ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Special Topics on Algorithms Fall 2023 Average Case Analysis

Vangelis Markakis

Ioannis Milis

Outline

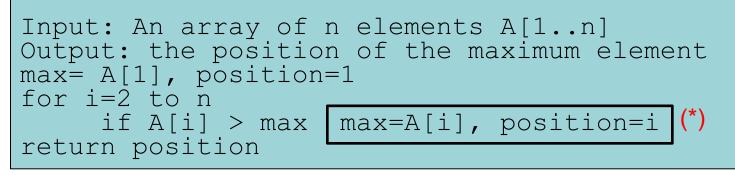
- Introductory examples
 - FINDMAX
 - BINARY COUNTER INCREMENT
 - INSERTION SORT
- QUICKSORT
- BINARY SEARCH TREES
- HASHING

Outline

- Worst case examples may often not appear in practice
- Performing an average case analysis can be meaningful
- But: for such an analysis, we need an assumption on the input
 - input = random data according to some probability distribution
- Usually analysis is done by assuming a uniform distribution on all possible configurations of the input

Finding the MAX

Algorithm max(A[1..n])



Complexity:

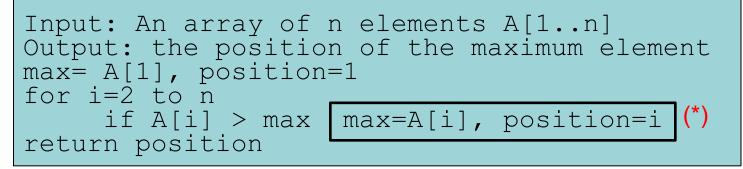
• Number of steps

Worst case = average case = O(n) (we have to execute the for loop)

- What about the commands inside the loop?
- Let T(n) = # of assignments = number of times (*) is executed Best case: T(n) = 1 Worst case: T(n) = n Average case: ?

Finding the MAX (# assignments)

Algorithm max(A[1..n])

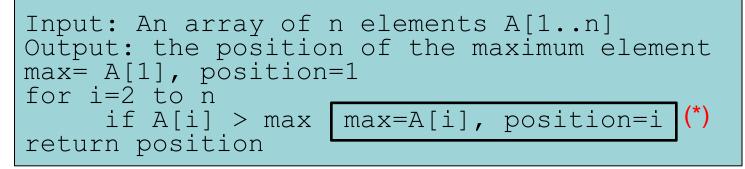


Average case analysis: Need a probabilistic assumption on the data

- There are n! possible orderings of n numbers: Natural to assume all orderings are equiprobable
 - true if each number has been picked independently from the uniform probability distribution
- Define a random variable for each iteration i, call it T_i
- $T_i = 1$, if assignment in the ith iteration, 0 otherwise
- Pr [assignment in the ith iteration] = Pr [A[j] < A[i], $\forall j \le i$] = 1/i
- Hence Pr[T_i = 1] = 1/i

Finding the MAX (# assignments)

Algorithm max(A[1..n])



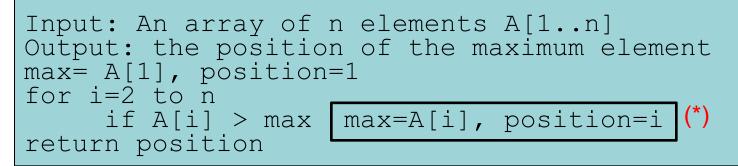
Average case analysis: Need a probabilistic assumption on the data

- Pr [no assignment in the ith iteration] = Pr [∃ j<i : A[j] > A[i]] = (i-1)/I
- Expected value of T_i : 1. $Pr[T_i = 1] + 0. Pr[T_i = 0]$

$$\mathbf{E}[T_i] = 1\frac{1}{i} + 0\frac{i-1}{i} = \frac{1}{i}$$

Finding the MAX (# assignments)

Algorithm max(A[1..n])



Average case analysis:

T(n) : total # of assignments
$$T(n) = \sum_{i=1}^{n} T_i$$

$$\mathbf{E}[T(n)] = \mathbf{E}\left[\sum_{i=1}^{n} T_{i}\right] = \sum_{i=1}^{n} \mathbf{E}[T_{i}] = \sum_{i=1}^{n} \frac{1}{i} = H_{n} = O(\log n)$$

Linearity of Expectation

Incrementing a binary counter

Problem: Increment a binary counter by 1

Input: An array A of k bits, A[0], A[1], ..., A[k-1], representing the counter of value x, $0 \le x \le n$: $x = \sum_{i=0}^{k-1} A[i] \cdot 2^i$ (k= log n +1) Output: Increase the counter by 1

INCREMENT (A) ;
i = 0;
while $i < k$ and $A[i] = 1$ do
A[i] = 0;
i = i+1;
if i < k then A[i] = 1 else overflow

Complexity: We care for # of bit flips

- Best case: O(1), the LSB is 0 and only this is flipped
- Worst case: O(k), that is O(log n); all the bits are flipped
- Average case: ?

Incrementing a binary counter

The # of bit flips depends on the value of the counter

A[7]	A[6]	A[5]	A[4]	A[3]	A[2]	A[1]	A[0]	value
0	0	0	0	0	0	0	0	0
0	0	0	0	0	0	0	1	1
0	0	0	0	0	0	1	0	2
0	0	0	0	0	0	1	1	3
0	0	0	0	0	1	0	0	4
0	0	0	0	0	1	0	1	5
0	0	0	0	0	1	1	0	6
0	0	0	0	0	1	1	1	7
0	0	0	0	1	0	0	0	8
0	0	0	0	1	0	0	1	9
0	0	0	0	1	0	1	0	10
0	0	0	0	1	0	1	1	11
0	0	0	0	1	1	0	0	12
0	0	0	0	1	1	0	1	13
0	0	0	0	1	1	1	0	14
0	0	0	0	1	1	1	1	15
0	0	0	1	0	0	0	0	16

Incrementing a binary counter

Assumption for average case analysis: All numbers with k bits equiprobable

Binary Number	Bit flips (x _i)	Probability (p _i)	
0	1	1/2	
01	2	1/4	
011	3	1/8	
	-	-	
$\underbrace{0111\dots111}_{i-1}$	i	1/2 ⁱ	

Let X = #bit flips

10

$$E(X) = \sum_{i=1}^{k} p_i x_i = \sum_{i=1}^{k} i \frac{1}{2^i} \le \sum_{i=0}^{\infty} i \frac{1}{2^i} = \frac{\frac{1}{2}}{\left(1 - \frac{1}{2}\right)^2} = 2 = O(1) !$$

InsertionSort

```
Algorithm SelectionSort (A[1..n])
A[0] := -∞ //only for technical convenience
for i:=2 to n do
    j := i;
    while A[j]<A[j-1] do
        swap (A[j], A[j-1]);
        j := j-1;</pre>
```

T(n) = # of comparisons

Best case:Array already sorted1 comparison per iteration

$$T(n) = n-1$$

Worst case:Array sorted in reverse orderThe it iteration requires i comparisons

$$T(n) = \sum_{i=2}^{n} i = \frac{n(n+1)}{2} - 1 \sim O(n^{2})$$

Average case: ?

InsertionSort

ith iteration

Final position of A[i]	: i	,	i-1 ,	· • •	2	,	1
# of comparisons	: 1	,	2,	• ,	i - 1	,	i
Pr[A[i] goes to position j]	: <u>1</u> i	,	1 i ,	- ,	1 i	,	1

- Assumption for avg case analysis: All permutations of the n
 numbers are equiprobable
- Expected number of comparisons in the i^{th} iteration =

$$T_{i} = \sum_{k=1}^{i} k \cdot \frac{1}{i} = \frac{i(i+1)}{2} \cdot \frac{1}{i} = \frac{i+1}{2}$$

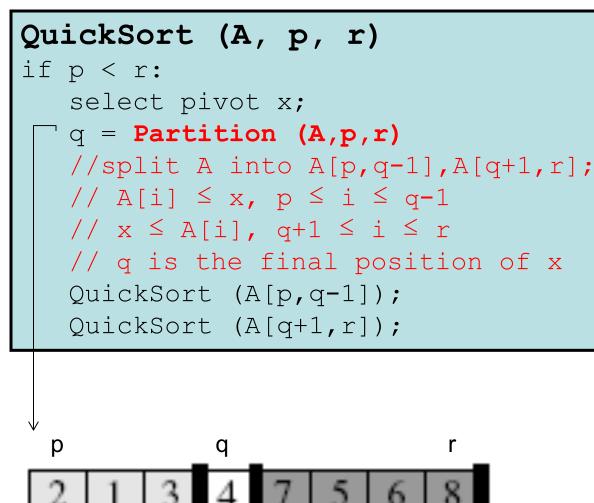
InsertionSort

Summing over all iterations

Expected number of comparisons:

$$E[T(n)] = E\left[\sum_{i=2}^{n} T_i\right] = \sum_{i=2}^{n} E[T_i] =$$
$$= \sum_{i=2}^{n} \frac{i+1}{2} = \frac{1}{2} \left(\frac{(n+1)(n+2)}{2} - 3\right)$$
$$= \frac{n(n+1)}{4} + \frac{n-2}{2}$$

- Around n²/4
- Almost half of the worst case, but again $O(n^2)$
- Here average case does not provide significant improvements

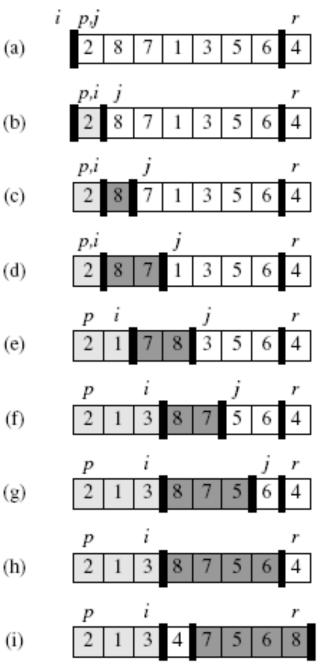


T. Hoare, 1960

R. Sedgewick Ph.D. thesis, 1975

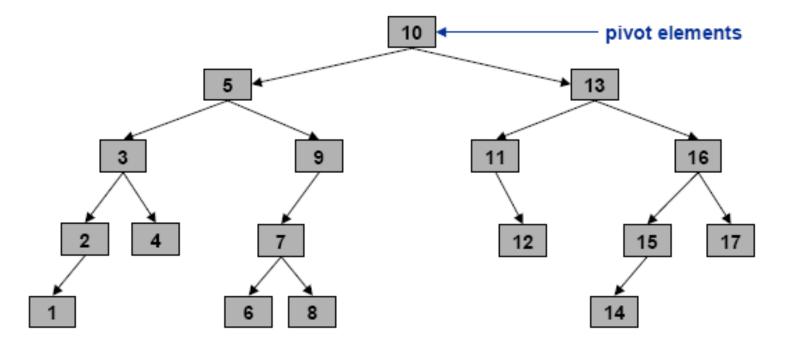
Partition (A, p, r)	
x=A[r]	
i=p-1	
for j=p to r-1:	
if A[j]≤x: i=i+1	
swap(A[i],A[j])	
swap(A[i+1],A[r])	
q=i+1	
return q	

Complexity of Partition: O(n) (n-1 iterations)



5

7	6	12	3	11	8	2	1	15	13	17	5	16	14	9	4	10
7	6	4	3	9	8	2	1	5	10	17	15	16	14	11	12	13
1	2	4	3	5	8	6	7	9	10	12	11	13	14	15	17	16
1	2	3	4	5	8	6	7	9	10	11	12	13	14	15	16	17
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17



```
QuickSort (A, p, r)
if p < r:
    select pivot x;
    q = Partition (A,p,r)
    //split A into A[p,q-1],A[q+1,r];
    // A[i] ≤ x, p ≤ i ≤ q-1
    // x ≤ A[i], q+1 ≤ i ≤ r
    // q is the final position of x
    QuickSort (A[p,q-1]);
    QuickSort (A[q+1,r]);</pre>
```

- Difficult to control the possible divisions into subproblems Partition (A,q,r): O(n), with n = r – p + 1
- Combining the solutions of the subproblems: easy, Nothing to do !
- For simplicity, suppose p=1, r=n

Complexity: T(n) = T(q-1) + T(n-q) + O(n) ???

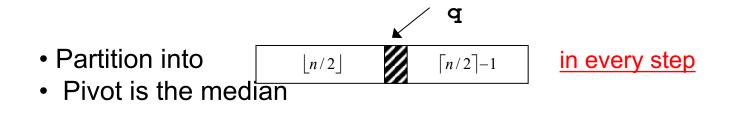
Quick Sort - Worst Case

- When we partition into
 ^q
 _{n-1}
 in every step
- Pivot is the min (or the max)

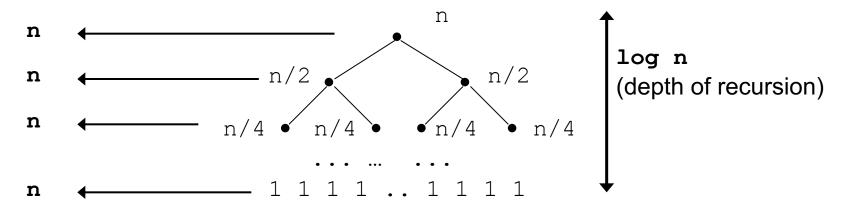
$$T(n) = T(n-1) + n = \sum_{k=1}^{n} k = \frac{n(n+1)}{2} = O(n^2)$$

If we choose as pivot = A[r], when does the worst case occur?

Quick Sort - Best Case



$$T(n) = 2T\left(\frac{n}{2}\right) + O(n) = O(n\log n)$$



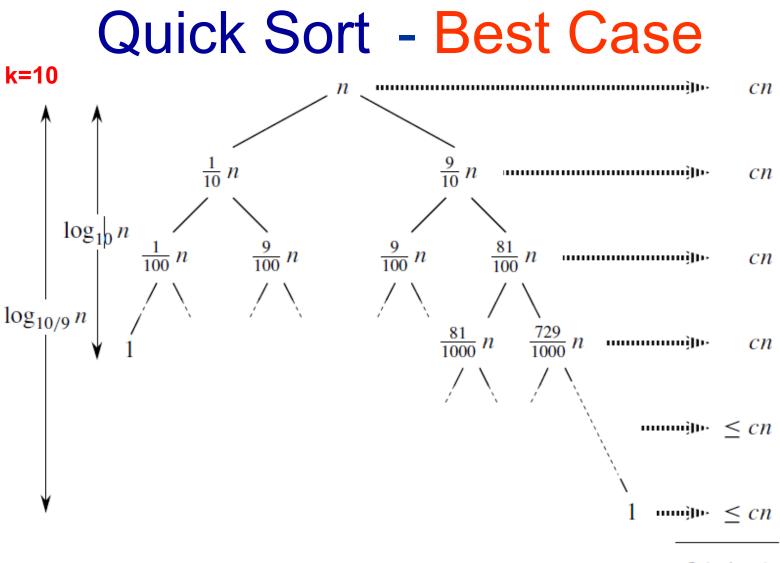
Quick Sort - Best Case

- Quicksort behaves well even if the partitioning at every step is quite unbalanced
- For example, suppose we partition into 90/10 proportions every time
- Or generally partition into step for some constant k

$$\leq n \frac{k-1}{k}$$
 $\geq \frac{n}{k}$ in every

$$T(n) = T\left(\frac{k-1}{k}n\right) + T\left(\frac{1}{k}n\right) + O(n)$$

- Depth of recursion = $\log_a n$, a = k/k-1 $\Rightarrow \log_a n = O(\log n)$
- \Rightarrow T(n) = O(nlogn)
- True for any partitioning with constant k (independent of n)



 $O(n \lg n)$

Assumptions:

- All permutations of the n numbers are equiprobable
- All numbers of A[1..n] are distinct

Then, the pivot can end up in any position equiprobably

- q: final position of the pivot after running Partition
- Pr[Partition(A, p, r) = q] = 1/n for every q
- Complexity if pivot ends up at q: T(q-1) + T(n-q) + (n-1)
- Hence, expected complexity:

$$T(n) = \sum_{q=1}^{n} \frac{1}{n} [T(q-1) + T(n-q) + (n-1)]$$

$$T(n) = \sum_{q=1}^{n} \frac{1}{n} [T(q-1) + T(n-q) + (n-1)]$$

$$= \frac{1}{n} \sum_{q=1}^{n} [T(q-1) + T(n-q)] + \frac{1}{n} \sum_{q=1}^{n} (n-1)$$

$$= \frac{1}{n} \sum_{q=1}^{n} [T(q-1) + T(n-q)] + \frac{n(n-1)}{n}$$

$$= \frac{2}{n} \sum_{q=1}^{n} T(q-1) + (n-1)$$

$$= \frac{1}{n} \sum_{q=1}^{n} T(q-1) + (n-1)$$

$$T(n) = \frac{2}{n} \sum_{q=1}^{n} T(q-1) + n - 1$$
 (1)

(1) * n:
$$nT(n) = 2\sum_{q=1}^{n} T(q-1) + n(n-1)$$
 (2)

(2) for n-1:
$$(n-1)T(n-1) = 2\sum_{q=1}^{n-1} T(q-1) + (n-1)(n-2)$$
 (3)

(2) - (3):
$$nT(n) - (n-1)T(n-1) = 2T(n-1) + 2(n-1) \Rightarrow$$

 $nT(n) = (n+1)T(n-1) + 2(n-1) \Rightarrow$
 $\frac{T(n)}{n+1} = \frac{T(n-1)}{n} + \frac{2(n-1)}{n(n+1)}$

$$\frac{T(n)}{n+1} = \frac{T(n-1)}{n} + \frac{2(n-1)}{n(n+1)}$$
 $Eoto \quad \alpha_n = \frac{T(n)}{n+1}, \alpha_0 = 0$

$$\alpha_n = \alpha_{n-1} + \frac{2(n-1)}{n(n+1)} = \alpha_{n-2} + \frac{2(n-2)}{(n-1)n} + \frac{2(n-1)}{n(n+1)} = \dots = \sum_{i=1}^n \frac{2(i-1)}{i(i+1)}$$

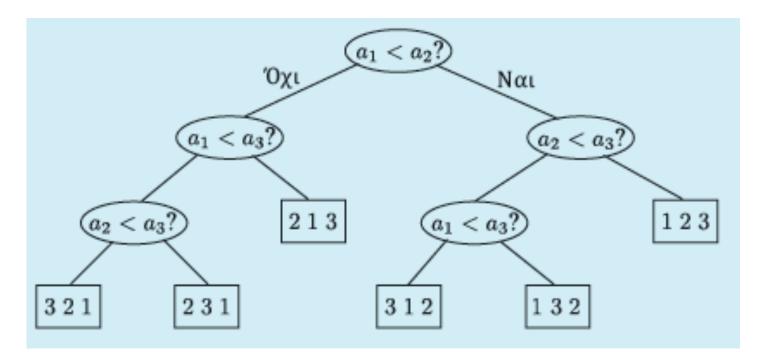
$$=2\sum_{i=1}^{n}\frac{i-1}{i(i+1)} \le 2\sum_{i=1}^{n}\frac{i}{i(i+1)} = 2\sum_{i=1}^{n}\frac{1}{i+1} \le 2\sum_{i=1}^{n}\frac{1}{i} = 2H_{n}$$

$$T(n) = (n+1)\alpha_n \le (n+1) \cdot 2H_n = O(n\log n)$$

Lower bound for sorting

A lower bound applicable for all algorithms that use comparisons

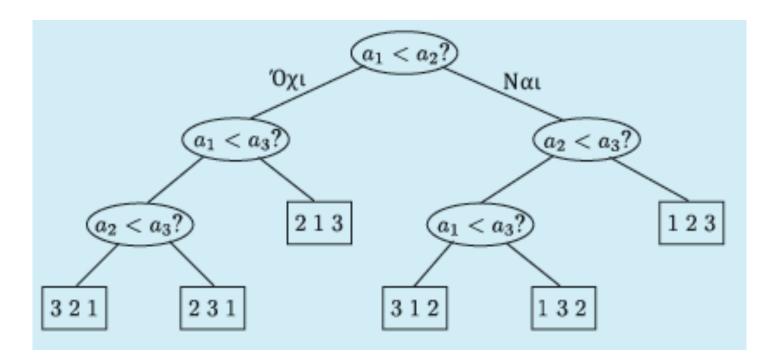
- Pairwise comparisons
- Every such sorting algorithm corresponds to a binary decision tree



Tree leaves = possible orderings (permutations)

Complexity = tree height

Lower bound for sorting

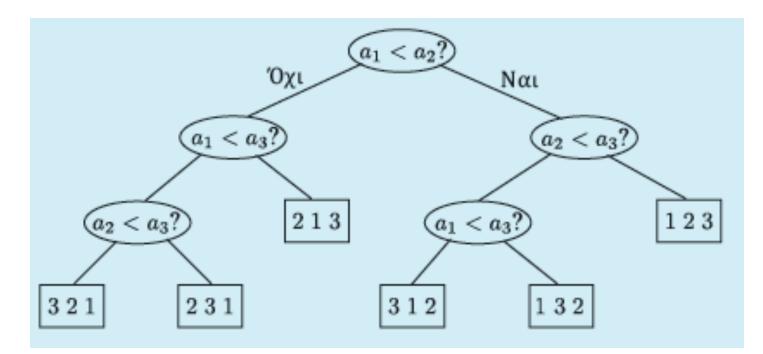


leaves \geq # possible permutations = n!

No permutation can be absent •If yes, what would the algorithm answer if the input corresponded to such a permutation?

Let d = tree height, d = $\Omega(?)$

Lower bound for sorting



Every binary tree of height d has at most 2^d leaves

Hence:

$$n! \le 2^d \Longrightarrow d \ge \log(n!)$$

Lower bound for sorting

$$d \ge \log(n!) = \log\left(1 \cdot 2 \cdot \dots \cdot \frac{n}{2} \cdot \left(\frac{n}{2} + 1\right) \cdot \left(\frac{n}{2} + 2\right) \cdot \dots \cdot n\right) \ge \log\left(\left(\frac{n}{2}\right)^{\frac{n}{2}}\right)$$

$$= \frac{n}{2} \log\left(\frac{n}{2}\right) = \frac{n}{2} (\log n - \log 2) = \frac{n}{2} (\log n - 1) = \Omega(n \log n)$$

OR:

$$d \ge \log(n!) \quad \stackrel{\text{Stirling}}{\ge} \quad \log\left(\frac{n}{e}\right)^n = n\log\left(\frac{n}{e}\right) = n(\log n - \log e)$$
$$= n\log n - n\log e = \Omega(n\log n)$$

Thus, any algorithm based on comparisons must have complexity at least $\Omega(nlogn)$

Median and Selection

SELECTION

I: n distinct numbers, a parameter k, $1 \le k \le n$ Q: the k-th largest element

k = n: find minimum, k = 1: find maximum

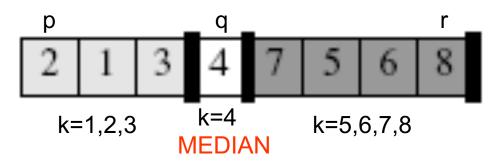
k = [(n+1)/2] → MEDIAN (half the elements smaller, the other half bigger)

k odd: $x \times x \times M \times x \times x$ (n=7, k=4) k even: $x \times x \times M \times x \times x$ (n=8, k=4 - lower median)

Obvious algorithm: O(n log n) – why?

Selection – Divide and Conquer

```
Select (A, p, r, k)
if p = r: return A[p]
select pivot x;
q = Partition (A, p, r)
//split A into A[p,q-1],A[q+1,r];
// A[i] \leq x, p \leq i \leq q-1
// x \leq A[i], q+1 \leq i \leq r
// q is the final position of x
m=q-p+1
if k=m: then return A[q]
else: if k < m Select(A,p,q-1,k)
           else: Select (A,q+1,r, k-m)
```



Selection – Divide and Conquer

Selection vs. Quicksort

- Quicksort: divide and examine recursively both segments of the array
- Selection: divide and examine recursively only one segment

If we always end up at the largest segment: Complexity: $T(n) \le T(\max{q-1, n-q}) + (n-1)$

Best case: $T(n) = T(n/2) + O(n) \Rightarrow O(n)$ Worst case: $T(n) = T(n-1) + O(n) \Rightarrow O(n^2)$ Average case: ?

Selection - D&C Average Case

Assumptions:

- All permutations of the n numbers are equiprobable
- All numbers of A[1..n] are distinct

Then, the pivot can end up in any position equiprobably

- q: final position of the pivot after running Partition
- Pr[Partition(A, p, r) = q] = 1/n for every q

$$T(n) \le T(\max\{q-1, n-q\}) + (n-1)$$

• Expected complexity:

$$T(n) \leq \sum_{q=1}^{n} \frac{1}{n} \cdot [T(\max\{q-1, n-q\}) + (n-1)]$$

T(n) = O(n) (similar analysis with Quicksort)

AVERAGE CASE ANALYSIS

	WORST	AVERAGE
Finding the max (# of asignments)	O(n)	O(logn)
Increment a binary counter	O(n)	O(1)
Insertionsort Quicksort	O(n²) O(n²)	O(n²) O(nlogn)
Selection	O(n ²)	O(n)

ΕΚΤΟΣ ΥΛΗΣ

Average case analysis for Binary Search Trees and Hashing

DICTIONARY ADT

A data structure for maintaining a dynamic set S

- A data set that keeps changing (items being inserted or deleted over time)
- Each item comes with a key

Supports the following operations

- SEARCH (S,k) //search according to a key k
- **INSERT** (S,x) //insert an element x
- **DELETE** (S,k) //delete an element with key k

NAIVE IMPLEMENTATIONS:

• Arrays or lists: O(n) both for average and worst case

DICTIONARY ADT

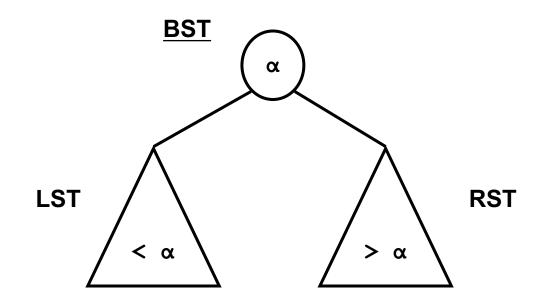
- SEARCH (S,k) //search according to a key k
- **INSERT** (S, x) //insert an element x
- **DELETE** (S,k) //delete an element with key k

BETTER IMPLEMENTATIONS:

- Binary Search Trees (BSTs):
 - O(n) worst case
 - O(logn) average case
- Balanced BSTs (AVL, Red-Black, 2-3-4 trees):
 - O(logn) worst case
- Splay trees:
 - O(logn) amortized
- Hash Tables
 - O(n) worst case
 - O(1) average case (under reasonable assumptions)

BINARY SEARCH TREES (BSTs)

An implementation of Dictionary



BSTs - Complexity of operations

The complexity of any operation is $O(p_k)$ where p_k = depth of operation = <u>path length</u> from root to a node k

$$\max_{k \in S} (p_k) = h = \text{height of } S$$

Best case: O(log n) balanced tree

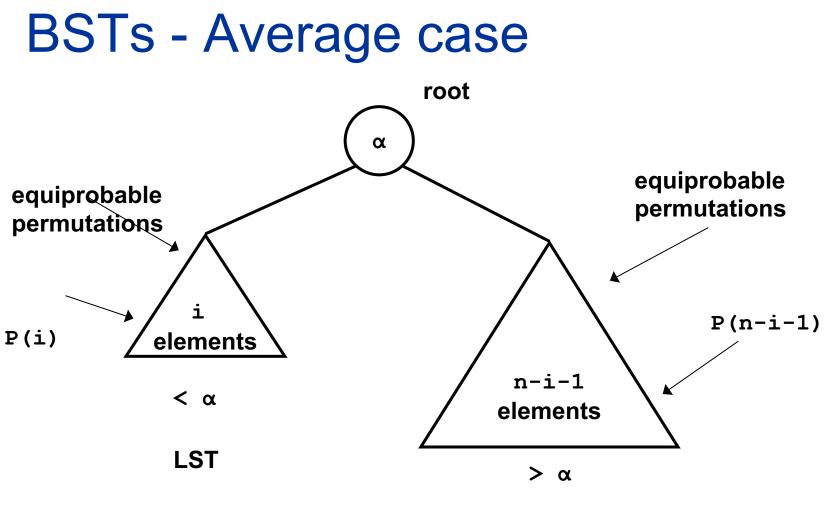
Worst case: O(n) chain

Average case: ?

- Suppose a BST is built by inserting consecutively n distinct elements (assume integer keys)
- Assume all n! permutations of the keys equiprobable
- Assume we have a successful search operation (and equiprobable to search for any of the keys)
- Unsuccessful search costs just 1 more
- P(i) = average path length in a BST of i nodes (average # of nodes on a path from the root to any node – not only to the leaves)
- P(0) = 0
- P(1) = 1

We want to estimate P(n)

α: the first element inserted = the root of the BST equiprobable to be the 1st, 2nd, ..., ith, ..., nth in the sorted order of the n elements



RST

For a given i:

P(n,i) = Average path length when we search key x, if the LST has i nodes:

- x = a : P(n, i) = 1

-
$$x \in LST : P(n,i) = 1 + P(i)$$

-
$$x \in RST : P(n,i) = 1 + P(n-i-1)$$

Pr[searching any of the n elements] = $\frac{1}{n}$ (equiprobable)

$$P(n,i) = \frac{1}{n} \cdot 1 + \frac{i}{n} [1 + P(i)] + \frac{(n-i-1)}{n} [1 + P(n-i-1)]$$

$$=\frac{1+i+(n-i-1)}{n}+\frac{i}{n}P(i)+\frac{n-i-1}{n}P(n-i-1)$$

$$=1+\frac{i}{n}P(i)+\frac{n-i-1}{n}P(n-i-1)$$
 42

Recall: we care for P(n)

$$P(n) = \sum_{i=0}^{n-1} \Pr[LST \text{ has i nodes}] \cdot P(n,i)$$

$$\Pr[LST \text{ has i nodes}] = \Pr\left[\begin{array}{c} \alpha \text{ is the } (i+1)^{\text{th}} \text{ element in the} \\ \text{sorted order of the n elements} \end{array} \right] = \frac{1}{n}$$

Hence:
$$P(n) =$$

$$P(n) = \frac{1}{n} \sum_{i=0}^{n-1} P(n,i)$$

$$P(n) = \frac{1}{n} \sum_{i=0}^{n-1} P(n,i)$$

= $\frac{1}{n} \left\{ \sum_{i=0}^{n-1} \left[1 + \frac{i}{n} P(i) + \frac{n-i-1}{n} P(n-i-1) \right] \right\}$

$$=1+\frac{1}{n^2}\sum_{i=0}^{n-1}\left[iP(i)+(n-i-1)\cdot P(n-i-1)\right]$$

$$P(n) = 1 + \frac{2}{n^2} \sum_{i=0}^{n-1} iP(i)$$

We shall show that $P(n) \le 1 + 4\log n$ (by induction on n)

BSTs - Average case $P(n) \le 1 + 4\log n$

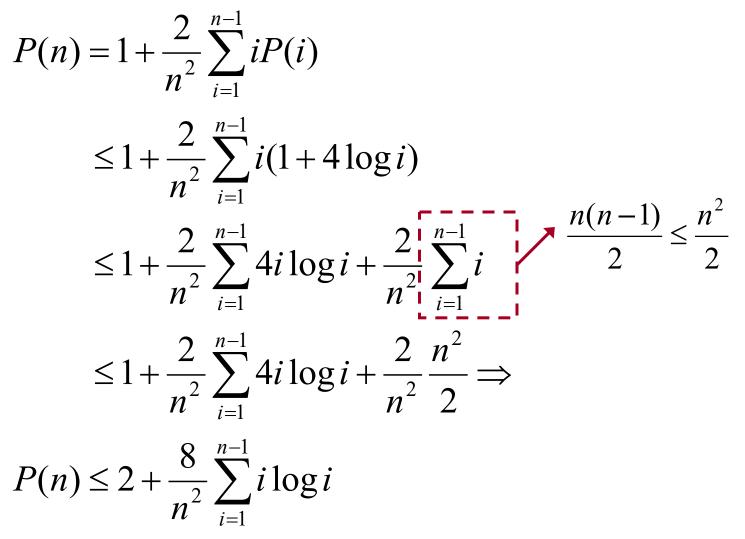
Induction basis

$$n = 1$$
: $P(1) = 1$, $1 + 4 \log 1 = 1$

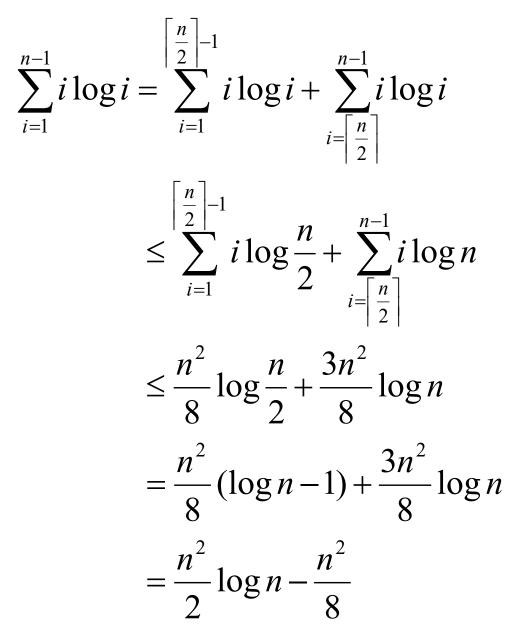
Induction hypothesis

 $P(i) \le 1 + 4\log i, \forall i < n$

Inductive step



46



47

Thus,

$$P(n) \le 2 + \frac{8}{n^2} \sum_{i=1}^{n-1} i \log i \qquad \left[\sum_{i=1}^{n-1} i \log i \le \frac{n^2}{2} \log n - \frac{n^2}{8} \right]$$

$$\le 2 + \frac{8}{n^2} \left(\frac{n^2}{2} \log n - \frac{n^2}{8} \right)$$

$$= 2 + 4 \log n - 1$$

$$= 1 + 4 \log n \Longrightarrow$$

$$P(n) = O(\log n)$$

HASH TABLES

[CLRS 11.1, 11.2, 11.4]

An alterative implementation of DICTIONARY ADT

Recall we care to implement the operations

- SEARCH (S,k) //search according to a key k
- INSERT (S,x) //insert an element x
- DELETE (S,k) //delete an element with key k

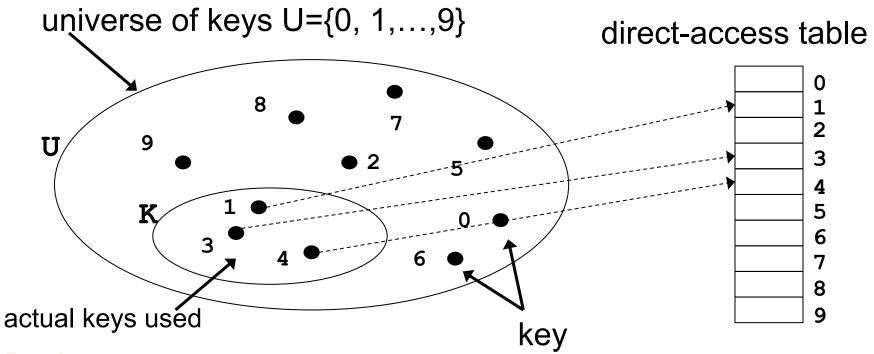
2 main approaches used in hashing:

- 1. Chaining
- 2. Open addressing

Direct Addressing

- We want to store objects that have a key field
- Let U = {0,1,2,3,...} the set of all possible key numbers assume integer keys
- Allocate an array that has a position for each key T[0..|U|-1]
- T[k] corresponds to (the element of) key k
- Operations:
 - search(k): return T[k]
 - insert(x): T[x.key]=x
 - delete(k): T[k]=null
- Complexity: O(1) in worst case for all operations

Direct Addressing



Problems:

- We may have objects with the same key
- Not all possible keys are used, we waste too much memory if U is huge
- actually stored keys |K| << |U|

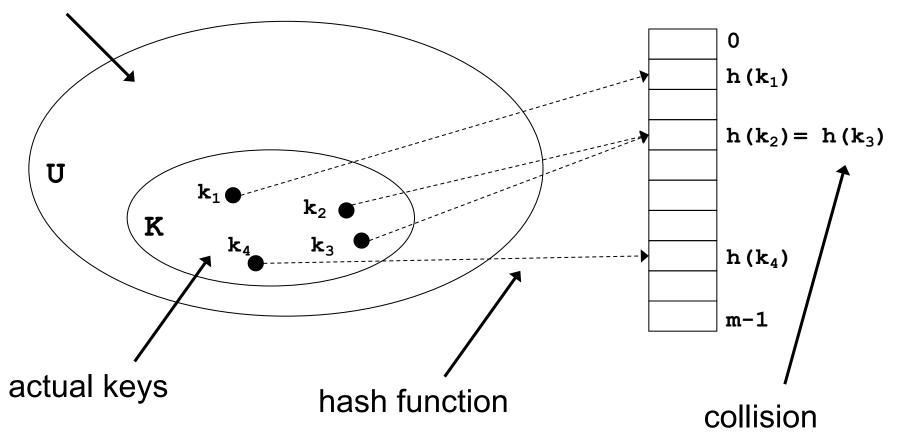
Hashing

- Map the universe U of keys onto a small range of integers
- Hash function h: U \rightarrow {0,1,...,m-1}, for some integer m
- Use an array of size m: T[0...m-1] (m << |U|)
- Hash collision: when h(k) = h(k') for $k \neq k'$
- Goal: Obtain a hash function that is
 - cheap to evaluate (e.g., $h(k) = ak \mod m$)
 - assumption: h(k) is computed in $\Theta(1)$
 - minimizes collisions
- <u>n = # of stored elements</u>

Hashing

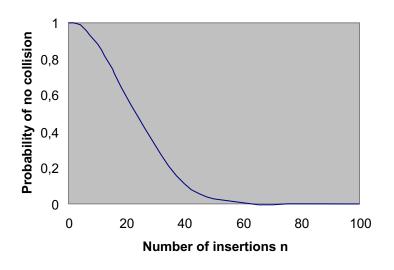
universe of keys

hash table



Collisions

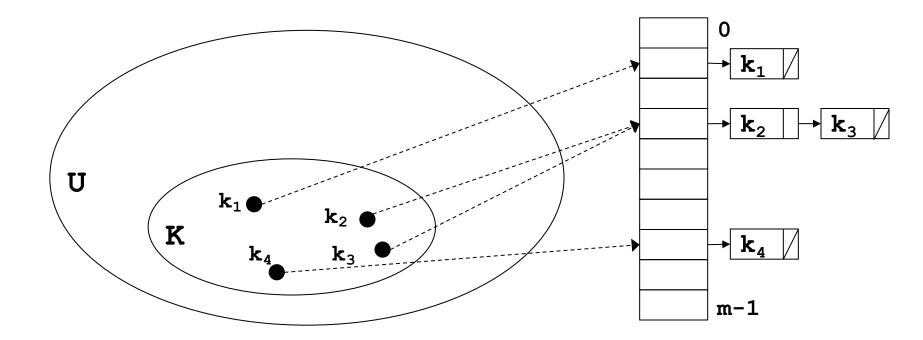
- No matter how good the hash function is, the probability of no collision is very low even for small n (birthday paradox)
- For m=365 and $n \ge 50$ this probability goes to 0



• How to treat hash collisions when they occur?

Chaining

Put all keys that hash to the same integer in a linked list



Use array of m lists: T[0], T[1], T[2],...,T[m-1]

Chaining – worst case

- DICTIONARY implementation:
 - search(k): search for an element with key k in the list T[h(k)]
 - insert(x): put element x at the front of list T[h(x.key)] (we
 do not keep the lists sorted)
 - delete (k): delete element with key k from list T[h(k)]
- Complexity
 - search(k): $\Theta(|T([h(k)]|)$
 - insert(x): Θ(1) (no check if element x is already present)
 - delete(k): $\Theta(|T([h(k)]|)$
- Worst case: all keys are hashed onto the same slot
 - search(k): $\Theta(n)$
 - insert(x): Θ(1) (no check if element x is already present)
 - delete(k): $\Theta(n)$

- Assumption: uniform hashing
 - each key is equally likely hashed into any of the m slots, independently of where any other element has hashed to
- Filling degree of hash table T: α(n,m) = n/m
 the average length of list T[j] is α
- Expected number of elements examined in T[h(k)] to search key k?

Distinguish between

- unsuccessful search
- successful search

Unsuccessful search

- Expected time to search for key k
 = expected time to search till the end of list T[h(k)]
- T[h(k)] has expected length α
- The computation of h(k) takes $\Theta(1)$ time

that is a total of $\Theta(1+\alpha)$

Successful search

- Suppose keys were inserted in the order $k_1,\ k_2,\ldots,\ k_n$
- k_i : the ith inserted key
- A(k_i): the expected time to search k_i

 $\begin{array}{l} A\left(k_{i}\right) \ = 1 \ + \ \text{average \# of keys inserted in } \mathbb{T}\left[h\left(k_{i}\right)\right] \\ & \text{after } k_{i} \text{ was inserted} \end{array}$

- Due to uniform hashing: $A(k_i) = 1 + \sum_{j=i+1}^{\overline{n}} \frac{1}{m} = 1 + \frac{n-i}{m}$ # of keys inserted in T[h(k_i)] after k_i
- average over all n inserted keys $E[A] = \frac{1}{n} \sum_{i=1}^{n} A(k_i)$

Successful search

$$E(A) = \frac{1}{n} \sum_{i=1}^{n} \left(1 + \frac{n-i}{m} \right) = 1 + \frac{1}{nm} \sum_{i=1}^{n} (n-i) = 1 + \frac{1}{nm} \left[n^2 - \sum_{i=1}^{n} i \right]$$

$$=1+\frac{1}{nm}\left[n^{2}-\frac{n(n+1)}{2}\right]=1+\frac{n-1}{2m}=1+\frac{\alpha}{2}-\frac{\alpha}{2n},$$

- Better than in the unsuccessful case
- But overall $\Theta(1+\alpha)$

 Assume that n is O(m) (e.g., think of n = 5m or cm for a small constant c)

• Then,
$$\alpha = \frac{n}{m} = \frac{O(m)}{m} = O(1)$$

• Hence: all dictionary operations take O(1) time on average

Open addressing

- ALL elements are stored in the array T itself
- Each entry of T contains either an element or null
- n ≤ m, α ≤ 1
- Insertion of a key k:

- Probe the entries of the hash table until an empty slot is found

- Sequence of slots probed depends on key ${\rm k}$ to be inserted
- The hash function depends on the key k and the probe #, i $h: U \times \{0,1,...,m-1\} \rightarrow \{0,1,...m-1\}$
- The probe sequence generated for a key k h(k,0), h(k,1), h(k,2), ..., h(k,m-1) should be a permutation of 0, 1, 2, 3,..., m-1 (this guarantees that all slots are eventually considered)

Open addressing – Insert

```
Insert (T, k);
// i = probe #
i=0;
repeat
    j=h(k,i); // compute (i+1)<sup>th</sup> probe
    if T[j]=null then T[j]=k; return j;
        else i=i+1;
until (i=T.length);
return full
```

Open addressing – Search

```
Search (T, k);
// i = probe #
i=0;
repeat
    j=h(k,i);
    if T[j]=k then return j
        else i=i+1;
    until (i=T.length or T[j]==null);
return null
```

probes the same slots as insertion (with no deletions)

Open addressing – Delete

- Just setting T[i]=null for deletion is inappropriate!
- If at insertion of k, a visited slot \pm was occupied, and then the element there is deleted there is no way to retrieve k anymore !
- Solution: T[i]=DELETED (a special value)
- Insert needs to be adapted to treat such slots as empty
- Search remains unchanged as DELETED slots are ignored
- Search times now no longer depend on filling degree α only

If keys are to be often deleted, chaining is more commonly used than open addressing

Open addressing – Hash functions

 Requirement: for a given key k, generate a probing sequence h(k,0), h(k,1), h(k,2),..., h(k,m-1)

which is a permutation of 0, 1, 2, 3,..., m-1 (in worst case all elements of the array need to be examined at insertion)

- Several policies/functions
 - Linear probing: h(k, i) = (h'(k) + i) mod m, for some appropriate single-parameter hash function (what se saw in Data Structures)
 - Quadratic probing: $h(k, i) = (h'(k) + ci + ci^2) \mod m$
 - **Double hashing:** use a 2nd hash function for the probe
- Quality is judged by the number of different probe sequences each policy can generate

Open addressing – Hash function

- Assumption for our analysis: Uniform hashing
 - For each key considered, each of the m! permutations is equally likely as a probing sequence
 - too expensive or even unrealistic to implement in practice
 - But useful for analysis

• In practice: double hashing achieves a good approximation to uniform hashing

Unsuccessful search

- X= # of probes in unsuccessful search
- A_i: the event {the i^{th} probe is to an occupied slot} Pr{ $X \ge i$ } =

$$= \Pr\{A_{1} \cap A_{2} \cap ... \cap A_{i-1}\}$$

$$= \Pr\{A_{1}\} \cdot \Pr\{A_{2} | A_{1}\} \cdot \Pr\{A_{3} | A_{1} \cap A_{2}\} \cdot ... \cdot \Pr\{A_{i-1} | A_{1} \cap ... \cap A_{i-2}\}$$

$$= \frac{n}{m} \cdot \frac{n-1}{m-1} \cdot ... \cdot \frac{n-i+2}{m-i+2} \le \left(\frac{n}{m}\right)^{i-1} = \alpha^{i-1}$$
(recall that now)

(recall that n<m)

Unsuccessful search

$$E[X] = \sum_{i=0}^{\infty} i \Pr\{X = i\} = \sum_{i=0}^{\infty} i \left[\Pr\{X \ge i\} - \Pr\{X \ge i+1\} \right]$$

$$=\sum_{i=1}^{\infty} \Pr\{X \ge i\} \le \sum_{i=1}^{\infty} \alpha^{i-1} = \sum_{i=0}^{\infty} \alpha^{i}$$

$$= 1 + a + a^{2} + a^{3} + a^{3} + \dots = \frac{1}{1 - a} \quad (a \le 1)$$

Intuition:

•1 probe is always made

•With probability α , the 1st probe finds an occupied slot and a 2nd probe is made

•With probability $\approx \alpha^2$, the 1st and the 2nd probe find occupied slots and a 3nd probe is made •and so on...

Successful search

- Follows the same probe sequence as insert
- Insert = unsuccessful search + placement $\rightarrow 1/(1-\alpha)$
- X_{i+1} = average # of probes for the (i+1)th inserted key
 = 1/(1-i/m)
- X= # of probes in unsuccessful search over all n keys

$$E[X] = \frac{1}{n} \cdot \sum_{i=0}^{n-1} X_{i+1} = \frac{1}{n} \cdot \sum_{i=0}^{n-1} \frac{1}{1-i/m} = \frac{1}{\alpha} \cdot \sum_{i=0}^{n-1} \frac{1}{m-i}$$

Successful search

$$E[X] = \frac{1}{\alpha} \cdot \sum_{i=0}^{n-1} \frac{1}{m-i} = \frac{1}{\alpha} \cdot \left(\sum_{k=m-n+1}^{m} \frac{1}{k}\right)$$
$$\leq \frac{1}{\alpha} \cdot \int_{m-n}^{m} \frac{1}{x} dx = \frac{1}{\alpha} [\ln m - \ln(m-n)]$$
$$= \frac{1}{\alpha} \cdot \ln\left(\frac{m}{m-n}\right) = \frac{1}{\alpha} \cdot \ln\left(\frac{1}{1-\alpha}\right)$$

Efficiency of open addressing

Summary: Under the assumption of uniform hashing:

- An unsuccessful search takes $O\left(\frac{1}{1-\alpha}\right)$ time on average
 - If the hash table is half full, 2 probes are necessary on average
 - If the hash table is 90% full, 10 probes are necessary on average
- A successful search takes $O\left(\frac{1}{\alpha}\ln\frac{1}{1-\alpha}\right)$ time on average If the hash table is half full, 1.39 probes are necessary on average

 - If the hash table is 90% full, 2.56 probes are necessary on average
- Recall that for chaining this was $\Theta(1+\alpha)$ for both cases
- Hence: as long as a = O(1), we have O(1) complexity on average for all the desired operations!