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How do we Represent our World? 

• In general, the mathematical world we display in 
graphics consists of entities describing: 
– The geometry of the surface of objects 
– The volume of the space inside and outside the surfaces 
– The energy (light) that is transmitted 
– The materials (substance qualities) the energy interacts 

with 
– The spatial relationships of entities 
– The dynamics of all the above (motion)  



Representing Geometry - Surfaces 

• In most cases, we are interested in displaying 
surfaces, i.e. the “shell” of 3D objects that is the 
interface between one medium and another 

• They are 2D embeddings in a 3D space 
 
 

 
 

 
• This is because most lighting “events” occur on or 

near this interface 

In rendering, we are usually interested in the surface of an object 



Representing Geometry - Volume 

• The volume of a 3D entity becomes important when 
light interacts with it as it travels though the medium 

• Most objects are opaque, absorbing the transmitted 
light fast  

• However, the rendering of important light scattering 
phaenomena must take into account transmission 
through dense media such as: 
– Clouds, smoke, wax, milk etc. 
– These are expressed as volumetric data, i.e. data defined 

everywhere inside a boundary surface  

 
    



Representing Geometry - Curves 

• 2D/3D curves are by definition infinitesimally thin 
and insubstantial, and therefore non-renderable per 
se.  

• They are 1D embeddings in 2D or 3D space 
• They are used in graphics to define boundaries, 

trajectories and higher-dimension entities (e.g. 
parametric surfaces) 

• We sometimes “plot” the curves, i.e. approximate 
them by pixels (of non-zero area) on an image plane 



Representing Geometry - Points 

• Points (isolated vertices) in 3D and 2D 
space are sometimes drawn to represent: 
– Scattered data of variable density 
– “very small” (sub-pixel) objects, such as 

particles  

• We typically use these in massive 
quantities to approximate either surface 
data or volume data (a processes called 
point-based rendering) 

• Points are not necessarily rendered as 
single pixels 

 http://www-sop.inria.fr/reves/Basilic/2005/BDS05/ 



Surfaces 

• Surfaces are composed or modelled via an 
aggregation of surface elements 

• These elements can be:  
– Curved parametric patches 
– Flat polygons  usually triangles 

 
 

• An organization of a surface into connected 
polygonal surface elements is called a mesh 



Mesh Example 



Triangle Meshes 

• The most common type of 
polygonal mesh 
representation 

• Very convenient to use in 
real-time rendering! 

 
 



The Ingredients of Meshes 

• What are their data? 
– Flat elements approximating both curved and flat surfaces 

• Where are they? 
– Vertices of triangles (points on the plane or in space) 

• What is their shape? 
– Connectivity among vertices defines the structure of the 

mesh 

• How do they look? 
– Material and shading attributes per vertex – interpolated / 

predicted inside each triangle 

 



The Triangle 

• A set of three (ordered) vertices (points in space) 
• Connectivity:  

– Implied by order of points or 
– Given explicitly  

  𝐩𝐩0 

𝐩𝐩1 

𝐩𝐩2 

The triangle’s “normal” vector 
𝐧𝐧 = (𝑎𝑎, 𝑏𝑏, 𝑐𝑐) 

The triangle’s plane 
𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 + 𝑑𝑑 = 0 



Triangles - Useful Properties 

• Minimal: The most elementary surface shape (3 
points define an oriented plane) 

• Always convex!  
– This is not true for generalized n-gons 
– A very useful property in calculations: its boundary 

coincides with its convex hull 

• Any other polygon can be decomposed into a set of 
triangles! 
 



Linear Combinations on the Plane 

• Any point on the plane of the triangle can be 
uniquely written as a linear combination of the three 
triangle vertices. In fact: 

• For any number k of vectors and scalar coefficients: 
 

                              is their linear combination 𝐪𝐪 =  �𝑎𝑎𝑖𝑖𝐯𝐯𝑖𝑖

𝑘𝑘

𝑖𝑖=1

 



Representing the Triangle Interior 

• Given the three triangle vertices (corners), any point 
inside the triangle (both in 2D and 3D) can be 
expressed as an affine combination of them 

• This is an important property that translates to: 
– We only need the three corners of a triangle to fully 

describe its interior 

• Relates to the topic of “affine transformations” 
 



• To interpolate parameters across a triangle we need 
to find the set of (unique) parameters 𝑢𝑢, 𝑣𝑣,𝑤𝑤 that 
define 𝐪𝐪 as the linear combination of all 3 vertices 

𝐪𝐪 = 𝑤𝑤𝐩𝐩0 + 𝑢𝑢𝐩𝐩1 + 𝑣𝑣𝐩𝐩2 
• All vertex attributes can be linearly interpolated at 

arbitrary locations on the plane using these 
barycentric coordinates   

Barycentric Coordinates 

p0 p1 

q 

p2 

w 
u 

v 



Barycentric Coordinates - Usage 

• Barycentric coordinates are extremely useful in 
triangle rendering, as they are used for: 
– Interpolating triangle properties for arbitrary points inside 

the triangle 
– Performing point containment tests for various primitive 

intersection tests 



Interpreting Barycentric Coordinates (1) 

• They form a parametric 
space of: 
– two independent 

parameters (𝑢𝑢, 𝑣𝑣) 
– One dependent 

parameter 
    (𝑤𝑤 = 1 − 𝑢𝑢 − 𝑣𝑣) 

𝐩𝐩1 

𝐩𝐩2 

𝐩𝐩0 
(0,0,1) 

(0,1,0) 

(1,0,0) 

𝑢𝑢 + 𝑣𝑣 = 1 

𝑢𝑢 

𝑣𝑣 

• All points with: 
𝑢𝑢 > 0 𝐴𝐴𝐴𝐴𝐴𝐴 𝑣𝑣 > 0 𝐴𝐴𝐴𝐴𝐴𝐴 𝑤𝑤 > 0 

       Lie inside the triangle 
 



• Geometric properties: 
– Barycentric coordinates equal the ratio of triangle areas formed by the 

opposite side and the query point against the total triangle area 
– Can be exploited to computed them:  

 
 

Interpreting Barycentric Coordinates (2) 
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Finding the Barycentric Coordinates (1) 

• Let 𝐩𝐩𝑖𝑖 = 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖 , 𝑖𝑖 = 0. . 2 the triangle vertices 
and 𝐪𝐪 = 𝑥𝑥𝑞𝑞 ,𝑦𝑦𝑞𝑞 , 𝑧𝑧𝑞𝑞  the query point. Then:   
 𝑤𝑤𝑥𝑥0 + 𝑢𝑢𝑥𝑥1 + 𝑣𝑣𝑥𝑥2 = 𝑥𝑥𝑞𝑞

𝑤𝑤𝑦𝑦0 + 𝑢𝑢𝑦𝑦1 + 𝑣𝑣𝑦𝑦2 = 𝑦𝑦𝑞𝑞
𝑤𝑤𝑧𝑧0 + 𝑢𝑢𝑧𝑧1 + 𝑣𝑣𝑧𝑧2 = 𝑧𝑧𝑞𝑞

𝑤𝑤=1−𝑢𝑢−𝑣𝑣
𝑥𝑥0 + 𝑢𝑢(𝑥𝑥1−𝑥𝑥0) + 𝑣𝑣(𝑥𝑥2−𝑥𝑥0)  = 𝑥𝑥𝑞𝑞
𝑦𝑦0 + 𝑢𝑢(𝑦𝑦1−𝑦𝑦0) + 𝑣𝑣(𝑦𝑦2−𝑦𝑦0) = 𝑦𝑦𝑞𝑞
𝑧𝑧0 + 𝑢𝑢(𝑧𝑧1−𝑧𝑧0) + 𝑣𝑣(𝑧𝑧2−𝑧𝑧0) = 𝑧𝑧𝑞𝑞

 

𝑢𝑢(𝑥𝑥1−𝑥𝑥0) + 𝑣𝑣(𝑥𝑥2−𝑥𝑥0)  = 𝑥𝑥𝑞𝑞 − 𝑥𝑥0
𝑢𝑢(𝑦𝑦1−𝑦𝑦0) + 𝑣𝑣(𝑦𝑦2−𝑦𝑦0) = 𝑦𝑦𝑞𝑞 −𝑦𝑦0 ⇔

(𝑥𝑥1−𝑥𝑥0) (𝑥𝑥2−𝑥𝑥0)
(𝑦𝑦1−𝑦𝑦0) (𝑦𝑦2−𝑦𝑦0)

𝑢𝑢
𝑣𝑣 =

𝑥𝑥𝑞𝑞 − 𝑥𝑥0
𝑦𝑦𝑞𝑞 −𝑦𝑦0  

Dropping the coordinate line with the “least precision” *, say here z : 

* To be discussed during course 



Finding the Barycentric Coordinates (2) 

• Using Cramer’s rule, we can solve the 2X2 linear 
system analytically to obtain 𝑢𝑢, 𝑣𝑣  and therefore 𝑤𝑤   
 

𝑢𝑢 =

(𝑥𝑥𝑞𝑞−𝑥𝑥0) (𝑥𝑥2−𝑥𝑥0)
(𝑦𝑦𝑞𝑞−𝑦𝑦0) (𝑦𝑦2−𝑦𝑦0)
(𝑥𝑥1−𝑥𝑥0) (𝑥𝑥2−𝑥𝑥0)
(𝑦𝑦1−𝑦𝑦0) (𝑦𝑦2−𝑦𝑦0)

=
𝑥𝑥𝑞𝑞 − 𝑥𝑥0 𝑦𝑦2 − 𝑦𝑦0 − (𝑦𝑦𝑞𝑞 − 𝑦𝑦0)(𝑥𝑥2 − 𝑥𝑥0)
𝑥𝑥1 − 𝑥𝑥0 𝑦𝑦2 − 𝑦𝑦0 − (𝑦𝑦1 − 𝑦𝑦0)(𝑥𝑥2 − 𝑥𝑥0)

 

𝑣𝑣 =

(𝑥𝑥1−𝑥𝑥0) (𝑥𝑥𝑞𝑞−𝑥𝑥0)
(𝑦𝑦1−𝑦𝑦0) (𝑦𝑦𝑞𝑞−𝑦𝑦0)
(𝑥𝑥1−𝑥𝑥0) (𝑥𝑥2−𝑥𝑥0)
(𝑦𝑦1−𝑦𝑦0) (𝑦𝑦2−𝑦𝑦0)

=
𝑥𝑥1 − 𝑥𝑥0 𝑦𝑦𝑞𝑞 − 𝑦𝑦0 − (𝑦𝑦1 − 𝑦𝑦0)(𝑥𝑥𝑞𝑞 − 𝑥𝑥0)
𝑥𝑥1 − 𝑥𝑥0 𝑦𝑦2 − 𝑦𝑦0 − (𝑦𝑦1 − 𝑦𝑦0)(𝑥𝑥2 − 𝑥𝑥0)

 

𝑤𝑤 = 1 − 𝑢𝑢 − 𝑣𝑣 



Mesh Data Representation and Storage 

• (Triangle) meshes are collections of triangles 
• Can be: 

– A set of disjoint, independent triangles (a triangle “soup”) 
– A set of vertices “shared” among triangles, given a set of 

“connections”: 

T0 

T1 
T2 

T3 

T4 
T5 

T6 
T7 



Triangle Representation (1) 

• Triangle data are typically stored in: 
– Self-contained triangle arrays 
– Indexed attribute arrays  

• Vertex attributes: 
– All data related to a single vertex of a triangle 
– These include at least the position of each vertex 
– May include additional data such as color, per vertex 

normal vector, texture coordinates, user-defined variables 
etc 

• Per triangle attributes:  
– Data associated to the entire triangle (e.g. material, 

geometric normal etc) 



Triangle Data: An Example (1) 

class Triangle  
{ 
   float vertex[3][3];        // 3 vertices X 3 coords 
   float vertex_normal[3][3]; // 3 vertices X 3 coords  
   float vertex_color[3][3];  // 3 vertices X 3 components 
   float plane_normal [3];    // xyz 
   class Material * p_mat;    // pointer to material data 
}; 

Shared material: many triangles use the same material, 
so the triangle only points to this single material instance 

Can I do better? 

Per vertex attributes 



Triangle Data: An Example (2) 

• Can I do better?  
– Observe that many vertices are repeated in the triangle 

data: 
 
 

 
• We can save significant storage and bandwidth (this 

will become important later – see real-time graphics) 
if we: 
– Keep per vertex attribute data separately 
– Index the vertex attributes  



Triangle Data: An Example (3) 

class Triangle  
{ 
   unsigned int v_index[3];   // 3 vertices X 1 index 
   unsigned int n_index[3];   // 3 vertices X 1 index  
   unsigned int c_index[3];   // 3 vertices X 1 index 
   float plane_normal [3];    // xyz 
   class Material * p_mat;    // pointer to material data 
}; 

Per vertex attributes 



Triangle Data: Attribute Buffers 

• Now we can have separate attribute buffers of 
different size: 

12 triangles, indexing: 

8 vertices 

6 normals 

1 color 



Unindexed vs Indexed Data  

• Memory savings from this indexing (cube example): 
– Cost for per vertex data in unindexed cube triangles: 
     27 floats (4 bytes each) X 12 triangles = 1296 bytes 
– Cost for per vertex data in indexed cube triangles: 
     9X12 integer indices (4 bytes each) = 432 bytes 
     8 vertices X 3 floats                            =   96 bytes  
     6 normals X 3 floats                           =   72 bytes 
     1 color X 3 floats                                =    12 bytes 
                                                       total:      612 bytes 

 
 



Attribute Structures (1) 

• In this example, we waste a lot of memory in 
indexing 

• Alternatively, we could use a per vertex structure and 
index a single array of vertex objects: 

 
class Triangle  
{ 
   unsigned int index[3];     // 3 vertices X 1 structure index 
   float plane_normal [3];    // xyz 
   class Material * p_mat;    // pointer to material data 
}; 

 



Attribute Structures (2) 

• Now we have a single attribute buffer: 

12 triangles, indexing: 

24 structures 

Total bytes: 144 (indices) + 864 (data) = 1008 bytes 

This is larger than the separate data buffer size!!! Then why use it…??? 



Attribute Structures (3) 

• Why use a more “wasteful” indexing? 
– The particular cube example is an extreme case that reuses 

many data 
– Most typical objects have attribute buffers of comparable 

length 
– But most importantly: 

• Using a single per vertex index, abstracts the data 
that a vertex carries!  
– The triangle (i.e. connectivity) structure does not have to 

care about how many attributes each vertex has 



A More Typical Indexed Mesh  

• Using unindexed triangles 
(positions+normals): 

    3,596,688 bytes 
• Using separate attribute 

buffers: 
    1,867,560 bytes 
• Using a single vertex object 

buffer:  
    1,268,112 bytes 



Level of Detail (1) 

• For distant/small versions of objects, detail is lost, i.e. 
cannot be sufficiently sampled and displayed 

• There is no point in attempting to display rich detail if 
we are not going to see it!  waste of bandwidth 
and processing power 



Level of Detail (2) 

20,000 Triangles                3,000 Triangles                   1,500 Triangles 

We generate lower resolution 
versions (levels of detail) and 
use the most appropriate 
ones according to distance or 
scale 



LOD – Selection (1) 

• The selection criteria of a LOD must answer the 
question: 
– What is the simplest LOD for which no visual artifacts 

appear? 
– Sometimes, in order to be more aggressively efficient, we 

allow artifacts to become noticeable, or 
– Completely disable the rendering of an object 

• Criteria usually map the expected on-screen scale of 
an object (in pixels) to a LOD 



LOD – Selection (2) 

• Sometimes, we allow LODs to coexist  blending 
between different levels 



Image-based Rendering: Proxies (1) 

• For distant or simply too many repeated objects, it is 
not efficient to approximate certain LODs with 
polygonal models 

• We can use polygonal proxies (billboards, fins etc.) to 
“host” an image representation of the object, often 
with transparency   



Image-based Rendering: Proxies (2) 

http://nickporcino.com/meshula-net-archive/posts/post119.html 
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– T. Theoharis, G. Papaioannou, N. Platis, N. M. Patrikalakis, 

Graphics & Visualization: Principles and Algorithms, CRC 
Press 
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