot \operatorname{Pr}\left\{A_{3} \mid A_{1} \cap A_{2}\right\} \cdot \ldots \cdot \operatorname{Pr}\left\{A_{i-1} \mid A_{1} \cap \ldots \cap A_{i-2}\right\}
\]
\[
=\frac{n}{m} \cdot \frac{n-1}{m-1} \cdot \ldots \cdot \frac{n-i+2}{m-i+2} \leq\left(\frac{n}{m}\right)^{i-1}=\alpha^{i-1}
\]
(recall that \(\mathrm{n}<\mathrm{m}\) )

\section*{Open addressing - average case}

\section*{Unsuccessful search}
\[
E[X]=\sum_{i=0}^{\infty} i \operatorname{Pr}\{X=i\}=\sum_{i=0}^{\infty} i[\operatorname{Pr}\{X \geq i\}-\operatorname{Pr}\{X \geq i+1\}]
\]
\[
\begin{aligned}
& =\sum_{i=1}^{\infty} \operatorname{Pr}\{X \geq i\} \leq \sum_{i=1}^{\infty} \alpha^{i-1}=\sum_{i=0}^{\infty} \alpha^{i} \\
& =1+a+a^{2}+a^{3}+a^{3}+\ldots=\frac{1}{1-a} \quad(a \leq 1)
\end{aligned}
\]

\section*{Intuition:}
- 1 probe is always made
-With probability \(\alpha\), the \(1^{\text {st }}\) probe finds an occupied slot and a \(2^{\text {nd }}\) probe is made
-With probability \(\approx \alpha^{2}\), the \(1^{\text {st }}\) and the \(2^{\text {nd }}\) probe find occupied slots and a \(3^{\text {nd }}\) probe is made
-and so on...

\section*{Open addressing - average case}

\section*{Successful search}
- Follows the same probe sequence as insert
- Insert = unsuccessful search + placement \(\rightarrow\) 1/(1- \(\alpha\) )
- \(\mathrm{X}_{\mathrm{i}+1}=\) average \(\#\) of probes for the \((\mathrm{i}+1)^{\text {th }}\) inserted key
\[
=1 /(1-i / m)
\]
- X= \# of probes in unsuccessful search over all \(n\) keys
\[
E[X]=\frac{1}{n} \cdot \sum_{i=0}^{n-1} X_{i+1}=\frac{1}{n} \cdot \sum_{i=0}^{n-1} \frac{1}{1-i / m}=\frac{1}{\alpha} \cdot \sum_{i=0}^{n-1} \frac{1}{m-i}
\]

\section*{Open addressing - average case}

Successful search
\[
\begin{aligned}
E[X] & =\frac{1}{a} \cdot \sum_{i=0}^{n-1} \frac{1}{m-i}=\frac{1}{\alpha} \cdot\left(\sum_{k=m-n+1}^{m} \frac{1}{k}\right) \\
& \leq \frac{1}{\alpha} \cdot \int_{m-n}^{m} \frac{1}{x} d x=\frac{1}{\alpha}[\ln m-\ln (m-n)] \\
& =\frac{1}{\alpha} \cdot \ln \left(\frac{\mathrm{~m}}{\mathrm{~m}-\mathrm{n}}\right)=\frac{1}{\alpha} \cdot \ln \left(\frac{1}{1-\alpha}\right)
\end{aligned}
\]

\section*{Efficiency of open addressing}

Summary: Under the assumption of uniform hashing:
- An unsuccessful search takes \(\mathrm{O}\left(\frac{1}{1-\alpha}\right)\) time on average
- If the hash table is half full, 2 probes are necessary on average
- If the hash table is \(90 \%\) full, 10 probes are necessary on average
- A successful search takes \(O\left(\frac{1}{\alpha} \ln \frac{1}{1-\alpha}\right) \quad\) time on average
- If the hash table is half full, 1.39 probes are necessary on average
- If the hash table is \(90 \%\) full, 2.56 probes are necessary on average
- Recall that for chaining this was \(\Theta(1+\alpha)\) for both cases
- Hence: as long as \(a=O(1)\), we have \(O(1)\) complexity on average for all the desired operations!```

