OIKONOMIKO MANEMIETHMIO

AOHN』N

ATHENS UNIVERSITY OF ECONOMICS AND BUSINESS

Special Topics on Algorithms Fall 2023 Introduction

Vangelis Markakis

Special Topics on Algorithms

- A continuation of the Algorithms course
- Emphasis on topics not covered during the Algorithms course and also on some more modern topics and applications
- You can take this course during your $3^{\text {rd }}$ year or later
- Prerequisites:
- You have passed the Algorithms course
- You liked the Algorithms course

Content - Topics to be covered

- Introduction
- Some basic concepts
- Distinction between polynomial, pseudopolynomial and exponential time algorithms
- Problems on numbers
- Exponentiation/Fibonacci/Euclid's Algorithm for GCD
- Modular arithmetic, prime numbers, primality testing
- Applications: public key cryptosystems, RSA and digital signatures

Content - Topics to be covered

- Average case analysis
- Sorting: Insertionsort, Quicksort
- Binary Search Trees, hashing
- Coping with NP-completeness - Approximation algorithms
- Greedy and other combinatorial algorithms
- Vertex Cover, Set Cover, Maximum Coverage, TSP
- Partition, Knapsack, Scheduling, Bin Packing
- SAT
- Randomized Algorithms
- Max Cut, Min Cut, Max k-SAT

Content - Topics to be covered

- Flows and Matchings
- Fundamental algorithms for the Maximum Flow in a network graph and the Maximum Matching in bipartite graphs.
- (Integer) Linear Programming
- Applications and LP based Approximation Algorithms
- LP duality
- Invited lectures
- We may have 2 lectures by other faculty members and collaborators on some applications

Bibliography

- [DPV] S. Dasgupta, C. H. Papadimitriou, U. V. Vazirani : "Algorithms"
- [CLRS] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein: "Introduction to Algorithms"
- [KT] J. Kleinberg, E. Tardos: "Algorithm Design"
- and many resources on the WWW

Communication

- Office hours:
- Tuesdays: 12:00-14:00
- Fridays: 13:00-14:00
- You can always email me regarding questions
- If I do not reply within 3 days, send it again
- Eclass: Eı $\delta ı \alpha \alpha ́ ~ \Theta \varepsilon ́ \mu \alpha \tau \alpha ~ A \lambda ү o \rho i \theta \mu \omega v ~$
- Please check the announcements there at least once per week

Tutorials

- Teaching Assistant: Panagiotis Tsamopoulos
- Office hours for the TA to be announced soon
- Tutorials starting next week

Grading

Final exam

65\%
Midterm exam
20\%

Individual Assignments (x2)
15\%

Note: The midterm is used only if it helps your final grade, otherwise the final exam will count as 85%

Introductory concepts:

Polynomial, Pseudo-Polynomial and Exponential Algorithms

What are we interested in?

Problems to be solved by a machine: precisely defined; no ambiguities

- We want to transform appropriately the input data (problem instances) to output data
- Two subcategories are decision and optimization problems.

COMPUTATIONAL PROBLEM

A problem where we are given input instances and some computational question and we want to find an answer/output:
E.g., given a graph we wish to compute the set of vertices of odd degree, or to compute a set of k vertices where every pair of them is connected by an edge.

Examples of Problems

EXP(onentiation)

I: positive integers a,n
Q: calculate a^{n}

FIBONACCI NUMBERS

I: a positive integer n
Q: calculate the n-th Fibonacci number F_{n}

SUBSET SUM

I: a set $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ of n positive integers and an integer B
Q : is there a subset $\mathrm{A} \subseteq \mathrm{S}$ s.t. $\sum_{i \in A} a_{i}=B$?

SAT(isfiability)

I: a boolean formula ϕ
Q: Is ϕ satisfiable ?
(is there a value assignment to its variables making ϕ TRUE ? = truth assignment)

Algorithms

Three crucial questions about any algorithm for any problem:

1. Is it correct?

- Does it always terminate?
- Does it give a correct answer for any instance of the problem ?

2. How much time/space does it take, as a function of its input?

- "time" = number of steps / "space" = number of bits in memory
- "time" independent of language/implementation/machine
- We mostly focus on time, expressed as a function $T(n)$, where n is the size of the instance we try to solve
- Interested in asymptotic behavior of $T(n)$
- Notation: O, $\Omega, \Theta, o, \omega$

3. Can we do better ?

Time Complexity of an algorithm

There are many instances of the same size
How does the algorithm work over all these instances?

Best-case complexity

- The minimum number of steps taken on any instance of size n
- Not useful, too optimistic

Worst-case complexity

- The maximum number of steps taken on any instance of size n
- An upper bound on the complexity of the problem
- The most usual analysis

Average case complexity

- The average number of steps taken on any instance of size n
- Depends on the distribution of instances (use of probabilities)

Time Complexity of a problem and lower bounds

Complexity of a problem Π : $T_{\Pi}(n)$
The (worst case) complexity of the best (known) algorithm A

$$
T_{\Pi}(n)=\min _{A}\left\{T_{A}(n)\right\}
$$

Obtaining a lower bound on a problem's complexity $L_{\Pi}(n)$:

- By proving that there is no algorithm with $T_{A}(n)<L_{\Pi}(n)$
- Rare results (e.g., $\log (\mathrm{n}!)$ for sorting).

Optimal algorithm

- An algorithm A, for which $T_{A}(n)=L_{\Pi}(n)$
- For many problems we still do not know if we have found an optimal algorithm
- Even for well-studied problems, new improvements arise over the years

Algorithm Analysis

- Proof of correctness
- Some times for a well defined subset of input instances
- Evaluation of time complexity
- Average, worst, best case
- Appropriate solution depending on the application requirements

Benefits of theoretical analysis:

- Do not require experimental evaluation but only concrete description of the algorithm
- Results into general conclusions easy to verify, by considering all input instances, determining the time complexity as function of the input size

Mathematical background: discrete math (graphs, recurrence relations, combinatorics), mathematical logic, induction in all its forms (simple, strong, structural)

Asymptotic Notation

In pictures:

$f(n)=\Theta(g(n)) \quad f(n)=O(g(n)) \quad f(n)=\Omega(g(n))$

Asymptotic Notation

More formally:

- A function $f(n)$ is $O(g(n))$ if there exist positive constants c_{0} and n_{0} such that $f(n) \leq c_{0} g(n)$ for every $n \geq n_{0}$
- The constant c_{0} might be large (but still constant, independent of n)
- Examples:
- $2 n+10$ is $O(n)$. It suffices to set $c_{0}=3$ and $n_{0}=10$
- $4 n \operatorname{logn}+150 n+3000$ sqrt($(\operatorname{logn})=0(n \operatorname{logn})$. Set $\mathrm{c}_{0}=3154, \mathrm{n}_{0}=1$
- A function $f(n)$ is $\Omega(g(n))$ if there exist positive constants c_{0} and n_{0} such that $f(n) \geq c_{0} g(n)$ for every $n \geq n_{0}$
- A function $f(n)$ is $\Theta(g(n))$ if $f(n)$ is $O(g(n))$ and $f(n)$ is $\Omega(g(n))$

Growth of various functions

Size of instance and complexity

Consider the description of an instance (i.e., of all the parameters and constraints)
|II = length of encoded instance/input

|I| = \# of digits of the encoded input

Integer n: Decimal $\#$ bits $\quad:\left\lfloor\log _{10} n\right\rfloor+1$	$\begin{gathered} \text { Binary } \\ \left\lfloor\log _{2} n\right\rfloor+1 \end{gathered}$	Unary n

Size of instance and complexity

- We typically use the binary encoding
- but there are reasons to consider other encodings too in complexity theory
- Hence, unless otherwise stated, |I| = \# of bits of the encoded input
- Let also $N(I)=$ the largest number in the input
- Applicable only for problems that have numeric parameters in their input, like Knapsack
- Classification of algorithms
> Polynomial algorithms: running time $\mathrm{O}($ poly $(||\mid)$
$>$ Exponential algorithms: running time $\Theta(\exp (||\mid)$
$>$ Pseudo-Polynomial algorithms: $\Theta($ poly $(\mathrm{N}(\mathrm{I}))$, which in worst case is $\Theta(\exp (||\mid)$
- We can say that they are $O($ poly (|||)) if we consider I encoded in unary! (i.e, polynomial when $N(I)$ not too large)
- Example: Knapsack admits a dynamic programming algorithm with running time $O\left(n^{2} v_{\text {max }}\right)$, where $v_{\text {max }}$ is max value in the instance
- Only relevant for problems with numeric parameters!
- Not relevant for SAT

Recap from the Algorithms course: Analyzing Recurrence Relations

The Master Theorem

- How do we analyze recurrence relations?
- There are various methods
- The substitution method:
- Keep substituting until you guess the solution
- Use induction to prove it formally

Example: $T(n)=T(n-1)+n, T(1)=1$

- $T(n)=T(n-1)+n$
- $=(T(n-2)+n-1)+n$
- $=T(n-2)+n+n-1$
- $=(T(n-3)+n-2)+n+n-1$
- = ...
- $=n+n-1+n-2+\ldots+2+1=0\left(n^{2}\right)$

Is there a general result that could be applicable to the recurrence relations we will encounter?

The Master Theorem

If $T(n)=a T([n / b\rceil)+O\left(n^{d}\right)$ for some constants $a>0, b>1, d \geq 0$, then
$T(n)=\left\{\begin{array}{lll}\Theta\left(n^{d}\right), & \text { if } d>\log _{b} a & \left(b^{d}>a\right) \\ \Theta\left(n^{d} \log _{b} n\right), & \text { if } d=\log _{b} a & \left(b^{d}=a\right) \\ \Theta\left(n^{\log _{b} a}\right), & \text { if } d<\log _{b} a & \left(b^{d}<a\right)\end{array}\right.$

- Usually convenient to think of n as a power of b, so that n / b is an integer.
- In many cases of interest, $\mathrm{b}=2$
- More general versions of this theorem are available as well

The Master Theorem - Examples

- Naive integer multiplication (by divide and conquer)
$-T(n)=4 T(n / 2)+O(n)$
$-a=4, b=2, \log _{b} a=\log _{2} 4=2$
$-d=1<2=\log _{b} a$
- Case (iii) applies: $T(n)=\Theta\left(n^{\log _{b} a}\right)=\Theta\left(\mathrm{n}^{2}\right)$
- Karatsuba's algorithm for integer multiplication
$-T(n)=3 T(n / 2)+O(n)$
$-a=3, b=2, \log _{b} a=\log _{2} 3=1.59$
$-d=1<\log _{b} a$
- Case (iii) applies again: $T(n)=\Theta\left(n^{\log _{b} a}\right)=\Theta\left(\mathrm{n}^{1.59}\right)$

The Master Theorem - Examples

- $T(n)=5 T(n / 25)+O\left(n^{2}\right)$
- $a=5, b=25, \log _{b} a=\log _{25} 5=0.5$
- $d=2>0.5=\log _{b} a$
- case (i) applies: $T(n)=\Theta\left(n^{d}\right)=\Theta\left(\mathrm{n}^{2}\right)$
- $T(n)=T(2 n / 3)+O(1)$
- $a=1, b=3 / 2, \log _{b} a=\log _{3 / 2} 1=0$
- $d=0=\log _{b} a$
- case (ii) applies:
- $T(n)=9 T(n / 3)+O(n)$
- $a=9, b=3, \log _{b} a=\log _{3} 9=2$
- $\mathrm{d}=1<2=\log _{\mathrm{b}}$ a $T(n)=\Theta\left(n^{\log _{b} a}\right)=\Theta\left(\mathrm{n}^{2}\right)$
- case (iii) applies:

