Deferred rendering & Image-based lighting

Evangelou Iordanis

Forward shading


```
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
```

```
fragment shader
#version 330 core
layout(location = 0) out vec4 out_pos;
layout(location = 1) out vec4 out normal;
layout(location = 2) out vec4 out albedo;
layout(location = 3) out vec4 out mask;
in vec2 f_texcoord;
// [...] more in variables
uniform sampler2D uniform_tex_diffuse;
// [...] more textures samples
void main(void)
       // fetch texture values
       // output these values
       // [...]
```

vertex shader

scene

vertex shader

scene

```
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
```

```
fragment shader
#version 330 core
layout(location = 0) out vec4 out_pos;
layout(location = 1) out vec4 out_normal;
layout(location = 2) out vec4 out albedo;
layout(location = 3) out vec4 out mask;
in vec2 f_texcoord;
// [...] more in variables
uniform sampler2D uniform_tex_diffuse;
// [...] more textures samples
void main(void)
       // fetch texture values
       // output these values
       // [...]
```



```
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
```

```
fragment shader
```

```
#version 330 core
layout(location = 0) out vec4 out_pos;
layout(location = 1) out vec4 out_normal;
layout(location = 2) out vec4 out_albedo;
layout(location = 3) out vec4 out_mask;

in vec2 f_texcoord;
// [...] more in variables

uniform sampler2D uniform_tex_diffuse;
// [...] more textures samples

void main(void)
{
    // fetch texture values
    // output these values
    // [...]
}
```

```
glFramebufferTexture2D(GL FRAMEBUFFER.
       GL COLOR ATTACHMENTO,
       GL TEXTURE 2D, fbo pos texture, 0);
glFramebufferTexture2D(GL FRAMEBUFFER,
       GL COLOR ATTACHMENT1,
       GL TEXTURE 2D, fbo normal texture, 0);
glFramebufferTexture2D(GL FRAMEBUFFER,
       GL COLOR ATTACHMENT2,
       GL TEXTURE 2D, fbo albedo texture, 0);
glFramebufferTexture2D(GL FRAMEBUFFER,
       GL COLOR ATTACHMENT3,
       GL TEXTURE 2D, fbo mask texture, 0);
glFramebufferTexture2D(GL FRAMEBUFFER,
       GL DEPTH COMPONENT,
       GL TEXTURE 2D, fbo depth texture, 0);
```

vertex shader

scene

glBindFramebuffer(GL_FRAMEBUFFER, fbo);


```
glBindFramebuffer(GL_FRAMEBUFFER, fbo);
```


$$L(p,\,\omega_o) \,=\, L_e \,+\, \int_H f(p,\,\omega_o,\,\omega_i)\,L(p,\,\omega_i)\,\cos heta d_{\omega_i}$$

integral over all possible directions

$$L(p,\,\omega_o) \,=\, L_e \,+\, \int_H f(p,\,\omega_o,\,\omega_i) L(p,\,\omega_i) \,\cos heta \, d_{\omega_i}$$

- integral over all possible directions
- BRDF based on cook-torrance model

$$L(p,\,\omega_o) \,=\, L_e \,+\, \int_H f(p,\,\omega_o,\,\omega_i) iggl[L(p,\,\omega_i) iggl] \cos heta \, d_{\omega_i}$$

- integral over all possible directions
- BRDF based on cook-torrance model
- Incident radiance

$$L(p,\,\omega_o)\,=\,L_e\,+\,\int_H f(p,\,\omega_o,\,\omega_i)\,L(p,\,\omega_i)\,\cos heta\,d_{\omega_i}$$

- integral over all possible directions
- BRDF based on cook-torrance model
- incident radiance
- "energy" scaler

$$L(p,\,\omega_o)\,=\,L_e\,+\,\int_H f(p,\,\omega_o,\,\omega_i)\,L(p,\,\omega_i)\,\cos heta\,d_{\omega_i}$$

- integral over all possible directions
- BRDF based on cook-torrance model
- incident radiance
- "energy" scaler
- surface emission

Reflectance equation:

$$L(p,\,\omega_o)\,=\,L_e\,+\,\int_H f(p,\,\omega_o,\,\omega_i)\,L(p,\,\omega_i)\,\cos heta\,d_{\omega_i}$$

for direct illumination we need to evaluate the latter for every light, hence :

$$L(p,\,\omega_o)\,=\,L_e\,+\,\,\sum_{i=1}^n\int_H f(p,\,\omega_o,\,\omega_i)\,L_i(p,\,\omega_i)\,\cos heta\,d_{\omega_i}$$

Reflectance equation:

$$L(p,\,\omega_o)\,=\,L_e\,+\,\int_H f(p,\,\omega_o,\,\omega_i)\,L(p,\,\omega_i)\,\cos heta\,d_{\omega_i}$$

for direct illumination we need to evaluate the latter for every light, hence :

$$L(p,\,\omega_o)\,=\,L_e\,+\,\,\sum_{i=1}^n\int_H f(p,\,\omega_o,\,\omega_i)\,L_i(p,\,\omega_i)\,\cos heta\,d_{\omega_i}$$

and since we only have point/spot lights :

$$L(p,\,\omega_o) \,=\, L_e \,+\, \sum_{i=1}^n f(p,\,\omega_o,\,\omega_i)\,L_i(p,\,\omega_i)\,\cos heta$$

Reflectance equation for direct lighting:

$$L(p,\,\omega_o) \,=\, L_e \,+\, \sum_{i=1}^n f(p,\,\omega_o,\,\omega_i) L_i(p,\,\omega_i) \,\cos heta$$

Reflectance equation for direct lighting:

$$L(p,\,\omega_o)\,=\,L_e\,+\,\,\sum_{i=1}^n f(p,\,\omega_o,\,\omega_i)\,L_i(p,\,\omega_i)\,\cos heta$$

the Cook-Torrance BRDF model is :

$$f(p,\,\omega_o,\,\omega_i)=(1-F)\,f_d+Ff_s \ =(1-F)iggl[rac{c}{\pi}iggr]+Figgl[rac{DG}{4\,(n\cdot l)(n\cdot v)}iggr]$$
 Lambertian isotropic Specular/glossy reflection

Reflectance equation for direct lighting:

$$L(p,\,\omega_o) \,=\, L_e \,+\, \sum_{i=1}^n f(p,\,\omega_o,\,\omega_i) \, L_i(p,\,\omega_i) \,\cos heta$$

the Cook-Torrance BRDF model is :

$$f(p,\,\omega_o,\,\omega_i) = (1-F)rac{c}{\pi} + Frac{DG}{4\,(n\cdot l)(n\cdot v)}$$
 probability of reflection

Reflectance equation for direct lighting:

$$L(p,\,\omega_o) \,=\, L_e \,+\, \, \sum_{i=1}^n f(p,\,\omega_o,\,\omega_i) \, L_i(p,\,\omega_i) \,\cos heta$$

the Cook-Torrance BRDF model is :

$$f(p,\,\omega_o,\,\omega_i) = \overbrace{(1-F)rac{c}{\pi} + F} \underbrace{DG}_{4\,(n\,\cdot l)(n\,\cdot v)}$$
 probability of reflection

Fresnel term based on Schlick's approximation :

$$F(h,\,v,\,F_0) = F_0 + (1\,-\,F_0)(1\,-\,(h\,\cdot\,v))^5$$
 reflectance at normal incidence

Reflectance equation for direct lighting:

$$L(p,\,\omega_o) \,=\, L_e \,+\, \sum_{i=1}^n f(p,\,\omega_o,\,\omega_i) \, L_i(p,\,\omega_i) \,\cos heta$$

• the Cook-Torrance BRDF model is :

$$f(p,\,\omega_o,\,\omega_i) = \overbrace{(1-F)rac{c}{\pi} + F} \frac{DG}{4\,(n\,\cdot l)(n\,\cdot v)}$$
 probability of reflection

Fresnel term based on Schlick's approximation :

$$F(h,\,v,\,F_0) = F_0 + (1-F_0)(1-(h\cdot v))^5$$
 reflectance at normal incidence

• and to account for the metallic term :

$$F_0 = \left(1 - ext{metallic}
ight)r + (ext{metallic})albedo$$
 $f_d = \left(1 - ext{metallic}
ight)rac{c}{\pi}$

Reflectance equation for direct lighting:

$$L(p,\,\omega_o) \,=\, L_e \,+\, \sum_{i=1}^n f(p,\,\omega_o,\,\omega_i) \, L_i(p,\,\omega_i) \,\cos heta$$

• the Cook-Torrance BRDF model is :

$$f(p,\,\omega_o,\,\omega_i) \,=\, (1\,-\,F)\,rac{c}{\pi}\,+\,Frac{[ar{D}ar{G}]}{4\,(n\,\cdot l)(n\,\cdot v)}$$

microfacet distribution function :

$$D(h) \,=\, rac{lpha^2}{\pi \Big((n\,\cdot h)^2(lpha^2\,-\,1)\,+\,1\Big)^2}$$

microfacet geometric function :

$$G(h) \ = \ \min iggl\{ 1, \ rac{2(n \cdot h)(n \cdot v)}{v \cdot h}, \ rac{2(n \cdot h)\,(n \cdot l)}{v \cdot h} iggr\}$$

Reflectance equation for direct lighting:

$$L(p,\,\omega_o) \,=\, L_e \,+\, \, \sum_{i=1}^n f(p,\,\omega_o,\,\omega_i) \, L_i(p,\,\omega_i) \,\cos heta$$

- incoming radiant flux
- for point lights :

$$I(p) \,=\, rac{flux}{4\pi r^2}, \quad r \,=\, \lVert p \,-\, l
Vert$$

o for spot lights:

$$egin{aligned} I(p) &= rac{flux}{2\pi r^2ig(1-rac{1}{2}(\cos heta_1\,+\,\cos heta_2)ig)} \ &r = \|\,p\,-\,l\| \ \cos heta_1 &= ext{umbra} \ \cos heta_2 &= ext{penumbra} \end{aligned}$$

Reflectance equation for direct lighting:

$$L(p,\,\omega_o) \,=\, L_e \,+\, \, \sum_{i=1}^n f(p,\,\omega_o,\,\omega_i)\, L_i(p,\,\omega_i) \,\cos heta$$

- incoming radiant flux
 - o for point lights:

$$I(p) \,=\, rac{flux}{4\pi r^2}, \quad r \,=\, \lVert p \,-\, l
Vert$$

o for spot lights :

$$egin{aligned} I(p) &= rac{flux}{2\pi r^2ig(1-rac{1}{2}(\cos heta_1+\,\cos heta_2)ig)} \ &r = \|\,p\,-\,l\| \ \cos heta_1 &= ext{umbra} \ \cos heta_2 &= ext{penumbra} \end{aligned}$$

• "energy" scaler :

$$\cos \theta = n \cdot l$$

