ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ



ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

## Special Topics on Algorithms Fall 2023 Average Case Analysis

Vangelis Markakis

Ioannis Milis

## Outline

- Introductory examples
  - FINDMAX
  - BINARY COUNTER INCREMENT
  - INSERTION SORT
- QUICKSORT
- BINARY SEARCH TREES
- HASHING

## Outline

- Worst case examples may often not appear in practice
- Performing an average case analysis can be meaningful
- But: for such an analysis, we need an assumption on the input
  - input = random data according to some probability distribution
- Usually analysis is done by assuming a uniform distribution on all possible configurations of the input

## Finding the MAX

#### Algorithm max(A[1..n])



#### Complexity:

• Number of steps

Worst case = average case = O(n) (we have to execute the for loop)

- What about the commands inside the loop?
- Let T(n) = # of assignments = number of times (\*) is executed Best case: T(n) = 1 Worst case: T(n) = n Average case: ?

## Finding the MAX (# assignments)

#### Algorithm max(A[1..n])



Average case analysis: Need a probabilistic assumption on the data

- There are n! possible orderings of n numbers: Natural to assume all orderings are equiprobable
  - true if each number has been picked independently from the uniform probability distribution
- Define a random variable for each iteration i, call it T<sub>i</sub>
- $T_i = 1$ , if assignment in the i<sup>th</sup> iteration, 0 otherwise
- Pr [assignment in the i<sup>th</sup> iteration] = Pr [ A[j] < A[i],  $\forall j \le i$ ] = 1/i
- Hence Pr[T<sub>i</sub> = 1] = 1/i

## Finding the MAX (# assignments)

#### Algorithm max(A[1..n])



Average case analysis: Need a probabilistic assumption on the data

- Pr [no assignment in the i<sup>th</sup> iteration] = Pr [∃ j<i : A[j] > A[i]] = (i-1)/I
- Expected value of  $T_i$ : 1.  $Pr[T_i = 1] + 0. Pr[T_i = 0]$

$$\mathbf{E}[T_i] = 1\frac{1}{i} + 0\frac{i-1}{i} = \frac{1}{i}$$

## Finding the MAX (# assignments)

#### Algorithm max(A[1..n])



#### Average case analysis:

T(n) : total # of assignments 
$$T(n) = \sum_{i=1}^{n} T_i$$

$$\mathbf{E}[T(n)] = \mathbf{E}\left[\sum_{i=1}^{n} T_{i}\right] = \sum_{i=1}^{n} \mathbf{E}[T_{i}] = \sum_{i=1}^{n} \frac{1}{i} = H_{n} = O(\log n)$$
  
Linearity of Expectation

## Incrementing a binary counter

#### Problem: Increment a binary counter by 1

Input: An array A of k bits, A[0], A[1], ..., A[k-1], representing the counter of value x,  $0 \le x \le n$  :  $x = \sum_{i=0}^{k-1} A[i] \cdot 2^i$  (k= log n +1) Output: Increase the counter by 1

| INCREMENT (A) ;                      |
|--------------------------------------|
| i = 0;                               |
| while $i < k$ and $A[i] = 1$ do      |
| A[i] = 0;                            |
| i = i+1;                             |
| if i < k then A[i] = 1 else overflow |

### Complexity: We care for # of bit flips

- Best case: O(1), the LSB is 0 and only this is flipped
- Worst case: O(k), that is O(log n); all the bits are flipped
- Average case: ?

## Incrementing a binary counter

#### The # of bit flips depends on the value of the counter

| A[7] | A[6] | A[5] | A[4] | A[3] | A[2] | A[1] | A[0] | value |
|------|------|------|------|------|------|------|------|-------|
| 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0    | 0     |
| 0    | 0    | 0    | 0    | 0    | 0    | 0    | 1    | 1     |
| 0    | 0    | 0    | 0    | 0    | 0    | 1    | 0    | 2     |
| 0    | 0    | 0    | 0    | 0    | 0    | 1    | 1    | 3     |
| 0    | 0    | 0    | 0    | 0    | 1    | 0    | 0    | 4     |
| 0    | 0    | 0    | 0    | 0    | 1    | 0    | 1    | 5     |
| 0    | 0    | 0    | 0    | 0    | 1    | 1    | 0    | 6     |
| 0    | 0    | 0    | 0    | 0    | 1    | 1    | 1    | 7     |
| 0    | 0    | 0    | 0    | 1    | 0    | 0    | 0    | 8     |
| 0    | 0    | 0    | 0    | 1    | 0    | 0    | 1    | 9     |
| 0    | 0    | 0    | 0    | 1    | 0    | 1    | 0    | 10    |
| 0    | 0    | 0    | 0    | 1    | 0    | 1    | 1    | 11    |
| 0    | 0    | 0    | 0    | 1    | 1    | 0    | 0    | 12    |
| 0    | 0    | 0    | 0    | 1    | 1    | 0    | 1    | 13    |
| 0    | 0    | 0    | 0    | 1    | 1    | 1    | 0    | 14    |
| 0    | 0    | 0    | 0    | 1    | 1    | 1    | 1    | 15    |
| 0    | 0    | 0    | 1    | 0    | 0    | 0    | 0    | 16    |

## Incrementing a binary counter

# Assumption for average case analysis: All numbers with k bits equiprobable

| Binary Number                     | Bit flips (x <sub>i</sub> ) | Probability (p <sub>i</sub> ) |  |
|-----------------------------------|-----------------------------|-------------------------------|--|
| 0                                 | 1                           | 1/2                           |  |
| 01                                | 2                           | 1/4                           |  |
| 011                               | 3                           | 1/8                           |  |
|                                   | -                           | -                             |  |
|                                   |                             |                               |  |
| $\underbrace{0111\dots111}_{i-1}$ | i                           | 1/2 <sup>i</sup>              |  |

Let X = #bit flips

10

$$E(X) = \sum_{i=1}^{k} p_i x_i = \sum_{i=1}^{k} i \frac{1}{2^i} \le \sum_{i=0}^{\infty} i \frac{1}{2^i} = \frac{\frac{1}{2}}{\left(1 - \frac{1}{2}\right)^2} = 2 = O(1) !$$

## **InsertionSort**

```
Algorithm SelectionSort (A[1..n])
A[0] := -∞ //only for technical convenience
for i:=2 to n do
    j := i;
    while A[j]<A[j-1] do
        swap (A[j], A[j-1]);
        j := j-1;</pre>
```

T(n) = # of comparisons

Best case:Array already sorted1 comparison per iteration

$$T(n) = n-1$$

Worst case:Array sorted in reverse orderThe it iteration requires i comparisons

$$T(n) = \sum_{i=2}^{n} i = \frac{n(n+1)}{2} - 1 \sim O(n^{2})$$

Average case: ?

## InsertionSort

### ith iteration

| Final position of A[i]      | : i             | , | i-1 ,    | · • • | 2            | , | 1     |
|-----------------------------|-----------------|---|----------|-------|--------------|---|-------|
| # of comparisons            | : 1             | , | 2,       | • ,   | i <b>-</b> 1 | , | i     |
| Pr[A[i] goes to position j] | : <u>1</u><br>i | , | 1<br>i , | - ,   | 1<br>i       | , | 1<br> |

- Assumption for avg case analysis: All permutations of the n
  numbers are equiprobable
- Expected number of comparisons in the  $i^{th}$  iteration =

$$T_{i} = \sum_{k=1}^{i} k \cdot \frac{1}{i} = \frac{i(i+1)}{2} \cdot \frac{1}{i} = \frac{i+1}{2}$$

## InsertionSort

### Summing over all iterations

Expected number of comparisons:

$$E[T(n)] = E\left[\sum_{i=2}^{n} T_i\right] = \sum_{i=2}^{n} E[T_i] =$$
$$= \sum_{i=2}^{n} \frac{i+1}{2} = \frac{1}{2} \left(\frac{(n+1)(n+2)}{2} - 3\right)$$
$$= \frac{n(n+1)}{4} + \frac{n-2}{2}$$

- Around n<sup>2</sup>/4
- Almost half of the worst case, but again  $O(n^2)$
- Here average case does not provide significant improvements





#### T. Hoare, 1960



R. Sedgewick Ph.D. thesis, 1975

| Partition (A, p, r) |  |
|---------------------|--|
| x=A[r]              |  |
| i=p-1               |  |
| for j=p to r-1:     |  |
| if A[j]≤x: i=i+1    |  |
| swap(A[i],A[j])     |  |
| swap(A[i+1],A[r])   |  |
| q=i+1               |  |
| return q            |  |

Complexity of Partition: O(n) (n-1 iterations)



5

| 7 | 6 | 12 | 3 | 11 | 8 | 2 | 1 | 15 | 13 | 17 | 5  | 16 | 14 | 9  | 4  | 10 |
|---|---|----|---|----|---|---|---|----|----|----|----|----|----|----|----|----|
| 7 | 6 | 4  | 3 | 9  | 8 | 2 | 1 | 5  | 10 | 17 | 15 | 16 | 14 | 11 | 12 | 13 |
| 1 | 2 | 4  | 3 | 5  | 8 | 6 | 7 | 9  | 10 | 12 | 11 | 13 | 14 | 15 | 17 | 16 |
| 1 | 2 | 3  | 4 | 5  | 8 | 6 | 7 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |
| 1 | 2 | 3  | 4 | 5  | 6 | 7 | 8 | 9  | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 |



```
QuickSort (A, p, r)
if p < r:
    select pivot x;
    q = Partition (A,p,r)
    //split A into A[p,q-1],A[q+1,r];
    // A[i] ≤ x, p ≤ i ≤ q-1
    // x ≤ A[i], q+1 ≤ i ≤ r
    // q is the final position of x
    QuickSort (A[p,q-1]);
    QuickSort (A[q+1,r]);</pre>
```

- Difficult to control the possible divisions into subproblems Partition (A,q,r): O(n), with n = r – p + 1
- Combining the solutions of the subproblems: easy, Nothing to do !
- For simplicity, suppose p=1, r=n

### Complexity: T(n) = T(q-1) + T(n-q) + O(n) ???

## **Quick Sort - Worst Case**

- When we partition into
   <sup>q</sup>
   <sub>n-1</sub>
   in every step
- Pivot is the min (or the max)

$$T(n) = T(n-1) + n = \sum_{k=1}^{n} k = \frac{n(n+1)}{2} = O(n^2)$$

If we choose as pivot = A[r], when does the worst case occur?

### **Quick Sort - Best Case**



$$T(n) = 2T\left(\frac{n}{2}\right) + O(n) = O(n\log n)$$



## Quick Sort - Best Case

- Quicksort behaves well even if the partitioning at every step is quite unbalanced
- For example, suppose we partition into 90/10 proportions every time
- Or generally partition into step for some constant k

$$\leq n \frac{k-1}{k}$$
  $\geq \frac{n}{k}$  in every

$$T(n) = T\left(\frac{k-1}{k}n\right) + T\left(\frac{1}{k}n\right) + O(n)$$

- Depth of recursion =  $\log_a n$ , a = k/k-1  $\Rightarrow \log_a n = O(\log n)$
- $\Rightarrow$  T(n) = O(nlogn)
- True for any partitioning with constant k (independent of n)



 $O(n \lg n)$ 

Assumptions:

- All permutations of the n numbers are equiprobable
- All numbers of A[1..n] are distinct

Then, the pivot can end up in any position equiprobably

- q: final position of the pivot after running Partition
- Pr[Partition(A, p, r) = q] = 1/n for every q
- Complexity if pivot ends up at q: T(q-1) + T(n-q) + (n-1)
- Hence, expected complexity:

$$T(n) = \sum_{q=1}^{n} \frac{1}{n} [T(q-1) + T(n-q) + (n-1)]$$

$$T(n) = \sum_{q=1}^{n} \frac{1}{n} [T(q-1) + T(n-q) + (n-1)]$$
  

$$= \frac{1}{n} \sum_{q=1}^{n} [T(q-1) + T(n-q)] + \frac{1}{n} \sum_{q=1}^{n} (n-1)$$
  

$$= \frac{1}{n} \sum_{q=1}^{n} [T(q-1) + T(n-q)] + \frac{n(n-1)}{n}$$
  

$$= \frac{2}{n} \sum_{q=1}^{n} T(q-1) + (n-1)$$
  

$$= \frac{1}{n} \sum_{q=1}^{n} T(q-1) + (n-1)$$

$$T(n) = \frac{2}{n} \sum_{q=1}^{n} T(q-1) + n - 1$$
 (1)

(1) \* n: 
$$nT(n) = 2\sum_{q=1}^{n} T(q-1) + n(n-1)$$
 (2)

(2) for n-1: 
$$(n-1)T(n-1) = 2\sum_{q=1}^{n-1} T(q-1) + (n-1)(n-2)$$
 (3)

(2) - (3): 
$$nT(n) - (n-1)T(n-1) = 2T(n-1) + 2(n-1) \Rightarrow$$
  
 $nT(n) = (n+1)T(n-1) + 2(n-1) \Rightarrow$   
 $\frac{T(n)}{n+1} = \frac{T(n-1)}{n} + \frac{2(n-1)}{n(n+1)}$ 

$$\frac{T(n)}{n+1} = \frac{T(n-1)}{n} + \frac{2(n-1)}{n(n+1)}$$
  $Eoto \quad \alpha_n = \frac{T(n)}{n+1}, \alpha_0 = 0$ 

$$\alpha_n = \alpha_{n-1} + \frac{2(n-1)}{n(n+1)} = \alpha_{n-2} + \frac{2(n-2)}{(n-1)n} + \frac{2(n-1)}{n(n+1)} = \dots = \sum_{i=1}^n \frac{2(i-1)}{i(i+1)}$$

$$=2\sum_{i=1}^{n}\frac{i-1}{i(i+1)} \le 2\sum_{i=1}^{n}\frac{i}{i(i+1)} = 2\sum_{i=1}^{n}\frac{1}{i+1} \le 2\sum_{i=1}^{n}\frac{1}{i} = 2H_{n}$$

$$T(n) = (n+1)\alpha_n \le (n+1) \cdot 2H_n = O(n\log n)$$

# Lower bound for sorting

A lower bound applicable for all algorithms that use comparisons

- Pairwise comparisons
- Every such sorting algorithm corresponds to a binary decision tree



Tree leaves = possible orderings (permutations)

Complexity = tree height

# Lower bound for sorting



#### # leaves $\geq$ # possible permutations = n!

No permutation can be absent •If yes, what would the algorithm answer if the input corresponded to such a permutation?

Let d = tree height, d =  $\Omega(?)$ 

# Lower bound for sorting



Every binary tree of height d has at most 2<sup>d</sup> leaves

Hence:

$$n! \le 2^d \Longrightarrow d \ge \log(n!)$$

Lower bound for sorting  

$$d \ge \log(n!) = \log\left(1 \cdot 2 \cdot \dots \cdot \frac{n}{2} \cdot \left(\frac{n}{2} + 1\right) \cdot \left(\frac{n}{2} + 2\right) \cdot \dots \cdot n\right) \ge \log\left(\left(\frac{n}{2}\right)^{\frac{n}{2}}\right)$$

$$= \frac{n}{2} \log\left(\frac{n}{2}\right) = \frac{n}{2} (\log n - \log 2) = \frac{n}{2} (\log n - 1) = \Omega(n \log n)$$

OR:

$$d \ge \log(n!) \quad \stackrel{\text{Stirling}}{\ge} \quad \log\left(\frac{n}{e}\right)^n = n\log\left(\frac{n}{e}\right) = n(\log n - \log e)$$
$$= n\log n - n\log e = \Omega(n\log n)$$

Thus, any algorithm based on comparisons must have complexity at least  $\Omega(nlogn)$ 

# **Median and Selection**

### **SELECTION**

I: n distinct numbers, a parameter k,  $1 \le k \le n$ Q: the k-th largest element

k = n: find minimum, k = 1: find maximum

k = [(n+1)/2] → MEDIAN (half the elements smaller, the other half bigger)

k odd:  $x \times x \times M \times x \times x$  (n=7, k=4) k even:  $x \times x \times M \times x \times x$  (n=8, k=4 - lower median)

Obvious algorithm: O(n log n) – why?

## Selection – Divide and Conquer

```
Select (A, p, r, k)
if p = r: return A[p]
select pivot x;
q = Partition (A, p, r)
//split A into A[p,q-1],A[q+1,r];
// A[i] \leq x, p \leq i \leq q-1
// x \leq A[i], q+1 \leq i \leq r
// q is the final position of x
m=q-p+1
if k=m: then return A[q]
else: if k < m Select(A,p,q-1,k)
           else: Select (A,q+1,r, k-m)
```



# Selection – Divide and Conquer

### Selection vs. Quicksort

- Quicksort: divide and examine recursively both segments of the array
- Selection: divide and examine recursively only one segment

If we always end up at the largest segment: Complexity:  $T(n) \le T(\max{q-1, n-q}) + (n-1)$ 

Best case:  $T(n) = T(n/2) + O(n) \Rightarrow O(n)$ Worst case:  $T(n) = T(n-1) + O(n) \Rightarrow O(n^2)$ Average case: ?

## Selection - D&C Average Case

Assumptions:

- All permutations of the n numbers are equiprobable
- All numbers of A[1..n] are distinct

Then, the pivot can end up in any position equiprobably

- q: final position of the pivot after running Partition
- Pr[Partition(A, p, r) = q] = 1/n for every q

$$T(n) \le T(\max\{q-1, n-q\}) + (n-1)$$

• Expected complexity:

$$T(n) \leq \sum_{q=1}^{n} \frac{1}{n} \cdot [T(\max\{q-1, n-q\}) + (n-1)]$$

T(n) = O(n) (similar analysis with Quicksort)

## AVERAGE CASE ANALYSIS

|                                    | WORST              | AVERAGE           |
|------------------------------------|--------------------|-------------------|
| Finding the max ( # of asignments) | O(n)               | O(logn)           |
| Increment a binary counter         | O(n)               | O(1)              |
| Insertionsort<br>Quicksort         | O(n²)<br>O(n²)     | O(n²)<br>O(nlogn) |
| Selection                          | O(n <sup>2</sup> ) | O(n)              |

## ΕΚΤΟΣ ΥΛΗΣ

### Average case analysis for Binary Search Trees and Hashing

## **DICTIONARY ADT**

A data structure for maintaining a dynamic set S

- A data set that keeps changing (items being inserted or deleted over time)
- Each item comes with a key

Supports the following operations

- SEARCH (S,k) //search according to a key k
- **INSERT** (S,x) //insert an element x
- **DELETE** (S,k) //delete an element with key k

### NAIVE IMPLEMENTATIONS:

• Arrays or lists: O(n) both for average and worst case

#### **DICTIONARY ADT**

- SEARCH (S,k) //search according to a key k
- **INSERT** (S, x) //insert an element x
- **DELETE** (S,k) //delete an element with key k

#### **BETTER IMPLEMENTATIONS:**

- Binary Search Trees (BSTs):
  - O(n) worst case
  - O(logn) average case
- Balanced BSTs (AVL, Red-Black, 2-3-4 trees):
  - O(logn) worst case
- Splay trees:
  - O(logn) amortized
- Hash Tables
  - O(n) worst case
  - O(1) average case (under reasonable assumptions)

## **BINARY SEARCH TREES (BSTs)**

An implementation of Dictionary



### **BSTs - Complexity of operations**

The complexity of any operation is  $O(p_k)$  where  $p_k$  = depth of operation = <u>path length</u> from root to a node k

$$\max_{k \in S} (p_k) = h = \text{height of } S$$

Best case: O(log n) balanced tree

Worst case: O(n) chain

Average case: ?

- Suppose a BST is built by inserting consecutively n distinct elements (assume integer keys)
- Assume all n! permutations of the keys equiprobable
- Assume we have a successful search operation (and equiprobable to search for any of the keys)
- Unsuccessful search costs just 1 more
- P(i) = average path length in a BST of i nodes (average # of nodes on a path from the root to any node – not only to the leaves)
- P(0) = 0
- P(1) = 1

We want to estimate P(n)

α: the first element inserted = the root of the BST equiprobable to be the 1<sup>st</sup>, 2<sup>nd</sup>, ..., i<sup>th</sup>, ..., n<sup>th</sup> in the sorted order of the n elements



RST

For a given i:

P(n,i) = Average path length when we search key x, if the LST has i nodes:

- x = a : P(n, i) = 1

- 
$$x \in LST : P(n,i) = 1 + P(i)$$

- 
$$x \in RST : P(n,i) = 1 + P(n-i-1)$$

Pr[searching any of the n elements] =  $\frac{1}{n}$  (equiprobable)

$$P(n,i) = \frac{1}{n} \cdot 1 + \frac{i}{n} [1 + P(i)] + \frac{(n-i-1)}{n} [1 + P(n-i-1)]$$

$$=\frac{1+i+(n-i-1)}{n}+\frac{i}{n}P(i)+\frac{n-i-1}{n}P(n-i-1)$$

$$=1+\frac{i}{n}P(i)+\frac{n-i-1}{n}P(n-i-1)$$
 42

#### Recall: we care for P(n)

$$P(n) = \sum_{i=0}^{n-1} \Pr[LST \text{ has i nodes}] \cdot P(n,i)$$

$$\Pr[LST \text{ has i nodes}] = \Pr\left[ \begin{array}{c} \alpha \text{ is the } (i+1)^{\text{th}} \text{ element in the} \\ \text{sorted order of the n elements} \end{array} \right] = \frac{1}{n}$$

Hence: 
$$P(n) =$$

$$P(n) = \frac{1}{n} \sum_{i=0}^{n-1} P(n,i)$$

$$P(n) = \frac{1}{n} \sum_{i=0}^{n-1} P(n,i)$$
  
=  $\frac{1}{n} \left\{ \sum_{i=0}^{n-1} \left[ 1 + \frac{i}{n} P(i) + \frac{n-i-1}{n} P(n-i-1) \right] \right\}$ 

$$=1+\frac{1}{n^2}\sum_{i=0}^{n-1}\left[iP(i)+(n-i-1)\cdot P(n-i-1)\right]$$

$$P(n) = 1 + \frac{2}{n^2} \sum_{i=0}^{n-1} iP(i)$$

We shall show that  $P(n) \le 1 + 4\log n$  (by induction on n)

# BSTs - Average case $P(n) \le 1 + 4\log n$

**Induction basis** 

$$n = 1$$
:  $P(1) = 1$ ,  $1 + 4 \log 1 = 1$ 

**Induction hypothesis** 

 $P(i) \le 1 + 4\log i, \forall i < n$ 

#### **Inductive step**



46



47

Thus,

$$P(n) \le 2 + \frac{8}{n^2} \sum_{i=1}^{n-1} i \log i \qquad \left[ \sum_{i=1}^{n-1} i \log i \le \frac{n^2}{2} \log n - \frac{n^2}{8} \right]$$
  
$$\le 2 + \frac{8}{n^2} \left( \frac{n^2}{2} \log n - \frac{n^2}{8} \right)$$
  
$$= 2 + 4 \log n - 1$$
  
$$= 1 + 4 \log n \Longrightarrow$$
  
$$P(n) = O(\log n)$$

#### HASH TABLES

#### [CLRS 11.1, 11.2, 11.4]

An alterative implementation of DICTIONARY ADT

Recall we care to implement the operations

- SEARCH (S,k) //search according to a key k
- INSERT (S,x) //insert an element x
- DELETE (S,k) //delete an element with key k

2 main approaches used in hashing:

- 1. Chaining
- 2. Open addressing

## **Direct Addressing**

- We want to store objects that have a key field
- Let U = {0,1,2,3,...} the set of all possible key numbers assume integer keys
- Allocate an array that has a position for each key T[0..|U|-1]
- T[k] corresponds to (the element of) key k
- Operations:
  - search(k): return T[k]
  - insert(x): T[x.key]=x
  - delete(k): T[k]=null
- Complexity: O(1) in worst case for all operations

## **Direct Addressing**



#### **Problems:**

- We may have objects with the same key
- Not all possible keys are used, we waste too much memory if U is huge
- actually stored keys |K| << |U|

## Hashing

- Map the universe U of keys onto a small range of integers
- Hash function h: U  $\rightarrow$  {0,1,...,m-1}, for some integer m
- Use an array of size m: T[0...m-1] (m << |U|)
- Hash collision: when h(k) = h(k') for  $k \neq k'$
- Goal: Obtain a hash function that is
  - cheap to evaluate (e.g.,  $h(k) = ak \mod m$ )
  - assumption: h(k) is computed in  $\Theta(1)$
  - minimizes collisions
- <u>n = # of stored elements</u>

## Hashing

#### universe of keys

#### hash table



### Collisions

- No matter how good the hash function is, the probability of no collision is very low even for small n (birthday paradox)
- For m=365 and  $n \ge 50$  this probability goes to 0



• How to treat hash collisions when they occur?

## Chaining

Put all keys that hash to the same integer in a linked list



**Use array of m lists:** T[0], T[1], T[2],...,T[m-1]

## Chaining – worst case

- DICTIONARY implementation:
  - search(k): search for an element with key k in the list T[h(k)]
  - insert(x): put element x at the front of list T[h(x.key)] (we
    do not keep the lists sorted)
  - delete (k): delete element with key k from list T[h(k)]
- Complexity
  - search(k):  $\Theta(|T([h(k)]|)$
  - insert(x): Θ(1) (no check if element x is already present)
  - delete(k):  $\Theta(|T([h(k)]|)$
- Worst case: all keys are hashed onto the same slot
  - search(k):  $\Theta(n)$
  - insert(x): Θ(1) (no check if element x is already present)
  - delete(k):  $\Theta(n)$

- Assumption: uniform hashing
  - each key is equally likely hashed into any of the m slots, independently of where any other element has hashed to
- Filling degree of hash table T: α(n,m) = n/m
  the average length of list T[j] is α
- Expected number of elements examined in T[h(k)] to search key k?

Distinguish between

- unsuccessful search
- successful search

Unsuccessful search

- Expected time to search for key k
   = expected time to search till the end of list T[h(k)]
- T[h(k)] has expected length  $\alpha$
- The computation of h(k) takes  $\Theta(1)$  time

that is a total of  $\Theta(1+\alpha)$ 

Successful search

- Suppose keys were inserted in the order  $k_1,\ k_2,\ldots,\ k_n$
- $k_i$ : the i<sup>th</sup> inserted key
- A(k<sub>i</sub>): the expected time to search  $k_i$

 $\begin{array}{l} A\left(k_{i}\right) \ = 1 \ + \ \text{average \# of keys inserted in } \mathbb{T}\left[h\left(k_{i}\right)\right] \\ & \text{after } k_{i} \text{ was inserted} \end{array}$ 

- Due to uniform hashing:  $A(k_i) = 1 + \sum_{j=i+1}^{\overline{n}} \frac{1}{m} = 1 + \frac{n-i}{m}$ # of keys inserted in T[h(k\_i)] after k\_i
- average over all n inserted keys  $E[A] = \frac{1}{n} \sum_{i=1}^{n} A(k_i)$

Successful search

$$E(A) = \frac{1}{n} \sum_{i=1}^{n} \left( 1 + \frac{n-i}{m} \right) = 1 + \frac{1}{nm} \sum_{i=1}^{n} (n-i) = 1 + \frac{1}{nm} \left[ n^2 - \sum_{i=1}^{n} i \right]$$

$$=1+\frac{1}{nm}\left[n^{2}-\frac{n(n+1)}{2}\right]=1+\frac{n-1}{2m}=1+\frac{\alpha}{2}-\frac{\alpha}{2n},$$

- Better than in the unsuccessful case
- But overall  $\Theta(1+\alpha)$

 Assume that n is O(m) (e.g., think of n = 5m or cm for a small constant c)

• Then, 
$$\alpha = \frac{n}{m} = \frac{O(m)}{m} = O(1)$$

• Hence: all dictionary operations take O(1) time on average

## Open addressing

- ALL elements are stored in the array T itself
- Each entry of T contains either an element or null
- n ≤ m, α ≤ 1
- Insertion of a key k:

- Probe the entries of the hash table until an empty slot is found

- Sequence of slots probed depends on key  ${\rm k}$  to be inserted
- The hash function depends on the key k and the probe #, i $h: U \times \{0,1,...,m-1\} \rightarrow \{0,1,...m-1\}$
- The probe sequence generated for a key k h(k,0), h(k,1), h(k,2), ..., h(k,m-1) should be a permutation of 0, 1, 2, 3,..., m-1 (this guarantees that all slots are eventually considered)

## **Open addressing – Insert**

```
Insert (T, k);
// i = probe #
i=0;
repeat
    j=h(k,i); // compute (i+1)<sup>th</sup> probe
    if T[j]=null then T[j]=k; return j;
        else i=i+1;
until (i=T.length);
return full
```

### Open addressing – Search

```
Search (T, k);
// i = probe #
i=0;
repeat
    j=h(k,i);
    if T[j]=k then return j
        else i=i+1;
    until (i=T.length or T[j]==null);
return null
```

#### probes the same slots as insertion (with no deletions)

## Open addressing – Delete

- Just setting T[i]=null for deletion is inappropriate!
- If at insertion of k, a visited slot  $\pm$  was occupied, and then the element there is deleted there is no way to retrieve k anymore !
- Solution: T[i]=DELETED (a special value)
- Insert needs to be adapted to treat such slots as empty
- Search remains unchanged as DELETED slots are ignored
- Search times now no longer depend on filling degree  $\alpha$  only

#### If keys are to be often deleted, chaining is more commonly used than open addressing

## Open addressing – Hash functions

 Requirement: for a given key k, generate a probing sequence h(k,0), h(k,1), h(k,2),..., h(k,m-1)

which is a permutation of 0, 1, 2, 3,..., m-1 (in worst case all elements of the array need to be examined at insertion)

- Several policies/functions
  - Linear probing: h(k, i) = (h'(k) + i) mod m, for some appropriate single-parameter hash function (what se saw in Data Structures)
  - Quadratic probing:  $h(k, i) = (h'(k) + ci + ci^2) \mod m$
  - **Double hashing:** use a 2<sup>nd</sup> hash function for the probe
- Quality is judged by the number of different probe sequences each policy can generate

## Open addressing – Hash function

- Assumption for our analysis: Uniform hashing
  - For each key considered, each of the m! permutations is equally likely as a probing sequence
  - too expensive or even unrealistic to implement in practice
  - But useful for analysis

• In practice: double hashing achieves a good approximation to uniform hashing

Unsuccessful search

- X= # of probes in unsuccessful search
- A<sub>i</sub>: the event {the  $i^{th}$  probe is to an occupied slot} Pr{ $X \ge i$ } =

$$= \Pr\{A_{1} \cap A_{2} \cap ... \cap A_{i-1}\}$$

$$= \Pr\{A_{1}\} \cdot \Pr\{A_{2} | A_{1}\} \cdot \Pr\{A_{3} | A_{1} \cap A_{2}\} \cdot ... \cdot \Pr\{A_{i-1} | A_{1} \cap ... \cap A_{i-2}\}$$

$$= \frac{n}{m} \cdot \frac{n-1}{m-1} \cdot ... \cdot \frac{n-i+2}{m-i+2} \le \left(\frac{n}{m}\right)^{i-1} = \alpha^{i-1}$$
(recall that now)

(recall that n<m)

Unsuccessful search

$$E[X] = \sum_{i=0}^{\infty} i \Pr\{X = i\} = \sum_{i=0}^{\infty} i \left[ \Pr\{X \ge i\} - \Pr\{X \ge i+1\} \right]$$

$$=\sum_{i=1}^{\infty} \Pr\{X \ge i\} \le \sum_{i=1}^{\infty} \alpha^{i-1} = \sum_{i=0}^{\infty} \alpha^{i}$$

$$= 1 + a + a^{2} + a^{3} + a^{3} + \dots = \frac{1}{1 - a} \quad (a \le 1)$$

#### Intuition:

•1 probe is always made

•With probability  $\alpha$ , the 1<sup>st</sup> probe finds an occupied slot and a 2<sup>nd</sup> probe is made

•With probability  $\approx \alpha^2$ , the 1<sup>st</sup> and the 2<sup>nd</sup> probe find occupied slots and a 3<sup>nd</sup> probe is made •and so on...

#### Successful search

- Follows the same probe sequence as insert
- Insert = unsuccessful search + placement  $\rightarrow 1/(1-\alpha)$
- X<sub>i+1</sub> = average # of probes for the (i+1)<sup>th</sup> inserted key
   = 1/(1-i/m)
- X= # of probes in unsuccessful search over all n keys

$$E[X] = \frac{1}{n} \cdot \sum_{i=0}^{n-1} X_{i+1} = \frac{1}{n} \cdot \sum_{i=0}^{n-1} \frac{1}{1-i/m} = \frac{1}{\alpha} \cdot \sum_{i=0}^{n-1} \frac{1}{m-i}$$

Successful search

$$E[X] = \frac{1}{\alpha} \cdot \sum_{i=0}^{n-1} \frac{1}{m-i} = \frac{1}{\alpha} \cdot \left(\sum_{k=m-n+1}^{m} \frac{1}{k}\right)$$
$$\leq \frac{1}{\alpha} \cdot \int_{m-n}^{m} \frac{1}{x} dx = \frac{1}{\alpha} [\ln m - \ln(m-n)]$$
$$= \frac{1}{\alpha} \cdot \ln\left(\frac{m}{m-n}\right) = \frac{1}{\alpha} \cdot \ln\left(\frac{1}{1-\alpha}\right)$$

## Efficiency of open addressing

Summary: Under the assumption of uniform hashing:

- An unsuccessful search takes  $O\left(\frac{1}{1-\alpha}\right)$  time on average
  - If the hash table is half full, 2 probes are necessary on average
  - If the hash table is 90% full, 10 probes are necessary on average
- A successful search takes  $O\left(\frac{1}{\alpha}\ln\frac{1}{1-\alpha}\right)$  time on average If the hash table is half full, 1.39 probes are necessary on average

  - If the hash table is 90% full, 2.56 probes are necessary on average
- Recall that for chaining this was  $\Theta(1+\alpha)$  for both cases
- Hence: as long as a = O(1), we have O(1) complexity on average for all the desired operations!