ΟΙΚΟΝΟΜΙΚΟ ΠΑΝΕΠΙΣΤΗΜΙΟ ΑΘΗΝΩΝ

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Special Topics on Algorithms Fall 2023 Introduction

Vangelis Markakis

Special Topics on Algorithms

- A continuation of the Algorithms course
- Emphasis on topics not covered during the Algorithms course and also on some more modern topics and applications
- You can take this course during your 3rd year or later
- Prerequisites:
 - You have passed the Algorithms course
 - You liked the Algorithms course

Content – Topics to be covered

- Introduction
 - Some basic concepts
 - Distinction between polynomial, pseudopolynomial and exponential time algorithms
- Problems on numbers
 - Exponentiation/Fibonacci/Euclid's Algorithm for GCD
 - Modular arithmetic, prime numbers, primality testing
 - Applications: public key cryptosystems, RSA and digital signatures

Content – Topics to be covered

- Average case analysis
 - Sorting: Insertionsort, Quicksort
 - Binary Search Trees, hashing
- Coping with NP-completeness Approximation algorithms
 - Greedy and other combinatorial algorithms
 - Vertex Cover, Set Cover, Maximum Coverage, TSP
 - Partition, Knapsack, Scheduling, Bin Packing
 - SAT
- Randomized Algorithms
 - Max Cut, Min Cut, Max k-SAT

Content – Topics to be covered

- Flows and Matchings
 - Fundamental algorithms for the Maximum Flow in a network graph and the Maximum Matching in bipartite graphs.
- (Integer) Linear Programming
 - Applications and LP based Approximation Algorithms
 - LP duality
- Invited lectures
 - We may have 2 lectures by other faculty members and collaborators on some applications

Bibliography

- [DPV] S. Dasgupta, C. H. Papadimitriou, U. V. Vazirani : "Algorithms"
- [CLRS] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein: "Introduction to Algorithms"
- [KT] J. Kleinberg, E. Tardos: "Algorithm Design"

and many resources on the WWW

Communication

- Office hours:
 - Tuesdays: 12:00 14:00
 - Fridays: 13:00 14:00
- You can always email me regarding questions
 If I do not reply within 3 days, send it again
- Eclass: Ειδικά Θέματα Αλγορίθμων
 - Please check the announcements there at least once per week

Tutorials

- Teaching Assistant: Panagiotis Tsamopoulos
- Office hours for the TA to be announced soon
- Tutorials starting next week

Grading

Final exam

Midterm exam

20%

Individual Assignments (x2) 15%

Note: The midterm is used only if it helps your final grade, otherwise the final exam will count as 85%

Date of midterm: towards end of November

Introductory concepts: Polynomial, Pseudo-Polynomial and Exponential Algorithms

What are we interested in?

Problems to be solved by a machine: precisely defined; no ambiguities

- We want to transform appropriately the input data (problem instances) to output data
- Two subcategories are decision and optimization problems.

COMPUTATIONAL PROBLEM

A problem where we are given **input** instances and some computational question and we want to find an answer/**output**: E.g., given a graph we wish to compute the set of vertices of odd degree, or to compute a set of k vertices where every pair of them is connected by an edge.

Examples of Problems

EXP(onentiation)

FIBONACCI NUMBERS

I: positive integers a,n Q: calculate aⁿ

I: a positive integer n Q: calculate the n-th Fibonacci number F_n

SUBSET SUM

I: a set S={a₁, a₂, ..., a_n} of n positive integers and an integer B Q: is there a subset A \subseteq S s. t. $\sum_{i \in A} a_i = B$?

<u>SAT(isfiability)</u>

I: a boolean formula φ

Q: Is ϕ satisfiable ?

(is there a value assignment to its variables making φ TRUE ?
 = truth assignment)

Algorithms

Three crucial questions about any algorithm for any problem:

1. Is it correct ?

- Does it always terminate?
- Does it give a correct answer for any instance of the problem ?
- 2. How much time/space does it take, as a function of its input?
 - "time" = number of steps / "space" = number of bits in memory
 - "time" independent of language/implementation/machine
 - We mostly focus on time, expressed as a function T(n), where n is the size of the instance we try to solve
 - Interested in asymptotic behavior of T(n)
 - Notation: Ο, Ω, Θ, ο, ω
- 3. Can we do better ?

Time Complexity of an algorithm

There are many instances of the same size How does the algorithm work over all these instances?

Best-case complexity

- The minimum number of steps taken on any instance of size n
- Not useful, too optimistic

Worst-case complexity

- The maximum number of steps taken on any instance of size n
- An upper bound on the complexity of the problem
- The most usual analysis

Average case complexity

- The average number of steps taken on any instance of size n
- Depends on the distribution of instances (use of probabilities)

Time Complexity of a problem and lower bounds

Complexity of a problem Π : $T_{\Pi}(n)$

The (worst case) complexity of the best (known) algorithm A

$$T_{\Pi}(n) = \min_{A} \left\{ T_{A}(n) \right\}$$

Obtaining a lower bound on a problem's complexity $L_{\Pi}(n)$:

- By proving that <u>there is no</u> algorithm with T_A(n) < L_Π(n)
- Rare results (e.g., log(n!) for sorting).

Optimal algorithm

- An algorithm A, for which $T_A(n) = L_{\Pi}(n)$
- For many problems we still do not know if we have found an optimal algorithm
- Even for well-studied problems, new improvements arise over the years

Algorithm Analysis

- Proof of correctness
 - Some times for a well defined subset of input instances
- Evaluation of time complexity
 - Average, worst, best case
- Appropriate solution depending on the application requirements

Benefits of theoretical analysis:

- Do not require experimental evaluation but only concrete description of the algorithm
- Results into general conclusions easy to verify, by considering all input instances, determining the time complexity as function of the input size

Mathematical background: discrete math (graphs, recurrence relations, combinatorics), mathematical logic, induction in all its forms (simple, strong, structural)

Asymptotic Notation

In pictures:

17

Asymptotic Notation

More formally:

• A function f(n) is O(g(n)) if there exist positive constants c_0 and n_0 such that $f(n) \le c_0 g(n)$ for every $n \ge n_0$

- The constant c₀ might be large (but still constant, independent of n)
- Examples:
 - 2n + 10 is O(n). It suffices to set $c_0 = 3$ and $n_0 = 10$
 - $4n\log n + 150n + 3000sqrt(logn) = O(nlogn)$. Set $c_0 = 3154$, $n_0 = 1$
- A function f(n) is $\Omega(g(n))$ if there exist positive constants c_0 and n_0 such that $f(n) \ge c_0 g(n)$ for every $n \ge n_0$
- A function f(n) is $\Theta(g(n))$ if f(n) is O(g(n)) and f(n) is $\Omega(g(n))$

Growth of various functions

Size of instance and complexity

Consider the description of an instance (i.e., of all the parameters and constraints)

||| = length of encoded instance/input

Instance e.g. in decimal / binary / unary

encoded instance I

|| = # of digits of the encoded input

Integer n:	Decimal	Binary	Unary
# bits :	$\lfloor \log_{10} n \rfloor + 1$	$\lfloor \log_2 n \rfloor + 1$	n

Size of instance and complexity

- We typically use the binary encoding
 - but there are reasons to consider other encodings too in complexity theory
- Hence, unless otherwise stated, |I| = # of bits of the encoded input
- Let also N(I) = the largest number in the input
 - Applicable only for problems that have numeric parameters in their input, like Knapsack
- Classification of algorithms
 - Polynomial algorithms: running time O(poly(|I|)
 - Exponential algorithms: running time O(exp(|I|)
 - Pseudo-Polynomial algorithms: O(poly(N(I)), which in worst case is O(exp(|I|))
 - We can say that they are O(poly(|I|)) if we consider I encoded in unary ! (i.e, polynomial when N(I) not too large)
 - Example: Knapsack admits a dynamic programming algorithm with running time $O(n^2 v_{max})$, where v_{max} is max value in the instance
 - Only relevant for problems with numeric parameters!
 - Not relevant for SAT

Recap from the Algorithms course: Analyzing Recurrence Relations

The Master Theorem

- How do we analyze recurrence relations?
- There are various methods
- The substitution method:
 - Keep substituting until you guess the solution
 - Use induction to prove it formally

Example: T(n) = T(n-1) + n, T(1) = 1

- T(n) = T(n-1) + n
- = (T(n-2) + n-1) + n
- = T(n-2) + n + n-1
- = (T(n-3) + n-2) + n + n-1
- = ...
- = $n + n 1 + n 2 + ... + 2 + 1 = O(n^2)$

Is there a general result that could be applicable to the recurrence relations we will encounter?

The Master Theorem

If T(n) = $aT(\lceil n/b \rceil) + O(n^d)$ for some constants a > 0, b > 1, $d \ge 0$, then

$$T(n) = \begin{cases} \Theta(n^{d}), & \text{if } d > \log_{b} a \quad (b^{d} > a) \\ \Theta(n^{d} \log_{b} n), & \text{if } d = \log_{b} a \quad (b^{d} = a) \\ \Theta(n^{\log_{b} a}), & \text{if } d < \log_{b} a \quad (b^{d} < a) \end{cases}$$

- Usually convenient to think of n as a power of b, so that n/b is an integer.
- In many cases of interest, b = 2
- More general versions of this theorem are available as well

The Master Theorem - Examples

• Naive integer multiplication (by divide and conquer)

$$- T(n) = 4T(n/2) + O(n)$$

- -a = 4, b = 2, $\log_b a = \log_2 4 = 2$
- $d = 1 < 2 = log_b a$
- Case (iii) applies: $T(n) = \Theta(n^{\log_b a}) = \Theta(n^2)$
- Karatsuba's algorithm for integer multiplication
 T(n) = 3T(n/2) + O(n)
 - -a = 3, b = 2, $\log_b a = \log_2 3 = 1.59$
 - $d = 1 < \log_{b} a$
 - Case (iii) applies again: $T(n) = \Theta(n^{\log_b a}) = \Theta(n^{1.59})$

The Master Theorem - Examples

•
$$T(n) = 5T(n/25) + O(n^2)$$

$$-$$
 a = 5, b = 25, $\log_{b} a = \log_{25} 5 = 0.5$

- d = 2 > 0.5 = log_b a
- case (i) applies: $T(n) = \Theta(n^d) = \Theta(n^2)$

•
$$T(n) = T(2n/3) + O(1)$$

-
$$a = 1$$
, $b = 3/2$, $\log_b a = \log_{3/2} 1 = 0$

-
$$d = 0 = \log_b a$$

- case (ii) applies: $T(n) = \Theta(n^0 \log_{3/2} n) = \Theta(\log n)$

- T(n) = 9T(n/3) + O(n)
 - -a = 9, b = 3, $\log_{b} a = \log_{3} 9 = 2$
 - d = 1 < 2 = $\log_b a T(n) = \Theta(n^{\log_b a}) = \Theta(n^2)$
 - case (iii) applies: