
Αλληλεπίδραση Ανθρώπου–Υπολογιστή

B9. Επεξεργασία φυσικής γλώσσας με
Transformers και μεγάλα γλωσσικά μοντέλα

(2023-24)

Ίων Ανδρουτσόπουλος
http://www.aueb.gr/users/ion/

1

http://www.aueb.gr/users/ion/

2

Contents
• Transformer encoders and decoders.
• Pre-trained Transformers and Large Language Models (LLMs),

BERT, GPT-3, Chat-GPT, fine-tuning them, prompting them.
• Retrieval augmented generation (RAG), LLMs with tools.

3

Reminder: stacked CNNs for classification/regression

pad ℎ!
(#) ℎ%

(#) ℎ&
(#) ℎ#

(#) ℎ'
(#) … ℎ()!

(#) ℎ(
(#) pad

pad ℎ!
(&) ℎ%

(&) ℎ&
(&) ℎ#

(&) ℎ'
(&) … ℎ()!

(&) ℎ(
(#) pad

pad ℎ!
(%) ℎ%

(%) ℎ&
(%) ℎ#

(%) ℎ'
(%) … ℎ()!

(%) ℎ(
(%) pad

pad ℎ!
(!) ℎ%

(!) ℎ&
(!) ℎ#

(!) ℎ'
(!) … ℎ()!

(!) ℎ(
(!) pad

pad 𝑥! 𝑥% 𝑥& 𝑥# 𝑥' … 𝑥()! 𝑥(pad m-dimensional word
embeddings

1st convolution layer (𝑚 filters)

2nd convolution layer (𝑚 filters)

3rd convolution layer (𝑚 filters)

4th convolution layer (𝑚 filters)

ℎ!"# = max ℎ∗,&
' , max ℎ∗,(

' , … ,max(ℎ∗,!
('))

+
∈ ℝ&×!

global max
pooling

Feature vector sent to a
document classifier or regressor

(e.g., MLP).

ℎ-
(.) = ReLU 𝑊(.) ℎ-/&

(./&); ℎ-
(./&); ℎ-0&

(./&) + 𝑏(.) + ℎ-
./& ∈ ℝ!×&

ℎ-
(&) = ReLU 𝑊(&) 𝑥-/&; 𝑥-; 𝑥-0& + 𝑏(&) + 𝑥- ∈ ℝ!×&

Residual (shortcut) connection, needed when stacking many CNNs (or RNNs).

4

Reminder: stacked CNNs for token classification

pad ℎ!
(#) ℎ%

(#) ℎ&
(#) ℎ#

(#) ℎ'
(#) … ℎ()!

(#) ℎ(
(#) pad

pad ℎ!
(&) ℎ%

(&) ℎ&
(&) ℎ#

(&) ℎ'
(&) … ℎ()!

(&) ℎ(
(#) pad

pad ℎ!
(%) ℎ%

(%) ℎ&
(%) ℎ#

(%) ℎ'
(%) … ℎ()!

(%) ℎ(
(%) pad

pad ℎ!
(!) ℎ%

(!) ℎ&
(!) ℎ#

(!) ℎ'
(!) … ℎ()!

(!) ℎ(
(!) pad

pad 𝑥! 𝑥% 𝑥& 𝑥# 𝑥' … 𝑥()! 𝑥(pad m-dimensional word
embeddings

1st convolution layer (𝑚 filters)

2nd convolution layer (𝑚 filters)

3rd convolution layer (𝑚 filters)

4th convolution layer (𝑚 filters)

dense +
softmax

Predicted labels of words

ℎ-
(.) = ReLU 𝑊(.) ℎ-/&

(./&); ℎ-
(./&); ℎ-0&

(./&) + 𝑏(.) + ℎ-
./& ∈ ℝ!×&

ℎ-
(&) = ReLU 𝑊(&) 𝑥-/&; 𝑥-; 𝑥-0& + 𝑏(&) + 𝑥- ∈ ℝ!×&

dense +
softmax

dense +
softmax

B-Pers I-Pers O B-Loc I-Loc I-Org O

5

Transformers for token classification

ℎ!
(#) ℎ%

(#) ℎ&
(#) ℎ#

(#) ℎ'
(#) … ℎ()!

(#) ℎ(
(#)

ℎ!
(&) ℎ%

(&) ℎ&
(&) ℎ#

(&) ℎ'
(&) … ℎ()!

(&) ℎ(
(#)

ℎ!
(%) ℎ%

(%) ℎ&
(%) ℎ#

(%) ℎ'
(%) … ℎ()!

(%) ℎ(
(%)

ℎ!
(!) ℎ%

(!) ℎ&
(!) ℎ#

(!) ℎ'
(!) … ℎ()!

(!) ℎ(
(!)

𝑥! 𝑥% 𝑥& 𝑥# 𝑥' … 𝑥()! 𝑥(Initial m-dimensional word
embeddings

ℎ-
(&) = MLP(&) 7

12&

3

𝑎-,1
(&)𝑥1 ∈ ℝ!

To produce the revised embedding for the
i-th word of a text, we sum all the

original embeddings of the words of the
text, but weighted by attention scores.

𝑎!,# 𝑎!,! 𝑎!,$

Person 0.1
Location 0.8

Organization 0.05
Other 0.05

6

Transformers for token classification

ℎ!
(#) ℎ%

(#) ℎ&
(#) ℎ#

(#) ℎ'
(#) … ℎ()!

(#) ℎ(
(#)

ℎ!
(&) ℎ%

(&) ℎ&
(&) ℎ#

(&) ℎ'
(&) … ℎ()!

(&) ℎ(
(#)

ℎ!
(%) ℎ%

(%) ℎ&
(%) ℎ#

(%) ℎ'
(%) … ℎ()!

(%) ℎ(
(%)

ℎ!
(!) ℎ%

(!) ℎ&
(!) ℎ#

(!) ℎ'
(!) … ℎ()!

(!) ℎ(
(!)

𝑥! 𝑥% 𝑥& 𝑥# 𝑥' … 𝑥()! 𝑥(Initial m-dimensional word
embeddings

ℎ-
(.) = MLP(.) 7

12&

3

𝑎-,1
(.)ℎ1

(./&) ∈ ℝ!

ℎ-
(&) = MLP(&) 7

12&

3

𝑎-,1
(&)𝑥1 ∈ ℝ!

dense +
softmax

Predicted labels of words

𝑊 𝑊 𝑊 𝑊 𝑊 𝑊 𝑊

Person 0.75
Location 0.05

Organization 0.1
Other 0.1

Person 0.05
Location 0.05

Organization 0.1
Other 0.8

… …

Compare to the correct
predictions and adjust the

weights of the entire neural
net, including the bottom
word (token) embeddings,

which are randomly
initialized.

To produce the revised embedding for the
i-th word of a text, we sum all the

original embeddings of the words of the
text, but weighted by attention scores.

7

Transformers for text classification

ℎ!
(#) ℎ%

(#) ℎ&
(#) ℎ#

(#) ℎ'
(#) … ℎ()!

(#) ℎ(
(#)

ℎ!
(&) ℎ%

(&) ℎ&
(&) ℎ#

(&) ℎ'
(&) … ℎ()!

(&) ℎ(
(#)

ℎ!
(%) ℎ%

(%) ℎ&
(%) ℎ#

(%) ℎ'
(%) … ℎ()!

(%) ℎ(
(%)

ℎ!
(!) ℎ%

(!) ℎ&
(!) ℎ#

(!) ℎ'
(!) … ℎ()!

(!) ℎ(
(!)

𝑥! 𝑥% 𝑥& 𝑥# 𝑥' … 𝑥()! 𝑥(

ℎ!"# = max ℎ∗,&
' , max ℎ∗,(

' , … ,max(ℎ∗,!
('))

4
∈ ℝ!

global max pooling
(max of each dimension)

Vector representing the entire
text. We pass it through a dense
layer and softmax (or MLP) to
obtain a probability per class.

ℎ-
(.) = MLP(.) 7

12&

3

𝑎-,1
(.)ℎ1

(./&) ∈ ℝ!

ℎ-
(&) = MLP(&) 7

12&

3

𝑎-,1
(&)𝑥1 ∈ ℝ!

Initial m-dimensional word
embeddings

Compare to the correct
predictions and adjust the
weights of the entire net.

Without the MLP (or at least a dense
layer), each dimension of ℎ"

($) would
only depend on the corresponding
dimensions of the ℎ&

($'() vectors.

8

Query-Key-Value self-attention
pad ℎ!

(#) ℎ%
(#) ℎ&

(#) ℎ#
(#) ℎ'

(#) … ℎ()!
(#) ℎ(

(#) pad

pad ℎ!
(&) ℎ%

(&) ℎ&
(&) ℎ#

(&) ℎ'
(&) … ℎ()!

(&) ℎ(
(#) pad

pad ℎ!
(%) ℎ%

(%) ℎ&
(%) ℎ#

(%) ℎ'
(%) … ℎ()!

(%) ℎ(
(%) pad

pad ℎ!
(!) ℎ%

(!) ℎ&
(!) ℎ#

(!) ℎ'
(!) … ℎ()!

(!) ℎ(
(!) pad

pad 𝑥! 𝑥% 𝑥& 𝑥# 𝑥' … 𝑥()! 𝑥(pad m-dimensional word
embeddings

1st attention layer

2nd attention layer

3rd attention layer

4th attention layer

ℎ-
(.) = MLP(.) 7

12&

3

𝑎-,1
(.)𝑣1

(.) =

ℎ-
(&) = MLP(&) 7

12&

3

𝑎-,1
(&)𝑣1

(&) = 𝑞-
(&) = 𝑊5,(&)𝑥-

𝑘1
(&) = 𝑊6,(&)𝑥1
𝑣1
(&) = 𝑊7,(&)𝑥1

𝑞-
(.) = 𝑊5,(.)ℎ-

(./&)

𝑘1
(.) = 𝑊6,(.)ℎ1

(./&)

𝑣1
(.) = 𝑊7,(.)ℎ1

(./&)

= MLP(&) 7
12&

3

softmax 𝑞-
& +𝑘1

(&) 𝑣1
(&) ∈ ℝ!×&

= MLP(.) 7
12&

3

softmax 𝑞-
. +𝑘1

(.) 𝑣1
(.) ∈ ℝ!×&

Figures from J. Alammar’s “The Illustrated Transformer”
(https://jalammar.github.io/illustrated-transformer/). Transformers paper: Vaswani et al.,

“Attention is All You Need”, 2017 (https://arxiv.org/abs/1706.03762).

Stacking Transformer Encoders

9

What we called ℎ!
(!) What we called ℎ%

(!)

https://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/1706.03762

Query-Key-Value attention via matrices

10

Then MLP(𝑧-) = ℎ-
(&)

𝑑* is the dimensionality
of the K and Q vectors.

Figures from J. Alammar’s “The Illustrated Transformer”
(https://jalammar.github.io/illustrated-transformer/). Transformers paper: Vaswani et al.,

“Attention is All You Need”, 2017 (https://arxiv.org/abs/1706.03762).

Dropout also applied to the attention
scores (after the softmax).

Optional material

https://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/1706.03762

Multiple attention heads

11

Figures from J. Alammar’s “The Illustrated Transformer”
(https://jalammar.github.io/illustrated-transformer/). Transformers paper: Vaswani et al.,

“Attention is All You Need”, 2017 (https://arxiv.org/abs/1706.03762).

𝑊! useful even if the concatenated
𝑍!, … , 𝑍" already have the right

dimensions, to allow combinations
of features from different heads.

Optional material

https://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/1706.03762

Positional encodings

12

Positional encodings needed to capture the word order/positions:
• Without them, Transformers are unaware of word order.
• Sinusoid functions used to produce them in the original paper.
• But can also be position embeddings learned during training.

o Embedding of position 1, embedding of position 2 etc.

Figures from J. Alammar’s “The Illustrated Transformer”
(https://jalammar.github.io/illustrated-transformer/). Transformers paper: Vaswani et al.,

“Attention is All You Need”, 2017 (https://arxiv.org/abs/1706.03762).

https://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/1706.03762

Complete Transformer encoder block

13

“Add”: residual
connections

Layer Normalization (see
Part B5). Here, we subtract
from each cell (𝑋 + 𝑍)+,-

of (X+Z) the mean 𝜇+ of its
row, divide by the std. dev
𝜎+ of the row, and multiply

by a learned column-
specific parameter 𝑔-.

“Feed Forward”: the same
MLP at all word positions

Figures from J. Alammar’s “The Illustrated Transformer”
(https://jalammar.github.io/illustrated-transformer/). Transformers paper: Vaswani et al.,

“Attention is All You Need”, 2017 (https://arxiv.org/abs/1706.03762).

Dropout applied to the output of
the self-attention and feed forward

sublayers (before adding the
residual and normalizing), inside

the feed forward net, and after
adding positional embeddings.

https://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/1706.03762

Figures from J. Alammar’s “The Illustrated BERT, ELMo, and co.”
(http://jalammar.github.io/illustrated-bert/). BERT paper: Devlin et al., “BERT: Pre-training

of Deep Bidirectional Transformers for Language Understanding”, 2018
(https://arxiv.org/abs/1810.04805).

BERT – Pretraining to predict masked words

14

BERT uses stacked
Transformer encoders

(instead of RNNs or
CNNs) to turn each
sequence of input
embeddings to a

sequence of context
aware embeddings.

It is pre-trained on a
(huge) corpus to predict
masked input words.

http://jalammar.github.io/illustrated-bert/
https://arxiv.org/abs/1810.04805

BERT – Pretraining to predict the next sentence

15

It is also pre-trained on a (huge) corpus to
predict if a sentence is indeed the next one

or a random sentence.

In this case, we feed the
context-aware

embedding of the
[CLS] token to a binary

classifier (MLP).

Figures from J. Alammar’s “The Illustrated BERT, ELMo, and co.”
(http://jalammar.github.io/illustrated-bert/). BERT paper: Devlin et al., “BERT: Pre-training

of Deep Bidirectional Transformers for Language Understanding”, 2018
(https://arxiv.org/abs/1810.04805).

http://jalammar.github.io/illustrated-bert/
https://arxiv.org/abs/1810.04805

Figure from Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding”, 2018 (https://arxiv.org/abs/1810.04805).

BERT – Fine-tuning for sentence classification

16

We feed the context-aware
embedding of the [CLS] token

of each sentence to a task-
specific classifier (e.g., MLP)

that classifies the sentence (e.g.,
Positive, Neutral, Negative etc.)

Starting from the pre-trained
BERT, we jointly train BERT
(further) and the task-specific

classifier on (possibly few) task-
specific training examples (e.g.,

tweets + opinion labels).

https://arxiv.org/abs/1810.04805

BERT – Fine-tuning for token classification

17

We feed the context-aware
embeddings of the sentence’s

words to a classifier (e.g., MLP)
that classifies them as B-Per, I-
Per, B-Org, I-Org, …, Other.

Starting from the pre-trained
BERT, we jointly train BERT
(further) and the task-specific

classifier on (possibly few) task-
specific training examples

(manually labeled sentences).

Figure from Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding”, 2018 (https://arxiv.org/abs/1810.04805).

https://arxiv.org/abs/1810.04805

BERT – Fine-tuning for textual entailment

18

We feed the context-aware
embedding of the [CLS] token of

each sentence pair to a task-
specific classifier (e.g., MLP) that
classifies the pair as Entailment,

Contradiction, Neutral. E.g.,
“Mary plays in the garden” entails

“Mary is in the garden” but
contradicts “Mary is asleep”.

Starting from the pre-trained
BERT, we jointly train BERT
(further) and the task-specific

classifier on (possibly few) task-
specific training examples
(annotated sentence pairs).

Figure from Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding”, 2018 (https://arxiv.org/abs/1810.04805).

https://arxiv.org/abs/1810.04805

Figure from P. Rajpurkar et al., “SQuAD: 100,000+ Questions for Machine Comprehension
of Text.”, EMNLP 2016 (https://aclweb.org/anthology/D16-1264).

Machine Reading Comprehension (MRC)

19

Paragraph

Question

https://aclweb.org/anthology/D16-1264

BERT – Fine-tuning for MRC

20

We feed the context-aware
embeddings of the paragraph’s

words to a classifier (e.g., MLP)
that classifies them as Start-

Answer, End-Answer, Other.

Starting from the pre-trained
BERT, we jointly train BERT
(further) and the task-specific

classifier on (possibly few) task-
specific training examples
(paragraph-question pairs).

Figure from Devlin et al., “BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding”, 2018 (https://arxiv.org/abs/1810.04805).

https://arxiv.org/abs/1810.04805

Hugging Face Transformers

https://huggingface.co/models

https://huggingface.co/models

https://huggingface.co/models

22

Reminder: RNN-based MT system
Google’s paper:

https://arxiv.org/abs/1609.08144

Images from Stephen Merity’s
http://smerity.com/articles/2016/

google_nmt_arch.html

Attention over the states
of the encoder.

Stacked Transformer encoders-decoders

23

Stacked encoders.
In BERT we use
only encoders.

Stacked decoders.
For machine

translation, we need
both encoders and

decoders. Apart from
self-attention,

decoders also use
attention over the
vectors produced
by the encoder.

Figure from J. Alammar’s “The Illustrated Transformer”
(https://jalammar.github.io/illustrated-transformer/). Transformers paper: Vaswani et al.,

“Attention is All You Need”, 2017 (https://arxiv.org/abs/1706.03762).

Using an
encoder/decoder

allows us to generate
a translation with a
different number of

tokens than the
input (source) text.

For more info about Transformer decoders, see (optionally) the
graduate NLP course https://eclass.aueb.gr/courses/INF210/ .

https://jalammar.github.io/illustrated-transformer/
https://arxiv.org/abs/1706.03762
https://eclass.aueb.gr/courses/INF210/

Decoder only Transformers

24

Figure from Vaswani et al., “Attention is All You Need”, 2017 (https://arxiv.org/abs/1706.03762),
modified by C.R. Wolfe (https://twitter.com/cwolferesearch/status/1640446111348555776).

• The encoder and the cross-attention
part of the decoder are removed.

• The decoder is given the previous
(sub-)words, predicts the next one.
o Similarly to how BERT predicts

masked tokens, but we always
predict the next token, looking at
(attending) previous tokens only.

o It is trained on huge plain-text
collections from the Web as a
language model.

• This is how, e.g., GPT-2 and GPT-3
were trained.

https://arxiv.org/abs/1706.03762
https://twitter.com/cwolferesearch/status/1640446111348555776

Prompt engineering in GPT-3

https://huggingface.co/models

GPT-3 paper:
https://papers.nips.cc/paper/2020/file/1457c0d6bf

cb4967418bfb8ac142f64a-Paper.pdf
GPT-3 examples from:

https://beta.openai.com/examples/default-qa

See also: https://gaotianyu.xyz/prompting/
25

• We give to a large pre-trained LM a
few examples (“demonstrations”)
of the desired behavior as
(concatenated) input, then (also
concatenated in the input) a similar
instance to be completed.
o We can also include a preamble saying

what kind of agent (e.g., intelligent,
polite) the system is supposed to be.

• No fine-tuning involved!
o A single frozen pre-trained model can

serve multiple tasks, with few examples.

https://papers.nips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://papers.nips.cc/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://beta.openai.com/examples/default-qa
https://gaotianyu.xyz/prompting/

Supervised fine-tuning on human responses

https://huggingface.co/models

Figure from Ouyang et al. (2022), “Training language models to follow instructions with human feedback”
(https://arxiv.org/abs/2203.02155).

• Just with prompting, without any fine-tuning, large LMs
(LLMs, e.g., GPT-3) often fail to provide useful responses, fail
to follow instructions, may generate toxic responses…
o Q: What is the capital of Greece? A: Why the %%$$ do you care?

• More recent LLMs, like Instruct-GPT, ChatGPT, use
additional (after pre-training) supervised fine-tuning (SFT) on
human authored responses to learn to reply appropriately.
o Having pre-trained the model to predict the next words (auto-

complete), now further train it to respond to requests as humans did.
o Back to pre-train then fine-tune, but without task-specific fine-tuning…

26

https://arxiv.org/abs/2203.02155

Supervised fine-tuning on human responses

https://huggingface.co/models

Figure from Ouyang et al. (2022), “Training language models to follow instructions with human feedback”
(https://arxiv.org/abs/2203.02155). 27

https://arxiv.org/abs/2203.02155

Supervised fine-tuning on human responses

https://huggingface.co/models

Figure from Ouyang et al. (2022), “Training language models to follow instructions with human feedback”
(https://arxiv.org/abs/2203.02155). 28

https://arxiv.org/abs/2203.02155

Reinforcement learning from human feedback

https://huggingface.co/models

Figures from Ouyang et al. (2022), “Training language models to follow instructions with human feedback”
(https://arxiv.org/abs/2203.02155).

• Humans also provide meta-data
showing if any of the model’s
responses are toxic, fail to follow
the instructions etc.

• Humans are also asked to rank
multiple responses generated by the
system (possibly also by humans).

• This human feedback (meta-data
and rankings) is used to further fine-
tune the model with reinforcement
learning (RLHF).

• SFT and RLHF (PPO) both help
generate more useful responses.

29

https://arxiv.org/abs/2203.02155

Chain-of-thought prompting

Figure from Wei et al. (2022), “Chain-of-thought prompting elicits reasoning in large language models”,
NeurIPS 2022 (https://arxiv.org/abs/2201.11903). 30

• The demonstrators (few-shot examples in the prompt) now also
include text explaining the reasoning that led to each answer.
o We prompt the model to generate both the answer and its reasoning.
o Performance often improved and we also get some explanation (?).

https://arxiv.org/abs/2201.11903

Retrieval Augmented Generation (RAG)

Figure from G. Right’s blog post, “What is Retrieval Augmented Generation?”, September 2023
(https://www.linkedin.com/pulse/what-retrieval-augmented-generation-grow-right/). 31

• Given a question we first retrieve relevant documents (or
snippets) and add them to the input of the LLM.
o We can use conventional IR (e.g., TF-IDF, BM25) or dense retrieval

(documents and questions encoded, compared via a similarity function).
o Input (prompt) to the LLM: question, retrieved documents (or

snippets), instructions telling the LLM to base its answer on the retrieved
documents, possibly few-shot examples (demonstrators).

https://www.linkedin.com/pulse/what-retrieval-augmented-generation-grow-right/

RAG – continued

32

• Knowledge in the parameters of the model:
o May include common sense, encyclopedic, language knowledge/skills,

which may be difficult to obtain from retrieved documents.
o Difficult to update (requires retraining), not reliable (e.g.,

hallucinations), no sources (e.g., references)

• Knowledge in retrieved documents:
o Easily updated (e.g., new news articles), can be restricted to trusted

sources (e.g., scientific articles from respected journals).
o But needs to be understood, filtered (e.g., keep only parts relevant to the

question), combined (e.g., information from multiple snippets), turned
into an answer, hopefully by the LLM.

Figure from G. Right’s blog post, “What is Retrieval Augmented Generation?”, September 2023
(https://www.linkedin.com/pulse/what-retrieval-augmented-generation-grow-right/).

https://www.linkedin.com/pulse/what-retrieval-augmented-generation-grow-right/

Generating code completions

https://huggingface.co/models

Figure from https://github.com/features/copilot. 33

We can also ask models of this kind
to debug, improve, explain code

etc. But the responses may be
wrong, may introduce bugs etc.

https://github.com/features/copilot

LLMs with tools

https://huggingface.co/models

Figure from https://huggingface.co/docs/transformers/transformers_agents. 34

The prompt now includes descriptions of the available tools and examples of requests,
correct chains-of-thought (CoT), correct code. The model responds similarly.

https://huggingface.co/docs/transformers/transformers_agents

LLMs with tools

https://huggingface.co/models

Example from https://huggingface.co/docs/transformers/transformers_agents.
35

https://huggingface.co/docs/transformers/transformers_agents

36

Recommended reading
• F. Chollet, Deep Learning in Python, 1st edition, Manning

Publications, 2017.
o 1st edition freely available and sufficient for this course:

https://www.manning.com/books/deep-learning-with-python
o 2nd edition also available, includes material on Transformers,

requires payment, recommended:
https://www.manning.com/books/deep-learning-with-python-
second-edition

• Jurafsky and Martin’s, Speech and Language Processing is
being revised (3rd edition) to include DL methods.
o http://web.stanford.edu/~jurafsky/slp3/

https://www.manning.com/books/deep-learning-with-python
https://www.manning.com/books/deep-learning-with-python-second-edition
https://www.manning.com/books/deep-learning-with-python-second-edition
http://web.stanford.edu/~jurafsky/slp3/

• Αν έχετε από το μάθημα της ΤΝ το βιβλίο των Russel &
Norvig «Τεχνητή Νοημοσύνη – Μια σύγχρονη
προσέγγιση», 4η έκδοση, Κλειδάριθμος, 2021, μπορείτε να
συμβουλευτείτε το κεφάλαιο 24.
o Κυρίως τις ενότητες 24.4, 24.5, 24.6.

Βιβλιογραφία – συνέχεια

37

