
Special Topics on Algorithms
Fall 2023

Introduction 

Vangelis Markakis



Special Topics on Algorithms
• A continuation of the Algorithms course

• Emphasis on topics not covered during the Algorithms 
course and also on some more modern topics and 
applications

• You can take this course during your 3rd year or later

• Prerequisites:

– You have passed the Algorithms course

– You liked the Algorithms course

2



Content – Topics to be covered
• Introduction

– Some basic concepts

– Distinction between polynomial, pseudopolynomial and 
exponential time algorithms

• Problems on numbers

– Exponentiation/Fibonacci/Euclid’s Algorithm for GCD

– Modular arithmetic, prime numbers, primality testing

– Applications: public key cryptosystems, RSA and digital 
signatures

3



Content – Topics to be covered
• Average case analysis

– Sorting: Insertionsort, Quicksort

– Binary Search Trees, hashing

• Coping with NP-completeness – Approximation 
algorithms

– Greedy and other combinatorial algorithms

• Vertex Cover, Set Cover, Maximum Coverage, TSP 

• Partition, Knapsack, Scheduling, Bin Packing

• SAT

• Randomized Algorithms
– Max Cut, Min Cut, Max k-SAT

4



Content – Topics to be covered
• Flows and Matchings

– Fundamental algorithms for the Maximum Flow in a network 
graph and the Maximum Matching in bipartite graphs.  

• (Integer) Linear Programming

– Applications and LP based Approximation Algorithms

– LP duality

• Invited lectures

– We may have 2 lectures by other faculty members and 
collaborators on some applications

5



• [DPV]  S. Dasgupta, C. H. Papadimitriou, U. V. Vazirani : 
“Algorithms”

• [CLRS]  T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein:  
“Introduction to Algorithms”

• [KT] J. Kleinberg, E. Tardos: “Algorithm Design”

• …

• and many resources on the WWW 

Bibliography

6



• Office hours:
– Tuesdays: 12:00 – 14:00
– Fridays: 13:00 – 14:00

• You can always email me regarding questions
– If I do not reply within 3 days, send it again

• Eclass: Ειδικά Θέματα Αλγορίθμων
– Please check the announcements there at least once per 

week

Communication

7



• Teaching Assistant: Panagiotis Tsamopoulos

• Office hours for the TA to be announced soon

• Tutorials starting next week

Tutorials

8



Final exam 65%

Midterm exam   20% 

Individual Assignments (x2) 15%

Note: The midterm is used only if it helps your final
grade, otherwise the final exam will count as 85%

Date of midterm: towards end of November

Grading

9



Introductory concepts:
Polynomial, Pseudo-Polynomial and 

Exponential Algorithms

10



What are we interested in?

COMPUTATIONAL PROBLEM
A problem where we are given input instances and some computational 
question and we want to find an answer/output:
E.g., given a graph we wish to compute the set of vertices of 
odd degree, or to compute a set of k vertices where every pair of them is
connected by an edge.

Problems to be solved by a machine: precisely defined; no ambiguities
• We want to transform appropriately the input data (problem instances) to 

output data
• Two subcategories are decision and optimization problems. 

11



Examples of Problems
EXP(onentiation) FIBONACCI NUMBERS 
I: positive integers a,n I: a positive integer n
Q: calculate an Q: calculate the n-th Fibonacci number Fn

SUBSET SUM
I: a set S={a1, a2, ..., an} of n positive integers and an integer B
Q: is there a subset A Í S  s. t. 

SAT(isfiability) 
I: a boolean formula  φ
Q: Is φ satisfiable ?  

(is there a value assignment to its variables making φ TRUE ?
= truth assignment ) 

? Ba
Ai i =åÎ

12



Algorithms
Three crucial questions about any algorithm for any problem:

1. Is it correct ?
• Does it always terminate?
• Does it give a correct answer for any instance of the problem ?

2. How much time/space does it take, as a function of its 
input?
• “time” = number of steps / “space” = number of bits in memory
• “time” independent of language/implementation/machine
• We mostly focus on time, expressed as a function T(n), where n is 

the size of the instance we try to solve
• Interested in asymptotic behavior of T(n)
• Notation: O, Ω, Θ, ο, ω

3. Can we do better ?

13



Time Complexity of an algorithm
There are many instances of the same size 
How does the algorithm work over all these instances?

Best-case complexity
• The minimum number of steps taken on any instance of size n
• Not useful, too optimistic

Worst-case complexity
• The maximum number of steps taken on any instance of size n
• An upper bound on the complexity of the problem
• The most usual analysis

Average case complexity
• The average number of steps taken on any instance of size n
• Depends on the distribution of instances (use of probabilities)

14



TΠ(n) =minA TA (n){ }

Complexity of a problem Π: TΠ(n)
The (worst case) complexity of the best (known) algorithm A

Obtaining a lower bound on a problem’s complexity LΠ(n):
• By proving that there is no algorithm with TA(n) < LΠ(n)
• Rare results (e.g., log(n!) for sorting).

Optimal algorithm
• An algorithm A, for which TA(n) = LΠ(n)
• For many problems we still do not know if we have found an 

optimal algorithm
• Even for well-studied problems, new improvements arise over 

the years

Time Complexity of a problem and 
lower bounds

15



• Proof of correctness
– Some times for a well defined subset of input instances

• Evaluation of time complexity
– Average, worst, best case

• Appropriate solution depending on the application requirements

Benefits of theoretical analysis:
• Do not require experimental evaluation but only concrete 

description of the algorithm
• Results into general conclusions easy to verify, by considering all 

input instances, determining the time complexity as function of the 
input size

Mathematical background: discrete math (graphs, recurrence relations, 
combinatorics), mathematical logic, induction in all its forms (simple, strong,
structural)

Algorithm Analysis

17



Asymptotic Notation

))(()(        ))(()(     ))(()( ngnfngOnfngnf W==Q=

In pictures:

17



Asymptotic Notation
More formally:
• A function f(n) is O(g(n)) if there exist positive constants c0 and
n0 such that f(n) ≤ c0g(n) for every n ≥ n0

– The constant c0 might be large (but still constant, independent of n)

– Examples: 
• 2n + 10 is O(n). It suffices to set c0 = 3 and n0 = 10
• 4nlogn + 150n + 3000sqrt(logn) = O(nlogn). Set c0 = 3154, n0 = 1

• A function f(n) is Ω(g(n)) if there exist positive constants c0 and
n0 such that f(n) ≥ c0g(n) for every n ≥ n0

• A function f(n) is Θ(g(n)) if f(n) is O(g(n)) and f(n) is Ω(g(n))

18



Growth of various functions

928n

5n3

!!
"#$%!"#!$%&!'

input length

time

19



Size of instance and complexity 

ë û 1log10 +n

20

Consider the description of an instance (i.e., of all the parameters and 
constraints) 

|I| = length of encoded instance/input   

Instance encoded instance I

|I| = # of digits of the encoded input

Integer n:      Decimal                 Binary            Unary
# bits :   në û 1log2 +n

encoding
e.g. in decimal / binary / unary



Size of instance and complexity 

21

• We typically use the binary encoding
– but there are reasons to consider other encodings too in complexity theory

• Hence, unless otherwise stated, |I| = # of bits of the encoded input
• Let also N(I) = the largest number in the input

– Applicable only for problems that have numeric parameters in their input, like Knapsack

• Classification of algorithms

Ø Polynomial algorithms:  running time O(poly(|I|) 
Ø Exponential algorithms:  running time Θ(exp(|I|)
Ø Pseudo-Polynomial algorithms:  Θ(poly(N(I)), which in worst case is 

Θ(exp(|I|) 
• We can say that they are O(poly(|I|)) if we consider I encoded in 

unary ! (i.e, polynomial when N(I) not too large)
• Example: Knapsack admits a dynamic programming algorithm with 

running time O(n2 vmax), where vmax is max value in the instance
• Only relevant for problems with numeric parameters!
• Not relevant for SAT



Recap from the Algorithms course:
Analyzing Recurrence 

Relations 



23

The Master Theorem
• How do we analyze recurrence relations?
• There are various methods
• The substitution method:
• Keep substituting until you guess the solution
• Use induction to prove it formally

Is there a general result that could be applicable to the 
recurrence relations we will encounter?

Example: T(n) = T(n-1) + n, T(1) = 1
• T(n) = T(n-1) + n
• = (T(n-2) + n-1) + n
• = T(n-2) + n + n-1
• = (T(n-3) + n-2) + n + n-1
• = ...
• = n + n-1 + n-2 +... + 2 + 1 = O(n2)



ï
î

ï
í

ì

<<Q
==Q
>>Q

=
)(   log  if),(
)(   log  if),log(
)(    log  if),(

)(
log abadn

abadnn
abadn

nT
d

b
a

d
bb

d

d
b

d

b

The Master Theorem

If T(n) = aT(én/bù) + O(nd) for some constants a > 0, b > 1, d ≥ 0, 
then

• Usually convenient to think of n as a power of b, so that n/b 
is an integer. 

• In many cases of interest, b = 2
• More general versions of this theorem are available as well

24



• Naive integer multiplication (by divide and conquer)
– T(n) = 4T(n/2) + O(n)
– a = 4,  b = 2, logb a = log2 4 = 2
– d = 1 < 2 = logb a
– Case (iii) applies: 

• Karatsuba’s algorithm for integer multiplication
– T(n) = 3T(n/2) + O(n)
– a = 3,  b = 2, logb a = log2 3 = 1.59
– d = 1 < logb a
– Case (iii) applies again: 

( ) )Θ(n  )( 2log =Q= abnnT

The Master Theorem - Examples

( ) )(n  )( 1.59log Q=Q= abnnT

25



• T(n) = 5T(n/25) + O(n2)
– a = 5,  b = 25, logb a = log255 = 0.5
– d = 2 > 0.5 = logb  a
– case (i) applies: 

• T(n) = T(2n/3) + O(1)
– a = 1,  b = 3/2, logb a = log3/2 1 = 0
– d = 0 = logb  a
– case (ii) applies: 

• T(n) = 9T(n/3) + O(n)
– a = 9,  b = 3, logb a = log3 9 = 2
– d = 1 < 2 = logb  a
– case (iii) applies: 

( ) )Θ(n  )( 2log =Q= abnnT

( ) Θ(logn)  log)( 2/3
0 =Q= nnnT

( ) )Θ(n  )( 2=Q= dnnT

The Master Theorem - Examples

26


