
Special Topics on Algorithms
Fall 2023

Average Case Analysis

Vangelis Markakis Ioannis Milis

2

Outline

– Introductory examples

• FINDMAX

• BINARY COUNTER INCREMENT

• INSERTION SORT

– QUICKSORT

– BINARY SEARCH TREES

– HASHING

3

Outline

– Worst case examples may often not appear in practice

– Performing an average case analysis can be meaningful

– But: for such an analysis, we need an assumption on the
input

• input = random data according to some probability distribution

– Usually analysis is done by assuming a uniform
distribution on all possible configurations of the input

4

Finding the MAX

Complexity:
• Number of steps

Worst case = average case = Ο(n) (we have to execute the for loop)

• What about the commands inside the loop?

• Let T(n) = # of assignments = number of times (*) is executed
Best case: T(n) = 1
Worst case: T(n) = n
Average case: ?

Algorithm max(A[1..n])

Input: An array of n elements Α[1..n]
Output: the position of the maximum element
max= A[1], position=1
for i=2 to n

if A[i] > max max=A[i], position=i
return position

(*)

5

Finding the MAX (# assignments)

Average case analysis: Need a probabilistic assumption on the data
• There are n! possible orderings of n numbers: Natural to assume all

orderings are equiprobable
– true if each number has been picked independently from the uniform

probability distribution

• Define a random variable for each iteration i, call it Ti
• Ti = 1, if assignment in the ith iteration, 0 otherwise
• Pr [assignment in the ith iteration] = Pr [A[j] < A[i], "j<i] = 1/i
• Hence Pr[Ti = 1] = 1/i

Algorithm max(A[1..n])

Input: An array of n elements Α[1..n]
Output: the position of the maximum element
max= A[1], position=1
for i=2 to n

if A[i] > max max=A[i], position=i
return position

(*)

6

Finding the MAX (# assignments)

Average case analysis: Need a probabilistic assumption on the data
• Pr [no assignment in the ith iteration] = Pr [$ j<i : A[j] > A[i]] = (i-1)/I
• Expected value of Ti: 1⋅ Pr[Ti = 1] + 0⋅ Pr[Ti = 0]

ii
i

i
Ti

11011][=
-

+=E

Algorithm max(A[1..n])

Input: An array of n elements Α[1..n]
Output: the position of the maximum element
max= A[1], position=1
for i=2 to n

if A[i] > max max=A[i], position=i
return position

(*)

7

Finding the MAX (# assignments)

Average case analysis:

T(n) : total # of assignments

[])(log1][)(
111

nOH
i

TTnT n

n

i

n

i
i

n

i
i ====ú
û

ù
ê
ë

é
= ååå

===

EEE

Linearity of Expectation

å
=

=
n

i
iTnT

1
)(

Algorithm max(A[1..n])

Input: An array of n elements Α[1..n]
Output: the position of the maximum element
max= A[1], position=1
for i=2 to n

if A[i] > max max=A[i], position=i
return position

(*)

Complexity: We care for # of bit flips
• Best case: O(1), the LSB is 0 and only this is flipped
• Worst case: O(k), that is O(log n); all the bits are flipped
• Average case: ?

Incrementing a binary counter
Problem: Increment a binary counter by 1
Input: An array A of k bits, A[0], A[1], ..., A[k-1], representing the

counter of value x, 0 ≤ x ≤ n :
Output: Increase the counter by 1

å
-

=

×=
1k

0i

i2]i[Ax (k= ëlog nû +1)

INCREMENT(A);
i = 0;
while i < k and A[i] = 1 do

A[i] = 0;
i = i+1;

if i < k then A[i] = 1 else overflow

8

9

Incrementing a binary counter

A[7] A[6] A[5] A[4] A[3] A[2] A[1] A[0] value
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1
0 0 0 0 0 0 1 0 2
0 0 0 0 0 0 1 1 3
0 0 0 0 0 1 0 0 4
0 0 0 0 0 1 0 1 5
0 0 0 0 0 1 1 0 6
0 0 0 0 0 1 1 1 7
0 0 0 0 1 0 0 0 8
0 0 0 0 1 0 0 1 9
0 0 0 0 1 0 1 0 10
0 0 0 0 1 0 1 1 11
0 0 0 0 1 1 0 0 12
0 0 0 0 1 1 0 1 13
0 0 0 0 1 1 1 0 14
0 0 0 0 1 1 1 1 15
0 0 0 1 0 0 0 0 16

The # of bit flips depends on the value of the counter

Binary Number Bit flips (xi) Probability (pi)
......0 1 1/2
......01 2 1/4

....011 3 1/8
. . .
. . .

i 1/2i

Incrementing a binary counter

E X()= pi
i=1

k

∑ xi = i
i=1

k

∑ 1
2i ≤ i 1

2i
i=0

∞

∑ =

1
2

1− 1
2

%

&
'

(

)
*

2 = 2 =O 1() !

!"!#$
1-i

1110111 …

10

Assumption for average case analysis: All numbers
with k bits equiprobable

Let
X = #bit flips

11

InsertionSort

T(n) = # of comparisons
Best case: Array already sorted

1 comparison per iteration
T(n) = n-1

Worst case: Array sorted in reverse order
The ith iteration requires i comparisons

Average case: ?

)n(O~1
2

)1n(n
i)n(T 2

n

2i

-
+

==å
=

Algorithm SelectionSort (A[1..n])
A[0] := -∞ //only for technical convenience
for i:=2 to n do

j := i;
while A[j]<A[j-1] do

swap (A[j], A[j-1]);
j := j-1;

12

InsertionSort

ith iteration

Final position of A[i] : i , i-1 , … , 2 , 1
of comparisons : 1 , 2 , … , i-1 , i

Pr[A[i] goes to position j] : , , … , ,

• Assumption for avg case analysis: All permutations of the n
numbers are equiprobable

• Expected number of comparisons in the ith iteration =

i
1

i
1

i
1

i
1

å
=

+
=×

+
=×=

i

k
i

i
i

)i(i
i

kT
1 2

11
2
11

13

InsertionSort
Summing over all iterations
Expected number of comparisons:

• Around n2/4
• Almost half of the worst case, but again O(n2)
• Here average case does not provide significant

improvements

[]

2
2

4
)1(

3
2

)2)(1(
2
1

2
1

][)(

2

22

-
+

+
=

÷
ø
ö

ç
è
æ -

++
=

+
=

==ú
û

ù
ê
ë

é
=

å

åå

=

==

nnn

nni

TETEnTE

n

i

i

n

i
i

n

i

Quick Sort

14

QuickSort (A, p, r)
if p < r:

select pivot x;
q = Partition (A,p,r)
//split A into A[p,q-1],A[q+1,r];
// A[i] ≤ x, p ≤ i ≤ q-1
// x ≤ A[i], q+1 ≤ i ≤ r
// q is the final position of x
QuickSort (A[p,q-1]);
QuickSort (A[q+1,r]);

q rp

T. Hoare, 1960

R. Sedgewick
Ph.D. thesis, 1975

Quick Sort

15

Partition (A, p, r)
x=A[r]
i=p-1
for j=p to r-1:

if A[j]≤x: i=i+1
swap(A[i],A[j])

swap(A[i+1],A[r])
q=i+1
return q

Complexity of Partition: O(n)
(n-1 iterations)

Quick Sort

16

2

Quick Sort

17

QuickSort (A, p, r)
if p < r:

select pivot x;
q = Partition (A,p,r)
//split A into A[p,q-1],A[q+1,r];
// A[i] ≤ x, p ≤ i ≤ q-1
// x ≤ A[i], q+1 ≤ i ≤ r
// q is the final position of x
QuickSort (A[p,q-1]);
QuickSort (A[q+1,r]);

• Difficult to control the possible divisions into subproblems
Partition (A,q,r): Ο(n), with n = r – p + 1

• Combining the solutions of the subproblems: easy,
Nothing to do !

• For simplicity, suppose p=1, r=n

??? :Complexity)()()1()(nOqnTqTnT +-+-=

Quick Sort - Worst Case

• When we partition into in every step

• Pivot is the min (or the max)

)(
2
11 2

1

nO)n(nk n)T(nT(n)
n

k
å
=

=
+

==+-=

18

1 n-1

q

If we choose as pivot = A[r], when does the worst case occur?

Quick Sort - Best Case

19

q

n)O(nO(n)nTT(n) log
2

2 =+÷
ø
ö

ç
è
æ=

n

n/2n/2

n/4 n/4 n/4 n/4
... … ...

1 1 1 1 .. 1 1 1 1

n

n

n

n

log n
(depth of recursion)

ë û2/n é ù 12/ -n• Partition into
• Pivot is the median

in every step

Quick Sort - Best Case

• Quicksort behaves well even if the partitioning at every
step is quite unbalanced

• For example, suppose we partition into 90/10 proportions
every time

• Or generally partition into in every
step for some constant k

• Depth of recursion = loga n, a = k/k-1 Þ loga n = O(logn)
• Þ T(n) = O(nlogn)
• True for any partitioning with constant k (independent of n)

20

k
kn 1-

£ k
n

³

O(n) n
k

Tn
k

kTT(n) +÷
ø
ö

ç
è
æ+÷

ø
ö

ç
è
æ -

=
11

Quick Sort - Best Case

21

k=10

Quick Sort - Average Case
Assumptions:
• All permutations of the n numbers are equiprobable
• All numbers of A[1..n] are distinct

Then, the pivot can end up in any position equiprobably
– q: final position of the pivot after running Partition
– Pr[Partition(A, p, r) = q] = 1/n for every q
– Complexity if pivot ends up at q:

• Hence, expected complexity:

T (q−1)+T (n− q)+ (n−1)

22

T(n) = 1
n [T (q−1)+T (n− q)+ (n−1

q=1

n

∑)]

Quick Sort - Average Case

)1()1(2

)1()]()1([1

)1(1)]()1([1

)]1()()1([1)(

1

1

1 1

1

å

å

å å

å

=

=

= =

=

-+-=

-
+-+-=

-+-+-=

-+-+-=

n

q

n

q

n

q

n

q

n

q

nqTn

n
nnqnTqTn

nnqnTqTn

nqnTqTnnT

23

n-q: 0,1,2,..,n-2,n-1

q-1: n-1,n-2,…2,1,0

Quick Sort - Average Case

)1(
)1(2)1(

1
)(

)1(2)1()1()(
)1(2)1(2)1()1()(

)2)(1()1(2)1()1(

)1()1(2)(

1)1(2)(

1

1

1

1

+
-

+
-

=
+

Þ-+-+=
Þ-+-=---

--+-=--

-+-=

-+-=

å

å

å

-

=

=

=

nn
n

n
nT

n
nT

nnTnnnT
nnTnTnnnT

nnqTnTn

nnqTnnT

nqT
n

nT

n

q

n

q

n

q

24

(1) * n:

(2) for n-1:

(2) – (3):

(1)

(2)

(3)

Quick Sort - Average Case

)1(
)1(2)1(

1
)(

+
-

+
-

=
+ nn

n
n
nT

n
nT 0,

1
)(Έστω 0 =+

= aa
n
nT

n

å
=

-- +
-

==
+
-

+
-
-

+=
+
-

+=
n

i
nnn ii

i
nn
n

nn
n

nn
n

1
21)1(

)1(2...
)1(
)1(2

)1(
)2(2

)1(
)1(2 aaa

25

n

n

i

n

i

n

i

n

i
H

iiii
i

ii
i 212

1
12

)1(
2

)1(
12

1111
=£

+
=

+
£

+
-

= åååå
====

)log(2)1()1()(nnOHnnnT nn =×+£+= a

Lower bound for sorting

26

A lower bound applicable for all algorithms that use comparisons
• Pairwise comparisons
• Every such sorting algorithm corresponds to a binary decision tree

Tree leaves = possible orderings (permutations)

Complexity = tree height

Lower bound for sorting

27

leaves ≥ # possible permutations = n!
No permutation can be absent
•If yes, what would the algorithm answer if the input corresponded to such
a permutation?

Let d = tree height, d = Ω(?)

Lower bound for sorting

28

Every binary tree of height d has at most 2d leaves

Hence:

)!log(2! ndn d ³Þ£

Lower bound for sorting

29

)log()1(log
2

)2log(log
22

log
2

2
log...2

2
1

22
...21log)!log(

2

nnnnnnnn

nnnnnnd

n

W=-=-=÷
ø
ö

ç
è
æ=

÷
÷
÷

ø

ö

ç
ç
ç

è

æ
÷
ø
ö

ç
è
æ³÷÷

ø

ö
çç
è

æ
××÷

ø
ö

ç
è
æ +×÷

ø
ö

ç
è
æ +××××=³

)log(loglog

)log(logloglog)!log(

nnennn

enn
e
nn

e
nnd

n

W=-=

-=÷
ø
ö

ç
è
æ=÷

ø
ö

ç
è
æ

³³
Stirling

OR:

Thus, any algorithm based on comparisons must have complexity
at least Ω(nlogn)

Median and Selection
SELECTION
I: n distinct numbers, a parameter k, 1£ k £ n
Q: the k-th largest element

k = n: find minimum, k = 1: find maximum

k = ë(n+1)/2û à MEDIAN (half the elements smaller, the other
half bigger)

k odd: x x x M x x x (n=7, k= 4)
k even: x x x M x x x x (n=8, k= 4 - lower median)

Obvious algorithm: Ο(n log n) – why?

30

Selection – Divide and Conquer

31

Select (A, p, r, k)
if p = r: return A[p]
select pivot x;
q = Partition (A,p,r)
//split A into A[p,q-1],A[q+1,r];
// A[i] ≤ x, p ≤ i ≤ q-1
// x ≤ A[i], q+1 ≤ i ≤ r
// q is the final position of x
m=q-p+1
if k=m: then return A[q]
else: if k < m Select(A,p,q-1,k)

else: Select (A,q+1,r, k-m)

q rp

k=1,2,3 k=4
MEDIAN

k=5,6,7,8

Selection – Divide and Conquer
Selection vs. Quicksort
• Quicksort: divide and examine recursively both segments

of the array
• Selection: divide and examine recursively only one

segment

If we always end up at the largest segment:

Best case: T(n) = T(n/2) + O(n) Þ O(n)
Worst case: T(n) = T(n-1) + O(n) Þ O(n2)
Average case: ?

)1(}),1(max{T(n) :Complexity -+--£ nqnqT

32

Selection - D&C Average Case
Assumptions:
• All permutations of the n numbers are equiprobable
• All numbers of A[1..n] are distinct

Then, the pivot can end up in any position equiprobably
– q: final position of the pivot after running Partition
– Pr[Partition(A, p, r) = q] = 1/n for every q

• Expected complexity:

• T(n) = O(n) (similar analysis with Quicksort) 33

å
=

-+--×£
n

q
nqnqTnT

1
)]1(}),1(max{[

n
1)(

)1(}),1(max{T(n) -+--£ nqnqT

WORST AVERAGE

Finding the max
(# of asignments)

O(n) O(logn)

Increment a binary
counter

O(n) O(1)

Insertionsort O(n2) O(n2)
Quicksort O(n2) O(nlogn)

Selection O(n2) O(n)

AVERAGE CASE ANALYSIS

16

35

ΕΚΤΟΣ ΥΛΗΣ

Average case analysis for Binary Search Trees and
Hashing

36

DICTIONARY ADT
A data structure for maintaining a dynamic set S

• A data set that keeps changing (items being inserted
or deleted over time)

• Each item comes with a key

Supports the following operations
• SEARCH (S,k) //search according to a key k
• INSERT (S,x) //insert an element x
• DELETE (S,k) //delete an element with key k

NAIVE IMPLEMENTATIONS:
• Arrays or lists: O(n) both for average and worst case

37

DICTIONARY ADT
• SEARCH (S,k) //search according to a key k
• INSERT (S,x) //insert an element x
• DELETE (S,k) //delete an element with key k

BETTER IMPLEMENTATIONS:
• Binary Search Trees (BSTs):

• O(n) worst case
• O(logn) average case

• Balanced BSTs (AVL, Red-Black, 2-3-4 trees):
• O(logn) worst case

• Splay trees:
• O(logn) amortized

• Hash Tables
• O(n) worst case
• O(1) average case (under reasonable assumptions)

An implementation of Dictionary

38

BINARY SEARCH TREES (BSTs)

α

< α > α

BST

RSTLST

39

BSTs - Complexity of operations
The complexity of any operation is O(pk) where
pk = depth of operation= path length from root to a node k

Best case: O(log n) balanced tree

Worst case: O(n) chain

Average case: ?

S ofheight)(max
S

==
Î

hpkk

40

BSTs - Average case
• Suppose a BST is built by inserting consecutively n

distinct elements (assume integer keys)
• Assume all n! permutations of the keys equiprobable
• Assume we have a successful search operation (and

equiprobable to search for any of the keys)
• Unsuccessful search costs just 1 more

P(i) = average path length in a BST of i nodes (average # of nodes
on a path from the root to any node – not only to the leaves)

P(0) = 0
P(1) = 1
We want to estimate P(n)
α: the first element inserted = the root of the BST

equiprobable to be the 1st, 2nd, ..., ith, ..., nth in the
sorted order of the n elements

41

BSTs - Average case

equiprobable
permutations

P(i)

α

i
elements

n-i-1
elements

root

< α

> αLST

RST

equiprobable
permutations

P(n-i-1)

42

BSTs - Average case
For a given i:
P(n,i) = Average path length when we search key x, if the LST has i

nodes:

)1(1),(: -
)(1),(: -

1),(: -

--+=Î
+=Î

==

inPinPRSTx
iPinPLSTx

inPax

ble)(equiproba 1 elements]n theofany ngPr[searchi
n

=

)1(1)(1

)1(1)()1(1

)]1(1[)1()](1[11),(

--
--

++=

--
--

++
--++

=

--+
--

+++×=

inP
n
iniP

n
i

inP
n
iniP

n
i

n
ini

inP
n
iniP

n
i

n
inP

43

BSTs - Average case

),(nodes] i has Pr[)(
1

0
inPLSTnP

n

i
×=å

-

=

n
LST 1

elementsn theoforder sorted
in theelement 1)(i theis α

Prnodes] i has Pr[
th

=ú
û

ù
ê
ë

é +
=

Recall: we care for P(n)

å
-

=

=
1

0
),(1)(

n

i
inP

n
nPHence:

44

BSTs - Average case
å
-

=

=
1

0
),(1)(

n

i
inP

n
nP

ïþ

ï
ý
ü

ïî

ï
í
ì

úû
ù

êë
é --

--
++= å

-

=

1

0
)1(1)(11 n

i
inP

n
iniP

n
i

n

[]å
-

=

--×--++=
1

0
2)1()1()(11
n

i
inPiniiP

n

å
-

=

+=
1

0
2)(21)(
n

i
iiP

n
nP

nnP log41)(+£We shall show that (by induction on n)

45

BSTs - Average case
4logn1P(n) +£

11log41 ,1)1(:1 =+== Pn
Induction basis

Induction hypothesis

ni ,log41)(<"+£ iiP

å

å

åå

å

å

-

=

-

=

-

=

-

=

-

=

-

=

+£

Þ++£

++£

++£

+=

1

1
2

21

1
22

1

1

1

1
22

1

1
2

1

1
2

log82)(

2
2log421

 2log421

)log41(21

)(21)(

n

i

n

i

n

i

n

i

n

i

n

i

ii
n

nP

n
n

ii
n

i
n

ii
n

ii
n

iiP
n

nP

46

BSTs - Average case
Inductive step

22
)1(2nnn
£

-

47

BSTs - Average case

8
log

2

log
8

3)1(log
8

log
8

3
2

log
8

log
2

log

logloglog

22

22

22

1

2

1
2

1

1

1

1
2

1

1

2

nnn

nnnn

nnnn

nini

iiiiii

n

ni

n

i

n

i

n

i

n

ni

-=

+-=

+£

+£

+=

åå

å å å

-

úú
ù

êê
é=

-úú
ù

êê
é

=

-

=

-úú
ù

êê
é

=

-

úú
ù

êê
é=

48

BSTs - Average case

)(log)(
log41

1log42

)
8

log
2

(82

log82)(

22

2

1

1
2

nOnP
n
n

nnn
n

ii
n

nP
n

i

=
Þ+=
-+=

-+£

+£ å
-

=

Thus,

i logi
i=1

n−1

∑ ≤ n
2

2
logn− n

2

8

49

HASH TABLES

[CLRS 11.1, 11.2, 11.4]

An alterative implementation of DICTIONARY ADT

Recall we care to implement the operations
• SEARCH (S,k) //search according to a key k
• INSERT (S,x) //insert an element x
• DELETE (S,k) //delete an element with key k

2 main approaches used in hashing:

1. Chaining

2. Open addressing

50

Direct Addressing
• We want to store objects that have a key field
• Let U = {0,1,2,3,…} the set of all possible key numbers –

assume integer keys

• Allocate an array that has a position for each key
T[0..|U|-1]

• T[k] corresponds to (the element of) key k

• Operations:
– search(k): return T[k]
– insert(x): T[x.key]=x
– delete(k): T[k]=null

• Complexity: O(1) in worst case for all operations

51

Direct Addressing

actual keys used

universe of keys U={0, 1,…,9} direct-access table

3

2 5

7
9

4

8

1 0

6

0
1
2
3
4
5

7
6

8
9

U

K

key
Problems:
• We may have objects with the same key
• Not all possible keys are used, we waste too much
memory if U is huge
• actually stored keys |K| << |U|

52

Hashing
• Map the universe U of keys onto a small range of integers

• Hash function h: U ® {0,1,...,m-1}, for some integer m

• Use an array of size m: T[0...m-1] (m << |U|)

• Hash collision: when h(k)=h(k’) for k¹k’

• Goal: Obtain a hash function that is
– cheap to evaluate (e.g., h(k) = ak mod m)
– assumption: h(k) is computed in Θ(1)
– minimizes collisions

• n = # of stored elements

53

Hashing

h(k2)= h(k3)

actual keys

universe of keys hash table

k2
k1

0

m-1

U

K
k3k4

h(k1)

h(k4)

collisionhash function

54

Collisions
• No matter how good the hash function is, the probability of

no collision is very low even for small n (birthday paradox)
• For m=365 and n ³50 this probability goes to 0

• How to treat hash collisions when they occur?

0

0,2

0,4

0,6

0,8

1

0 20 40 60 80 100

Number of insertions n

Pr
ob

ab
ili

ty
 o

f n
o

co
lli

si
on

55

Chaining
Put all keys that hash to the same integer in a linked list

k2
k1

0

m-1

U

K
k3k4

k1

k2 k3

k4

Use array of m lists: T[0], T[1], T[2],...,T[m-1]

56

Chaining – worst case
• DICTIONARY implementation:

– search(k): search for an element with key k in the list T[h(k)]
– insert(x): put element x at the front of list T[h(x.key)] (we

do not keep the lists sorted)
– delete(k): delete element with key k from list T[h(k)]

• Complexity
– search(k): Θ (| Τ([h(k)]|)
– insert(x): Θ(1) (no check if element x is already present)
– delete(k): Θ (| Τ([h(k)]|)

• Worst case: all keys are hashed onto the same slot
– search(k): Θ(n)
– insert(x): Θ(1) (no check if element x is already present)
– delete(k): Θ(n)

57

Chaining - Average case
• Assumption: uniform hashing

– each key is equally likely hashed into any of the m
slots, independently of where any other element has
hashed to

• Filling degree of hash table T: α(n,m)= n/m
– the average length of list T[j] is α

• Εxpected number of elements examined in T[h(k)] to
search key k?
Distinguish between
– unsuccessful search
– successful search

58

Chaining - Average case
Unsuccessful search

• Expected time to search for key k
= expected time to search till the end of list T[h(k)]

• T[h(k)] has expected length α

• The computation of h(k) takes Θ(1) time

that is a total of Θ(1+α)

59

Chaining - Average case
Successful search

• Suppose keys were inserted in the order k1, k2,..., kn
• ki: the ith inserted key
• A(ki): the expected time to search ki

A(ki) = 1 + average # of keys inserted in T[h(ki)]
after ki was inserted

• Due to uniform hashing:

of keys inserted in T[h(ki)] after ki

• average over all n inserted keys

m
in

m
kA

n

ij
i

-
+=+= å

+=

111)(
1

å
=

=
n

i
ikAn

AE
1

)(1][

60

Chaining - Average case

ú
û

ù
ê
ë

é
-+=-+=÷

ø
ö

ç
è
æ -
+= ååå

===

n

i

n

i

n

i
in

nm
in

nmm
in

n
AE

1

2

11

11)(1111)(

,
22

1
2
11

2
)1(11 2

nm
nnnn

nm
aa

-+=
-

+=úû
ù

êë
é +

-+=

• Better than in the unsuccessful case
• But overall Θ(1+α)

Successful search

61

Chaining - Average case

• Assume that n is O(m) (e.g., think of n = 5m or cm for a
small constant c)

• Then,

• Hence: all dictionary operations take O(1) time on average

)1()(O
m
mO

m
n

===a

62

Open addressing
• ALL elements are stored in the array T itself
• Each entry of T contains either an element or null
• n ≤ m, α ≤ 1

• Insertion of a key k:
– Probe the entries of the hash table until an empty slot is found

• Sequence of slots probed depends on key k to be inserted

• The hash function depends on the key k and the probe #, i

• The probe sequence generated for a key k
h(k,0), h(k,1), h(k,2), …, h(k,m-1)

should be a permutation of 0, 1, 2, 3,…, m-1
(this guarantees that all slots are eventually considered)

}1,...1,0{}1,...,1,0{: -®-´ mmUh

63

Open addressing – Insert

Insert (T, k);
// i = probe #
i=0;
repeat

j=h(k,i); // compute (i+1)th probe
if T[j]=null then T[j]=k; return j;

else i=i+1;
until (i=T.length);
return full

64

Open addressing – Search

Search (T, k);
// i = probe #
i=0;
repeat

j=h(k,i);
if T[j]=k then return j

else i=i+1;
until (i=T.length or T[j]==null);

return null

probes the same slots as insertion (with no deletions)

65

Open addressing – Delete
• Just setting T[i]=null for deletion is inappropriate!

• If at insertion of k, a visited slot i was occupied, and then the
element there is deleted there is no way to retrieve k anymore !

• Solution: T[i]=DELETED(a special value)

• Insert needs to be adapted to treat such slots as empty

• Search remains unchanged as DELETED slots are ignored

• Search times now no longer depend on filling degree α only

If keys are to be often deleted, chaining is more commonly
used than open addressing

66

Open addressing – Hash functions
• Requirement: for a given key k,generate a probing sequence

h(k,0), h(k,1), h(k,2),… , h(k,m-1)
which is a permutation of 0, 1, 2, 3,…, m-1 (in worst case all
elements of the array need to be examined at insertion)

• Several policies/functions
– Linear probing: h(k, i) = (h’(k) + i) mod m, for some appropriate

single-parameter hash function (what se saw in Data Structures)
– Quadratic probing: h(k, i) = (h’(k) + ci + ci2) mod m
– Double hashing: use a 2nd hash function for the probe

• Quality is judged by the number of different probe sequences each
policy can generate

67

Open addressing – Hash function
• Assumption for our analysis: Uniform hashing

– For each key considered, each of the m! permutations is equally
likely as a probing sequence

– too expensive or even unrealistic to implement in practice
– But useful for analysis

• In practice: double hashing achieves a good
approximation to uniform hashing

68

Open addressing – average case

=³ }Pr{ iX

}...Pr{ 121 -ÇÇÇ= iAAA

}...Pr{...}Pr{}Pr{}Pr{ 211213121 -- ÇÇ××Ç××= ii AAAAAAAAA

1
1

2
2...

1
1 -

-

=÷
ø
ö

ç
è
æ£

+-
+-

××
-
-

×= i
i

m
n

im
in

m
n

m
n a

Ai : the event {the ith probe is to an occupied slot}

Unsuccessful search

(recall that n<m)

X= # of probes in unsuccessful search

69

Open addressing – average case

åå
¥

=

¥

=

+³-³===
00

]}1Pr{}Pr{[}Pr{][
ii

iXiXiiXiXE

Unsuccessful search

)1(
1
1...1

}Pr{

332

01

1

1

£
-

=+++++=

=£³= ååå
¥

=

¥

=

-
¥

=

a
a

aaaa

iX
i

i

i

i

i
aa

Intuition:
•1 probe is always made
•With probability α, the 1st probe finds an occupied slot and a 2nd probe is
made
•With probability » α2, the 1st and the 2nd probe find occupied slots and a 3nd

probe is made
•and so on...

70

Open addressing – average case
Successful search
• Follows the same probe sequence as insert
• Insert = unsuccessful search + placement à 1/(1-α)
• Xi+1 = average # of probes for the (i+1)th inserted key

= 1/(1-i/m)
• X= # of probes in unsuccessful search over all n keys

immin
X

n
XE

n

i

n

i
i

n

i -
×=

-
×=×= ååå

-

=

-

=
+

-

=

11
/1
111][

1

0

1

0
1

1

0 a

71

Open addressing – average case

÷
ø

ö
ç
è

æ
×=

-
×= åå

+-=

-

=

m

nmk

n

i kima
XE

1

1

0

1111][
a

÷
ø
ö

ç
è
æ×=÷

ø
ö

ç
è
æ×=

--=×£ ò -

α-1
1ln1

n-m
mln1

)]ln([ln111

aa

aa
nmmdx

x
m

nm

Successful search

72

Efficiency of open addressing

Summary: Under the assumption of uniform hashing:

• An unsuccessful search takes time on average

– If the hash table is half full, 2 probes are necessary on average
– If the hash table is 90% full, 10 probes are necessary on average

• A successful search takes time on average
– If the hash table is half full, 1.39 probes are necessary on average
– If the hash table is 90% full, 2.56 probes are necessary on

average

• Recall that for chaining this was Θ(1+α) for both cases
• Hence: as long as a = O(1), we have O(1) complexity on

average for all the desired operations!

÷
ø
ö

ç
è
æ
-

O
a1

1

÷
ø
ö

ç
è
æ

α-1
1ln1

a
O

