ATHENS UNIVERSITY
OF ECONOMICS
AND BUSINESS

OIKONOMIKO
MANENIETHMIO
AOHNAON

Special Topics on Algorithms

Fall 2023
Introduction

Vangelis Markakis

Special Topics on Algorithms

A continuation of the Algorithms course

Emphasis on topics not covered during the Algorithms

course and also on some more modern topics and
applications

You can take this course during your 39 year or later

Prerequisites:

— You have passed the Algorithms course

— You liked the Algorithms course

Content — Topics to be covered

e [ntroduction
— Some basic concepts

— Distinction between polynomial, pseudopolynomial and
exponential time algorithms

e Problems on numbers
— Exponentiation/Fibonacci/Euclid’s Algorithm for GCD
— Modular arithmetic, prime numbers, primality testing

— Applications: public key cryptosystems, RSA and digital
signatures

Content — Topics to be covered

e Average case analysis

— Sorting: Insertionsort, Quicksort

— Binary Search Trees, hashing

e Coping with NP-completeness — Approximation
algorithms

— Greedy and other combinatorial algorithms

e Vertex Cover, Set Cover, Maximum Coverage, TSP

e Partition, Knapsack, Scheduling, Bin Packing
e SAT

e Randomized Algorithms

— Max Cut, Min Cut, Max k-SAT

Content — Topics to be covered

e Flows and Matchings

— Fundamental algorithms for the Maximum Flow in a network
graph and the Maximum Matching in bipartite graphs.

e (Integer) Linear Programming
— Applications and LP based Approximation Algorithms
— LP duality

e |nvited lectures

— We may have 2 lectures by other faculty members and
collaborators on some applications

Bibliography

[DPV] S. Dasgupta, C. H. Papadimitriou, U. V. Vazirani :
“Algorithms”

[CLRS] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein:
“Introduction to Algorithms”

[KT] J. Kleinberg, E. Tardos: “Algorithm Design”

and many resources on the WWW

Communication

e Office hours:
— Tuesdays: 12:00 — 14:00
— Fridays: 13:00 - 14:00

e You can always email me regarding questions
— If I do not reply within 3 days, send it again

e Eclass: ELOwka Ospata AAyoplBuwv

— Please check the announcements there at least once per
week

Tutorials

e Teaching Assistant: Panagiotis Tsamopoulos
e Office hours for the TA to be announced soon

e Tutorials starting next week

Grading

Final exam 65%
Midterm exam 20%
Individual Assignments (x2) 15%

Note: The midterm is used only if it helps your final
grade, otherwise the final exam will count as 85%

Date of midterm: towards end of November

Introductory concepts:
Polynomial, Pseudo-Polynomial and
Exponential Algorithms

10

What are we interested in?

Problems to be solved by a machine: precisely defined; no ambiguities

e We want to transform appropriately the input data (problem instances) to
output data

e Two subcategories are decision and optimization problems.

COMPUTATIONAL PROBLEM

A problem where we are given input instances and some computational
question and we want to find an answer/output:

E.g., given a graph we wish to compute the set of vertices of

odd degree, or to compute a set of k vertices where every pair of them is
connected by an edge.

11

Examples of Problems

EXP(onentiation) FIBONACCI NUMBERS

|: positive integers a,n |: a positive integer n

Q: calculate a" Q: calculate the n-th Fibonacci number F,
SUBSET SUM

I: a set S={a,, a,, ..., a,,} of n positive integers and an integer B
Q:is there a subset Ac S s. t. Zl_eA a,=B"
SAT(isfiability)
I: a boolean formula ¢
Q: Is ¢ satisfiable ?
(is there a value assignment to its variables making ¢ TRUE ?
= truth assighnment)

12

Algorithms

Three crucial questions about any algorithm for any problem:
Is it correct ?

1.

Does it always terminate?
Does it give a correct answer for any instance of the problem ?

How much time/space does it take, as a function of its
input?

“time” = number of steps / “space” = number of bits in memory
“time” independent of language/implementation/machine

We mostly focus on time, expressed as a function T(n), where n is
the size of the instance we try to solve

Interested in asymptotic behavior of T(n)
Notation: O, QQ, ©, 0, w

Can we do better ?

13

Time Complexity of an algorithm

There are many instances of the same size
How does the algorithm work over all these instances?

Best-case complexity

e The minimum number of steps taken on any instance of size n
e Not useful, too optimistic

Worst-case complexity

e The maximum number of steps taken on any instance of size n
e An upper bound on the complexity of the problem
e The most usual analysis

Average case complexity

e The average number of steps taken on any instance of size n
e Depends on the distribution of instances (use of probabilities)

14

Time Complexity of a problem and

lower bounds
Complexity of a problem M: Ty(n)

The (worst case) complexity of the best (known) algorithm A

I, (n)= n};m {TA (n)}

Obtaining a lower bound on a problem’s complexity L;(n):
e By proving that there is no algorithm with T,(n) < Ly(n)
e Rare results (e.g., log(n!) for sorting).

Optimal algorithm

e An algorithm A, for which T,(n) = Ly(n)
e For many problems we still do not know if we have found an
optimal algorithm

e Even for well-studied problems, new improvements arise over
the years

15

Algorithm Analysis

e Proof of correctness
— Some times for a well defined subset of input instances
e Evaluation of time complexity
— Average, worst, best case
e Appropriate solution depending on the application requirements

Benefits of theoretical analysis:

e Do not require experimental evaluation but only concrete
description of the algorithm

e Results into general conclusions easy to verify, by considering all
input instances, determining the time complexity as function of the
input size

Mathematical background: discrete math (graphs, recurrence relations,
combinatorics), mathematical logic, induction in all its forms (simple, strong,
structural) 17

Asymptotic Notation

In pictures:

ca22(n)
P
y f(m)
y s
/_// /‘/ (.l,Ig(’l)
— n

Ho

f(n) = O(g(n))

J(n) =0(g(n))

n

N

f(n) =g (n))

17

Asymptotic Notation

More formally:
e A function f(n) is O(g(n)) if there exist positive constants ¢, and
N,y such that f(n) < cy,g(n) for every n 2> n,

— The constant ¢, might be large (but still constant, independent of n)

— Examples:

e 2n+10is O(n). It sufficesto set cp =3 and ny =10
e 4nlogn + 150n + 3000sqrt(logn) = O(nlogn). Set ¢y = 3154, ng=1

e A function f(n) is Q(g(n)) if there exist positive constants ¢, and
N,y such that f(n) > cy,g(n) for every n 2> n,

e A function f(n) is ©(g(n)) if f(n) is O(g(n)) and f(n) is Q(g(n))

18

Growth of various functions

time

n! =20(nlogn)

5n3

/928n

e

input length]

19

Size of instance and complexity

Consider the description of an instance (i.e., of all the parameters and
constraints)

|I| =length of encoded instance/input
encoding

Instance - - - » encoded instance |
e.g. in decimal / binary / unary

|I| = # of digits of the encoded input

Integer n: Decimal Binary Unary
#bits |_10g10 nJ+1 llog, n |+1 n

20

Size of instance and complexity

We typically use the binary encoding

— but there are reasons to consider other encodings too in complexity theory
Hence, unless otherwise stated, || = # of bits of the encoded input
Let also N(I) = the largest number in the input

— Applicable only for problems that have numeric parameters in their input, like Knapsack

Classification of algorithms

» Polynomial algorithms: running time O(poly(|I])

» Exponential algorithms: running time O(exp(|!])

» Pseudo-Polynomial algorithms: ©(poly(N(l)), which in worst case is
O(exp(]1])

* We can say that they are O(poly(|1])) if we consider | encoded in
unary ! (i.e, polynomial when N(I) not too large)

* Example: Knapsack admits a dynamic programming algorithm with
running time O(n?v,_,,,), where v, is max value in the instance

* Only relevant for problems with numeric parameters!
* Not relevant for SAT 21

Recap from the Algorithms course:
Analyzing Recurrence
Relations

The Master Theorem

e How do we analyze recurrence relations?

e There are various methods

e The substitution method:
* Keep substituting until you guess the solution
* Use induction to prove it formally

Example: T(n) =T(n-1) +n, T(1) =1
* T(n)=T(n-1)+n

* =(T(n-2)+n-1)+n

* =T(n-2)+n+n-1

e =(T(n-3)+n-2)+n+n-1

* =n+n-l1+n-2+.+2+1=0(n?
Is there a general result that could be applicable to the

recurrence relations we will encounter?

23

The Master Theorem

If T(n) = aT(|_n/b—|) + O(nd) for some constantsa>0,b>1,d >0,

then

O(n), if d>
T(n)=:0(nlog, n), if d=

og,a (b" >a)
og,a (b =a)

O(n'®), if d<

og,a (b <a)

e Usually convenient to think of n as a power of b, so that n/b

IS an integer.
e |n many cases of interest, b =2

e More general versions of this theorem are available as well

24

The Master Theorem - Examples

e Naive integer multiplication (by divide and conquer)
— T(n) =4T(n/2) + O(n)
—a=4, b=2log,a=log,4=2
—d=1<2=log, a
— Case (iii) applies: T'(n) = @(nlog”“)zé)(nz)

e Karatsuba’s algorithm for integer multiplication
— T(n) =3T(n/2) + O(n)
—a=3, b=2,log,a=log,3=1.59
—d=1<log, a
— Case (iii) applies again: T(n) = @(nbgb“): On')

25

The Master Theorem - Examples

e T(n)=5T(n/25) + O(n?)
— a=5, b=25,log,a=1log,s5=0.5

— d=2>0.5=log, a
— case (i) applies: 1(n)= ®(nd): ®(n2)

e T(n)=T(2n/3) + O(1)
- a=1, b=3/2,log,a=log;,1=0
- Saseo(ii)lc;gpbp?ies: I'(n)= ®(n0 log;,, n): O(logn)
e T(n)=9T(n/3) + O(n)
— a=9,b=3,logya=log;9=2
- d=1<2=log, a T(n):®(nlogba):®(n2)

— case (iii) applies:

26

