
Ίων Ανδρουτσόπουλος
http://www.aueb.gr/users/ion/

Τεχνητή Νοημοσύνη

23η διάλεξη (2025-26)

1

http://www.aueb.gr/users/ion/

Οι διαφάνειες αυτής της διάλεξης βασίζονται στα βιβλία Τεχνητή
Νοημοσύνη των Βλαχάβα κ.ά., 3η έκδοση, Β. Γκιούρδας

Εκδοτική, 2006 και Artificial Intelligence – A Modern Approach
των S. Russel και P. Norvig, 2η και 4η έκδοση, Prentice Hall,
2003 και 2020. Τα σχήματα των διαφανειών προέρχονται από

αντίστοιχες διαφάνειες των δύο βιβλίων.

2

Τι θα ακούσετε σήμερα
• Εξαγωγή συμπερασμάτων προς τα εμπρός και προς

τα πίσω με προτάσεις Horn πρωτοβάθμιας
κατηγορηματικής λογικής.

• Λογικός προγραμματισμός και βασικές αρχές
λειτουργίας Prolog.

3

Προτάσεις Horn στην ΠΚΛ
• Όπως και στην ΠΛ, διαζεύξεις σαν της μορφής CNF

αλλά που περιέχουν το πολύ ένα «θετικό» ατομικό τύπο.
• Εδώ ασχολούμαστε μόνο με «οριστικές» προτάσεις,

δηλ. προτάσεις Horn με ακριβώς ένα «θετικό» ατομικό
τύπο («definite clauses»):

 ((King(x) Ù Greedy(x)) Þ Evil(x)) º (παράδειγμα «κανόνα»)
(¬King(x) Ú ¬Greedy(x) Ú Evil(x))

 Greedy(y), King(John) (παραδείγματα «γεγονότων», «facts»)

• Θεωρούμε ότι για όλες τις μεταβλητές υπονοούνται
καθολικοί ποσοδείκτες στην αρχή των τύπων.
– Αντί για υπαρξιακούς ποσοδείκτες, συναρτήσεις Skolem.

• Ευκολότερη εξαγωγή συμπερασμάτων από ό,τι αν
χρησιμοποιούμε ολόκληρη την ΠΚΛ.
– Εξαγωγή συμπερασμάτων προς τα εμπρός ή πίσω.

4

ΒΓ σε μορφή προτάσεων Horn
• Είναι έγκλημα να πουλήσει Αμερικανός όπλα σε εχθρική χώρα:

((American(x) Ù Weapon(y) Ù Sells(x, y, z) Ù Hostile(z)) Þ Criminal(x))
• Η Νόνο έχει τουλάχιστον έναν πύραυλο.

Ας χρησιμοποιήσουμε τη σταθερά M1 για να αναφερθούμε σε αυτόν.
Missile(M1) και Owns(Nono, M1)

• Όλους τους πυραύλους της η Νόνο τους αγόρασε από τον West.
((Missile(x) Ù Owns(Nono, x)) Þ Sells(West, x, Nono))

• Οι πύραυλοι είναι όπλα.
(Missile(x) Þ Weapon(x))

• Οι χώρες που είναι εχθροί της Αμερικής είναι εχθρικές.
Το δικαστήριο είναι αμερικανικό…
(Enemy(x, America) Þ Hostile(x))

• Ο West είναι Αμερικανός.
American(West)

• Η Nono είναι εχθρός της Αμερικής.
Enemy(Nono, America) 5

Εξαγωγή συμπεράσματος προς τα εμπρός

προς τα
εμπρός

Αυτό που θέλουμε να
αποδείξουμε.

Τα γεγονότα που έχουμε στη ΒΓ.

6

Εξαγωγή συμπεράσματος προς τα εμπρός

((Missile(x1) Ù Owns(Nono, x1)) Þ
Sells(West, x1, Nono)) με {x1/M1}

Όποτε χρησιμοποιούμε έναν κανόνα, του αλλάζουμε τις μεταβλητές με νέες.

προς τα
εμπρός

Κανόνας της ΒΓ, του οποίου
οι υποθέσεις ταιριάζουν με
γεγονότα που γνωρίζουμε.

7

(Enemy(x2, America) Þ Hostile(x2))
με {x2/Nono}

Όποτε χρησιμοποιούμε έναν κανόνα, του αλλάζουμε τις μεταβλητές με νέες.

προς τα
εμπρός

Εξαγωγή συμπεράσματος προς τα εμπρός

Κανόνας της ΒΓ, του οποίου
οι υποθέσεις ταιριάζουν με
γεγονότα που γνωρίζουμε.

8

(Missile(x3) Þ Weapon(x3)), με
{x3/M1}

προς τα
εμπρός

Εξαγωγή συμπεράσματος προς τα εμπρός

9

προς τα
εμπρός

((American(x4) Ù Weapon(y1) Ù
Sells(x4, y1, z1) Ù Hostile(z1)) Þ
Criminal(x4)) με {x4/West, y1/M1,
z1/Nono}

Εξαγωγή συμπεράσματος προς τα εμπρός

10

συνάρτηση fol-fc-ask(ΒΓ, α) επιστρέφει ενοποιητή ή αποτυχία
είσοδοι: ΒΓ: η βάση γνώσης, σύνολο από οριστικές προτάσεις ΠΚΛ
 α: η ερώτηση, ατομικός τύπος ΠΚΛ
βρόχος
 νέο ¬ {}
 για κάθε τύπο τ Î ΒΓ με μορφή
 ((α1 Ù α2 Ù ... Ù αn) Þ β) ¬ new-vars(τ)
 για κάθε θ με unify(α1 Ù α2 Ù ... Ù αn, α1' Ù α2' Ù ... Ù αn') = θ ¹ αποτυχία
 όπου α1', α2', ... , αn' Î ΒΓ
 β' ¬ subst(θ, β)
 αν το β' δεν είναι «αντίγραφο» τύπου της ΒΓ ή του νέο τότε
 νέο ¬ νέο È {β'}
 θ' ¬ unify(β', α)
 αν το θ' δεν είναι αποτυχία τότε επίστρεψε θ'
 ΒΓ ¬ ΒΓ È νέο
μέχρι το νέο να είναι κενό
επίστρεψε αποτυχία

Π.χ. το Likes(x, Mary) είναι «αντίγραφο» του
Likes(y, Mary): σε όλους αρέσει η Μαρία.

Κάθε φορά νέες μεταβλητές. Π.χ. (Missile(x1) Þ
Weapon(x1)), (Missile(x2) Þ Weapon(x2)), ...

Αν ενοποιείται με το στόχο, τελειώσαμε.

Εξαγωγή συμπεράσματος προς τα εμπρός

Αλλάζουμε και στα 𝛼!’ μεταβλητές.

11

Ερωτήσεις προς τη ΒΓ
• Μπορούμε να ρωτήσουμε αν έπεται ταυτολογικά από τη ΒΓ

ένας ατομικός τύπος χωρίς μεταβλητές.
– Π.χ. ερώτημα: Criminal(West). Επιστρέφει ενοποιητή (όχι

αποτυχία), επομένως απαντά «ναι».
• Μπορούμε να ζητήσουμε ένα συδυασμό τιμών των

μεταβλητών ενός τύπου-ερωτήματος, για τους οποίους το
ερώτημα έπεται ταυτολογικά από τη ΒΓ.
– Π.χ. ερώτημα: Criminal(x), απάντηση: {x/West}.
– Στο παράδειγμα θα παραχθεί Criminal(West) και θα

ενοποιηθεί με το στόχο Criminal(x) επιστρέφοντας {x/West}.
• Μπορούμε να τροποποιήσουμε τον αλγόριθμο, ώστε να

επιστρέφει όλους τους συνδυασμούς τιμών μεταβλητών για
τους οποίους το ερώτημα έπεται ταυτολογικά από τη ΒΓ.
– Π.χ. σε μια άλλη ΒΓ, ερώτημα: Likes(x, y), απάντηση:

{x/John, y/Mary}, {x/George, y/Anna}, ...

12

Χαρακτηριστικά του fol-fc-ask
• Ορθός: Εφαρμόζουμε ουσιαστικά μόνο Modus Ponens.

– Για την ακρίβεια, εφαρμόζουμε «γενικευμένο Modus Ponens»,
που συμπεριλαμβάνει ενοποίηση των συνθηκών κανόνα
(τύπου της μορφής …⇒…) με γεγονότα της ΒΓ.

• Πλήρης: αν ΒΓ╞ α, τότε απαντά ΒΓ├i α (για ατομικό α).
– Η απόδειξη παραλείπεται.
– Για όσους ανησυχούν: Αν έχουμε κανόνες όπως (Human(x) Þ

Human(Father(x))), δεν κινδυνεύουμε να παγιδευτούμε σε άπειρο κλαδί
(π.χ. Human(John), Human(Father(John)), ...), κάτι που ενδεχομένως θα μας
εμπόδιζε να φτάσουμε στο α, γιατί πρώτα παράγουμε όλα τα δυνατά
συμπεράσματα από την υπάρχουσα ΒΓ (τα βάζουμε στο «νέο») και μετά τα
προσθέτουμε στη ΒΓ και βλέπουμε τι νέα συμπεράσματα προκύπτουν.

13

Χαρακτηριστικά του fol-fc-ask
• Δεν τερματίζει πάντα, αν ΒΓ╞ α.

– Αν υπάρχουν σύμβολα συναρτήσεων, ίσως μπορούν να
παραχθούν άπειρα συμπεράσματα, οπότε θα παράγει επ'
άπειρον συμπεράσματα που δεν θα είναι, όμως, ποτέ το α.

– Π.χ. έστω ότι το α είναι Human(Mary). Αν έχουμε στη ΒΓ
μόνο (Human(x) Þ Human(Father(x))) και Human(John),
μπορούμε να συμπεράνουμε: Human(Father(John)),
Human(Father(Father(John))), ... χωρίς να παραγάγουμε
ποτέ το α.

– Όπως και με ολόκληρη την ΠΚΛ, η εξαγωγή
συμπερασμάτων με προτάσεις Horn είναι ημι-αποκρίσιμο
πρόβλημα.

– Ενώ στην Datalog, όπου όλοι οι τύποι είναι οριστικές
προτάσεις και (μεταξύ άλλων περιορισμών) δεν επιτρέπονται
σύμβολα συναρτήσεων, το πρόβλημα είναι αποκρίσιμο.

14

Χαρακτηριστικά του fol-fc-ask
• Χρονική πολυπλοκότητα:

– Ο αλγόριθμος περιλαμβάνει έλεγχο ταιριάσματος των
συνθηκών ενός κανόνα με τα γεγονότα της ΒΓ.

– Πρόβλημα ταιριάσματος προτύπων, που είναι NP-hard.
– Αλλά στην πράξη ο αριθμός των συνθηκών των κανόνων και ο

αριθμός των ορισμάτων των κατηγορημάτων είναι μικροί,
οπότε δεν μας απασχολεί το ταίριασμα προτύπων.

– Πολυωνυμική πολυπλοκότητα ως προς τον αριθμό
γεγονότων χωρίς μεταβλητές (ground facts) της ΒΓ.

• Παράγονται και πολλά άσχετα συμπεράσματα.
– Μπορεί να αντιμετωπιστεί μερικώς ενσωματώνοντας

προβλέψεις για το τι είναι σχετικό με το στόχο. Ουσιαστικά
συνδυασμός με απόδειξη κατά την προς τα πίσω κατεύθυνση.

15

Εξαγωγή συμπεράσματος προς τα πίσω

• Θέλουμε να αποδείξουμε ότι Criminal(West).
• Με {x/West}, ο στόχος Criminal(West) ενοποιείται με την κεφαλή

του ((American(x) Ù Weapon(y) Ù Sells(x, y, z) Ù Hostile(z)) Þ
Criminal(x)) και λαμβάνουμε ως συμπέρασμα το ζητούμενο

• Αρκεί να αποδείξουμε τα American(x), Weapon(y), Sells(x, y, z)
και Hostile(z) με {x/West} για κάποιες τιμές των y, z.

προς τα πίσω

16

• Με {x/West}, ο νέος στόχος American(x) είναι γεγονός της ΒΓ.
• Απομένει να αποδείξουμε τα Weapon(y), Sells(x, y, z) και

Hostile(z) με {x/West} για κάποιες τιμές των y, z.

Εξαγωγή συμπεράσματος προς τα πίσω
προς τα πίσω

17

18

• Το Weapon(y) ενοποιείται με την κεφαλή του (Missile(y) Þ
Weapon(y)).

– Στην πραγματικότητα αλλάζουμε τις μεταβλητές των κανόνων κάθε φορά που τους
χρησιμοποιούμε. Για απλούστευση εδώ το αγνοούμε αυτό.

• Άρα για να αποδείξουμε Weapon(y), αρκεί να αποδείξουμε
Missile(y) με {x/West} για κάποια τιμή του y.

Εξαγωγή συμπεράσματος προς τα πίσω
προς τα πίσω

18

• Με {x/West, y/M1}, το Missile(y) είναι γεγονός της ΒΓ.
• Απομένει να αποδείξουμε τα Sells(x, y, z) και Hostile(z) με

{x/West, y/M1} για κάποια τιμή του z.

Εξαγωγή συμπεράσματος προς τα πίσω
προς τα πίσω

19

20

• Με {x/West, y/M1, z/Nono}, το Sells(x, y, z) ενοποιείται με την
κεφαλή του ((Missile(y) Ù Owns(Nono, y)) Þ Sells(West, y, Nono)).

• Αρκεί να αποδείξουμε τα Missile(y), Owns(Nono, y), Hostile(z) με
{x/West, y/M1, z/Nono}.

Εξαγωγή συμπεράσματος προς τα πίσω
προς τα πίσω

20

• Με {x/West, y/M1, z/Nono}, τα Missile(y), Owns(Nono, y) είναι
γεγονότα της ΒΓ.

• Ομοίως για το Hostile(Nono).

Εξαγωγή συμπεράσματος προς τα πίσω
προς τα πίσω

21

συνάρτηση fol-bc-ask(ΒΓ, στόχοι, θ) επιστρέφει σύνολο ενοποιητών
είσοδοι: ΒΓ: η βάση γνώσης σε μορφή οριστικών προτάσεων ΠΚΛ
 στόχοι: λίστα ατομικών τύπων (χωρίς ισότητες), παριστάνει σύζευξη
 θ: ο ενοποιητής ως τώρα, αρχικά {}
τοπικές μεταβλητές: απαντήσεις: αρχικά κενό σύνολο ενοποιητών (αποτυχία)
αν στόχοι = = [] τότε επίστρεψε {θ}
β' ¬ subst(θ, first(στόχοι))
για κάθε τ Î ΒΓ με ((α1 Ù α2 Ù ... Ù αn) Þ β) ¬ new-vars(τ) και θ' ¬ unify(β, β')
 νέοι-στόχοι ¬ [α1, α2, ... , αn | rest(στόχοι)]
 απαντήσεις ¬ απαντήσεις È fol-bc-ask(ΒΓ, νέοι-στόχοι, compose(θ', θ))
επίστρεψε απαντήσεις

Αν το β' ενοποιείται με τις κεφαλές β πολλών κανόνων,
θα έχουμε πολλές απαντήσεις-ενοποιητές, μία από κάθε
κανόνα. Επιστρέφουμε τελικά ένα σύνολο που περιέχει

όλες τις απαντήσεις (ένα σύνολο ενοποιητών).

Εξαγωγή συμπεράσματος προς τα πίσω

22

Λογικός προγραμματισμός
• Παριστάνουμε σε λογική τη γνώση του κόσμου ενός

προβλήματος. Εύρεση λύσης με αλγορίθμους εξαγωγής
συμπερασμάτων.

• Prolog: χρησιμοποιεί οριστικές προτάσεις (definite clauses) ΠΚΛ.
criminal(X) :- american(X), weapon(Y), sells(X,Y,Z), hostile(Z).
Σημαίνει: Criminal(x) Ü (American(x) Ù Weapon(y) Ù
Sells(x, y, z) Ù Hostile(z))

• Πρόγραμμα Prolog: συλλογή (σύζευξη) οριστικών προτάσεων.
append([], Y, Y). % «πρόγραμμα» συνένωσης λιστών.
append([A|X], Y, [A|Z]):- append(X, Y, Z).
Το [First|Rest] παριστάνει μια λίστα με πρώτο στοιχείο First και
υπόλοιπο Rest. Το Rest είναι λίστα.

23

Ερωτήσεις προς την Prolog
• ?- append([a], [b, c], [a, b, c]).

yes
• ?- append([a], [b, c], Result).

Result = [a, b, c]
• ?- append(A, B, [a, b, c]).

A = [], B = [a, b, c] ;
A = [a], B = [b, c] ;
A = [a, b], B = [c] ;
A = [a, b, c], B = [] ;
no

• Αναζητεί αποδείξεις κατά την ανάστροφη φορά, σε γενικές
γραμμές όπως ο fol-bc-ask.

– Άρνηση ως αποτυχία: αν δεν μπορεί να αποδείξει κάτι (ΒΓ├i α) , το
θεωρεί ψευδές (ΒΓ├i ¬α).

– Το «=» παριστάνει ενοποίηση.
– Η ενοποίηση γίνεται χωρίς έλεγχο occur-check (βλ. unify-var).

Με «;» ζητάμε άλλη λύση.

24

Άλλο παράδειγμα Prolog
• ?- member(b, [a, b, c]).

Yes
• ?- member(X, [a, b, c]).

X = a ;
X = b ;
X = c ;
no

• Ορισμός του κατηγορήματος member:
member(X, [X|Rest]).
member(X, [Head|Rest]):- member(X, Rest).

• Ή πιο σύντομα (αποφεύγοντας και προειδοποιήσεις ότι π.χ. η μεταβλητή
Rest δε χρησιμοποιείται πουθενά αλλού στον 1ο κανόνα):
member(X, [X|_]).
member(X, [_|Rest]):- member(X, Rest).

Ανώνυμες μεταβλητές.
25

Παράδειγμα προγράμματος Prolog

• H Prolog προχωρά όπως ο fol-bc-ask, δοκιμάζοντας πρώτα
τους κανόνες που βρίσκονται ψηλότερα στο αρχείο του
προγράμματος, μέχρι να βρει μια απόδειξη.

• Ερώτηση: path(a, c). Απάντηση: ναι.

link(a, b).
link(b, c).
path(X, Z):- link(X, Z).
path(X, Z):- path(X, Y), link(Y, Z).

26

27

Άπειρα μονοπάτια στην Prolog

• Ερώτηση: path(a, c). Δεν απαντά ποτέ.
– Παγιδεύεται σε άπειρο μονοπάτι.
– ΒΓ├i path(a, c), παρ’ όλο που ΒΓ╞ path(a, c).
– Μη πλήρης, ακόμα και χωρίς σύμβολα συναρτήσεων.
– Ενώ ο fol-fc-ask είναι πλήρης (για συμπεράσματα ατομικούς

τύπους) και χωρίς σύμβολα συναρτήσεων τερματίζει πάντα.

link(a, b).
link(b, c).
path(X, Z):- path(X, Y), link(Y, Z).
path(X, Z):- link(X, Z).

27

Δοκιμάστε την Prolog...
• Θα χρειαστείτε μεταγλωττιστή/διερμηνέα Prolog.

– Π.χ. SWI-Prolog (βλ. http://www.swi-prolog.org/).
• Φόρτωμα αρχείων με κώδικα σε Prolog:

– Συνήθως έχουν κατάληξη «.pl».
– Γράψτε π.χ. σε ένα αρχείο το «πρόγραμμα» append.
– consult(…) στη γραμμή εντολών της Prolog.
– Σε Windows: διπλό κλικ στο αρχείο .pl της γραμματικής.

• Ερωτήσεις προς την Prolog.
– Μετά το φόρτωμα.
– Στη γραμμή εντολών της Prolog, όπως στα προηγούμενα

παραδείγματα.

28

Η Prolog είναι εντός εξεταστέας ύλης αλλά απαιτείται να μπορείτε να γράψετε
μόνο πολύ απλά προγράμματα, σαν των ασκήσεων μελέτης.

http://www.swi-prolog.org/
http://www.swi-prolog.org/
http://www.swi-prolog.org/

• Russel & Norvig (4η έκδοση): ενότητες 9.3, 9.4.
o Χωρίς τις υπο-ενότητες 9.3.3 («αποδοτική προς τα εμπρός αλυσίδα

εκτέλεσης», 9.4.4 («σημασιολογία βάσεων δεδομένων της Prolog»), 9.4.5
(«λογικός προγραμματισμός με περιορισμούς».

o Όσοι ενδιαφέρονται μπορούν να διαβάσουν προαιρετικά (εκτός εξεταστέας
ύλης) και τις ενότητες του κεφ. 9 που εξαιρέθηκαν.

• Βλαχάβας κ.ά: Απλή ανάγνωση των κεφ. 11, κεφ. 21 (εκτός της
ενότητας 21.2.2).
o Όσοι ενδιαφέρονται μπορούν να διαβάσουν προαιρετικά (εκτός εξεταστέας

ύλης) και τις ενότητες των κεφ. 11, 21 που εξαιρέθηκαν, καθώς και το
κεφάλαιο 23.

Βιβλιογραφία

29

• Για μια εκτενέστερη εισαγωγή στην Prolog, προτείνεται
το βιβλίο «The Art of Prolog» των L. Sterling και E.
Shapiro, 2η έκδοση, MIT Press, 1993.

– Υπάρχει στη βιβλιοθήκη του ΟΠΑ, μαζί με πολλά άλλα βιβλία
για προγραμματισμό σε Prolog.

– Για τις εξετάσεις χρειάζεται να ξέρετε μόνο τα στοιχεία της
Prolog που αναφέρουν οι διαφάνειες και οι ασκήσεις μελέτης.

Βιβλιογραφία

30

