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Reminder: stacked CNNs for classification/regression
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4th convolution layer (𝑚 filters)
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Feature vector sent to a 
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(e.g., MLP). 
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Residual (shortcut) connection, needed when stacking many CNNs (or RNNs).
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Reminder: stacked CNNs for token classification
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Predicted labels of words
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Transformers for token classification
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To produce the revised embedding for the 
i-th word of a text, we sum all the 

original embeddings of the words of the 
text, but weighted by attention scores. 
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Person 0.1
Location 0.8

Organization 0.05
Other 0.05
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Transformers for token classification
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dense + 
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Person 0.75
Location 0.05
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Location 0.05
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… …

Compare to the correct 
predictions and adjust the 

weights of the entire neural 
net, including the bottom 
word (token) embeddings, 

which are randomly 
initialized.

To produce the revised embedding for the 
i-th word of a text, we sum all the 

original embeddings of the words of the 
text, but weighted by attention scores. 
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Transformers for text classification
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global max pooling 
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Vector representing the entire 
text. We pass it through a dense 
layer and softmax (or MLP) to 
obtain a probability per class.
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Query-Key-Value self-attention
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Figures from J. Alammar’s “The Illustrated Transformer” 
(https://jalammar.github.io/illustrated-transformer/). Transformers paper: Vaswani et al., 

“Attention is All You Need”, 2017 (https://arxiv.org/abs/1706.03762).

Stacking Transformer Encoders
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What we called ℎ!
(!) What we called ℎ%

(!)

https://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/1706.03762


Query-Key-Value attention via matrices
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Then MLP(𝑧-) = ℎ-
(&)

𝑑* is the dimensionality 
of the K and Q vectors.

Figures from J. Alammar’s “The Illustrated Transformer” 
(https://jalammar.github.io/illustrated-transformer/). Transformers paper: Vaswani et al., 

“Attention is All You Need”, 2017 (https://arxiv.org/abs/1706.03762).

Dropout also applied to the attention 
scores (after the softmax).

Optional material

https://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/1706.03762


Multiple attention heads
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Figures from J. Alammar’s “The Illustrated Transformer” 
(https://jalammar.github.io/illustrated-transformer/). Transformers paper: Vaswani et al., 

“Attention is All You Need”, 2017 (https://arxiv.org/abs/1706.03762).

𝑊! useful even if the concatenated 
𝑍!, … , 𝑍" already have the right 

dimensions, to allow combinations 
of features from different heads.

Optional material

https://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/1706.03762


Positional encodings

12

Positional encodings needed to capture the word order/positions:
• Without them, Transformers are unaware of word order.
• Sinusoid functions used to produce them in the original paper.
• But can also be position embeddings learned during training.

o Embedding of position 1, embedding of position 2 etc.

Figures from J. Alammar’s “The Illustrated Transformer” 
(https://jalammar.github.io/illustrated-transformer/). Transformers paper: Vaswani et al., 

“Attention is All You Need”, 2017 (https://arxiv.org/abs/1706.03762).

https://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/1706.03762


Complete Transformer encoder block

13

“Add”: residual 
connections

Layer Normalization (see 
Part B5). Here, we subtract 
from each cell (𝑋 + 𝑍)+,- 

of (X+Z) the mean 𝜇+ of its 
row, divide by the std. dev 
𝜎+ of the row, and multiply 

by a learned column-
specific parameter 𝑔-. 

“Feed Forward”: the same 
MLP at all word positions

Figures from J. Alammar’s “The Illustrated Transformer” 
(https://jalammar.github.io/illustrated-transformer/). Transformers paper: Vaswani et al., 

“Attention is All You Need”, 2017 (https://arxiv.org/abs/1706.03762).

Dropout applied to the output of 
the self-attention and feed forward 

sublayers (before adding the 
residual and normalizing), inside 

the feed forward net, and after 
adding positional embeddings.

https://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/1706.03762


Figures from J. Alammar’s “The Illustrated BERT, ELMo, and co.” 
(http://jalammar.github.io/illustrated-bert/). BERT paper: Devlin et al., “BERT: Pre-training 

of Deep Bidirectional Transformers for Language Understanding”, 2018  
(https://arxiv.org/abs/1810.04805). 

BERT – Pretraining to predict masked words

14

BERT uses stacked 
Transformer encoders 

(instead of RNNs or 
CNNs) to turn each 
sequence of input 
embeddings to a 

sequence of context 
aware embeddings. 

It is pre-trained on a 
(huge) corpus to predict 
masked input words.

http://jalammar.github.io/illustrated-bert/
https://arxiv.org/abs/1810.04805


BERT – Pretraining to predict the next sentence
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It is also pre-trained on a (huge) corpus to 
predict if a sentence is indeed the next one 

or a random sentence.

In this case, we feed the 
context-aware 

embedding of the 
[CLS] token to a binary 

classifier (MLP).

Figures from J. Alammar’s “The Illustrated BERT, ELMo, and co.” 
(http://jalammar.github.io/illustrated-bert/). BERT paper: Devlin et al., “BERT: Pre-training 

of Deep Bidirectional Transformers for Language Understanding”, 2018  
(https://arxiv.org/abs/1810.04805). 

http://jalammar.github.io/illustrated-bert/
https://arxiv.org/abs/1810.04805


Figure from Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers for 
Language Understanding”, 2018 (https://arxiv.org/abs/1810.04805).

BERT – Fine-tuning for sentence classification
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We feed the context-aware 
embedding of the [CLS] token 

of each sentence to a task-
specific classifier (e.g., MLP) 

that classifies the sentence (e.g., 
Positive, Neutral, Negative etc.)

Starting from the pre-trained 
BERT, we jointly train BERT 
(further) and the task-specific 

classifier on (possibly few) task-
specific training examples (e.g., 

tweets + opinion labels).

https://arxiv.org/abs/1810.04805


BERT – Fine-tuning for token classification
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We feed the context-aware 
embeddings of the sentence’s 

words to a classifier (e.g., MLP) 
that classifies them as B-Per, I-
Per, B-Org, I-Org, …,  Other.

Starting from the pre-trained 
BERT, we jointly train BERT 
(further) and the task-specific 

classifier on (possibly few) task-
specific training examples 

(manually labeled sentences).

Figure from Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers for 
Language Understanding”, 2018 (https://arxiv.org/abs/1810.04805).

https://arxiv.org/abs/1810.04805


BERT – Fine-tuning for textual entailment
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We feed the context-aware 
embedding of the [CLS] token of 

each sentence pair to a task-
specific classifier (e.g., MLP) that 
classifies the pair as Entailment, 

Contradiction, Neutral. E.g., 
“Mary plays in the garden” entails 

“Mary is in the garden” but 
contradicts “Mary is asleep”. 

Starting from the pre-trained 
BERT, we jointly train BERT 
(further) and the task-specific 

classifier on (possibly few) task-
specific training examples 
(annotated sentence pairs).

Figure from Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers for 
Language Understanding”, 2018 (https://arxiv.org/abs/1810.04805).

https://arxiv.org/abs/1810.04805


Figure from P. Rajpurkar et al., “SQuAD: 100,000+ Questions for Machine Comprehension 
of Text.”, EMNLP 2016 (https://aclweb.org/anthology/D16-1264). 

Machine Reading Comprehension (MRC)

19

Paragraph

Question

https://aclweb.org/anthology/D16-1264


BERT – Fine-tuning for MRC
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We feed the context-aware 
embeddings of the paragraph’s 

words to a classifier (e.g., MLP) 
that classifies them as Start-

Answer, End-Answer, Other.

Starting from the pre-trained 
BERT, we jointly train BERT 
(further) and the task-specific 

classifier on (possibly few) task-
specific training examples 
(paragraph-question pairs).

Figure from Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers for 
Language Understanding”, 2018 (https://arxiv.org/abs/1810.04805).

https://arxiv.org/abs/1810.04805


Hugging Face Transformers

https://huggingface.co/models 

https://huggingface.co/models

https://huggingface.co/models
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Reminder: RNN-based MT system
Google’s paper: 

https://arxiv.org/abs/1609.08144

Images from Stephen Merity’s 
http://smerity.com/articles/2016/

google_nmt_arch.html

Attention over the states 
of the encoder.



Stacked Transformer encoders-decoders
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Stacked encoders. 
In BERT we use 
only encoders. 

Stacked decoders. 
For machine 

translation, we need 
both encoders and 

decoders. Apart from 
self-attention, 

decoders also use 
attention over the 
vectors produced 
by the encoder. 

Figure from J. Alammar’s “The Illustrated Transformer” 
(https://jalammar.github.io/illustrated-transformer/). Transformers paper: Vaswani et al., 

“Attention is All You Need”, 2017 (https://arxiv.org/abs/1706.03762).

Using an 
encoder/decoder 

allows us to generate 
a translation with a 
different number of 

tokens than the 
input (source) text. 

For more info about Transformer decoders, see (optionally) the 
graduate NLP course https://eclass.aueb.gr/courses/INF210/ . 

https://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/1706.03762
https://eclass.aueb.gr/courses/INF210/


Decoder only Transformers
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Figure from Vaswani et al., “Attention is All You Need”, 2017 (https://arxiv.org/abs/1706.03762 ), 
modified by C.R. Wolfe (https://twitter.com/cwolferesearch/status/1640446111348555776). 

• The encoder and the cross-attention 
part of the decoder are removed.

• The decoder is given the previous 
(sub-)words, predicts the next one.
o Similarly to how BERT predicts 

masked tokens, but we always 
predict the next token, looking at 
(attending) previous tokens only.

o It is trained on huge plain-text 
collections from the Web as a 
language model.

• This is how, e.g., GPT-2 and GPT-3 
were trained.

https://arxiv.org/abs/1706.03762
https://twitter.com/cwolferesearch/status/1640446111348555776


Prompt engineering in GPT-3

https://huggingface.co/models

GPT-3 paper: 
https://papers.nips.cc/paper/2020/file/1457c0d6bf

cb4967418bfb8ac142f64a-Paper.pdf 
GPT-3 examples from: 

https://beta.openai.com/examples/default-qa

See also: https://gaotianyu.xyz/prompting/ 
25

• We give to a large pre-trained LM a 
few examples (“demonstrations”) 
of the desired behavior as 
(concatenated) input, then (also 
concatenated in the input) a similar 
instance to be completed.
o We can also include a preamble saying 

what kind of agent (e.g., intelligent, 
polite) the system is supposed to be.

• No fine-tuning involved!
o A single frozen pre-trained model can 

serve multiple tasks, with few examples.

https://papers.nips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://papers.nips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://beta.openai.com/examples/default-qa
https://gaotianyu.xyz/prompting/


Supervised fine-tuning on human responses

https://huggingface.co/models

Figure from Ouyang et al. (2022), “Training language models to follow instructions with human feedback” 
(https://arxiv.org/abs/2203.02155).

• Just with prompting, without any fine-tuning, large LMs 
(LLMs, e.g., GPT-3) often fail to provide useful responses, fail 
to follow instructions, may generate toxic responses…
o Q: What is the capital of Greece? A: Why the %%$$ do you care?

• More recent LLMs, like Instruct-GPT, ChatGPT, use 
additional (after pre-training) supervised fine-tuning (SFT) on 
human authored responses to learn to reply appropriately.
o Having pre-trained the model to predict the next words (auto-

complete), now further train it to respond to requests as humans did.
o Back to pre-train then fine-tune, but without task-specific fine-tuning…

26

https://arxiv.org/abs/2203.02155


Supervised fine-tuning on human responses

https://huggingface.co/models

Figure from Ouyang et al. (2022), “Training language models to follow instructions with human feedback” 
(https://arxiv.org/abs/2203.02155). 27

https://arxiv.org/abs/2203.02155


Supervised fine-tuning on human responses

https://huggingface.co/models

Figure from Ouyang et al. (2022), “Training language models to follow instructions with human feedback” 
(https://arxiv.org/abs/2203.02155). 28

https://arxiv.org/abs/2203.02155


Reinforcement learning from human feedback

https://huggingface.co/models

Figures from Ouyang et al. (2022), “Training language models to follow instructions with human feedback” 
(https://arxiv.org/abs/2203.02155).

• Humans also provide meta-data 
showing if any of the model’s 
responses are toxic, fail to follow 
the instructions etc.

• Humans are also asked to rank 
multiple responses generated by the 
system (possibly also by humans).

• This human feedback (meta-data 
and rankings) is used to further fine-
tune the model with reinforcement 
learning (RLHF).

• SFT and RLHF (PPO) both help 
generate more useful responses.

29

https://arxiv.org/abs/2203.02155


Chain-of-thought prompting

Figure from Wei et al. (2022), “Chain-of-thought prompting elicits reasoning in large language models”, 
NeurIPS 2022 (https://arxiv.org/abs/2201.11903). 30

• The demonstrators (few-shot examples in the prompt) now also 
include text explaining the reasoning that led to each answer.
o We prompt the model to generate both the answer and its reasoning.
o Performance often improved and we also get some explanation (?).

https://arxiv.org/abs/2201.11903


Retrieval Augmented Generation (RAG)

Figure from G. Right’s blog post, “What is Retrieval Augmented Generation?”, September 2023 
(https://www.linkedin.com/pulse/what-retrieval-augmented-generation-grow-right/). 31

• Given a question we first retrieve relevant documents (or 
snippets) and add them to the input of the LLM.
o We can use conventional IR (e.g., TF-IDF, BM25) or dense retrieval 

(documents and questions encoded, compared via a similarity function).
o Input (prompt) to the LLM: question, retrieved documents (or 

snippets), instructions telling the LLM to base its answer on the retrieved 
documents, possibly few-shot examples (demonstrators).

https://www.linkedin.com/pulse/what-retrieval-augmented-generation-grow-right/


RAG – continued 

32

• Knowledge in the parameters of the model:
o May include common sense, encyclopedic, language knowledge/skills, 

which may be difficult to obtain from retrieved documents.
o Difficult to update (requires retraining), not reliable (e.g., 

hallucinations), no sources (e.g., references)

• Knowledge in retrieved documents: 
o Easily updated (e.g., new news articles), can be restricted to trusted 

sources (e.g., scientific articles from respected journals).
o But needs to be understood, filtered (e.g., keep only parts relevant to the 

question), combined (e.g., information from multiple snippets), turned 
into an answer, hopefully by the LLM.

Figure from G. Right’s blog post, “What is Retrieval Augmented Generation?”, September 2023 
(https://www.linkedin.com/pulse/what-retrieval-augmented-generation-grow-right/).

https://www.linkedin.com/pulse/what-retrieval-augmented-generation-grow-right/


Generating code completions

https://huggingface.co/models

Figure from https://github.com/features/copilot. 33

We can also ask models of this kind 
to debug, improve, explain code 

etc. But the responses may be 
wrong, may introduce bugs etc.

https://github.com/features/copilot


LLMs with tools

https://huggingface.co/models

Figure from https://huggingface.co/docs/transformers/transformers_agents. 34

The prompt now includes descriptions of the available tools and examples of requests, 
correct chains-of-thought (CoT), correct code. The model responds similarly.

https://huggingface.co/docs/transformers/transformers_agents


LLMs with tools

https://huggingface.co/models

Example from https://huggingface.co/docs/transformers/transformers_agents.
35

https://huggingface.co/docs/transformers/transformers_agents
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Recommended reading
• F. Chollet, Deep Learning in Python, 1st edition, Manning 

Publications, 2017.
o 1st edition freely available and sufficient for this course:  

https://www.manning.com/books/deep-learning-with-python
o 2nd edition also available, includes material on Transformers, 

requires payment, recommended: 
https://www.manning.com/books/deep-learning-with-python-
second-edition 

• Jurafsky and Martin’s, Speech and Language Processing is 
being revised (3rd edition) to include DL methods.
o http://web.stanford.edu/~jurafsky/slp3/

https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
http://web.stanford.edu/~jurafsky/slp3/


• Αν έχετε από το μάθημα της ΤΝ το βιβλίο των Russel & 
Norvig «Τεχνητή Νοημοσύνη – Μια σύγχρονη 
προσέγγιση», 4η έκδοση, Κλειδάριθμος, 2021, μπορείτε να 
συμβουλευτείτε το κεφάλαιο 24.
o Κυρίως τις ενότητες 24.4, 24.5, 24.6.

Βιβλιογραφία – συνέχεια 
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