
COMPUTER GRAPHICS COURSE

Georgios Papaioannou - 2014

Geometry Representation

http://www.soulty.com

How do we Represent our World?

• In general, the mathematical world we display in
graphics consists of entities describing:
– The geometry of the surface of objects
– The volume of the space inside and outside the surfaces
– The energy (light) that is transmitted
– The materials (substance qualities) the energy interacts

with
– The spatial relationships of entities
– The dynamics of all the above (motion)

Representing Geometry - Surfaces

• In most cases, we are interested in displaying
surfaces, i.e. the “shell” of 3D objects that is the
interface between one medium and another

• They are 2D embeddings in a 3D space

• This is because most lighting “events” occur on or

near this interface

In rendering, we are usually interested in the surface of an object

Representing Geometry - Volume

• The volume of a 3D entity becomes important when
light interacts with it as it travels though the medium

• Most objects are opaque, absorbing the transmitted
light fast

• However, the rendering of important light scattering
phaenomena must take into account transmission
through dense media such as:
– Clouds, smoke, wax, milk etc.
– These are expressed as volumetric data, i.e. data defined

everywhere inside a boundary surface

Representing Geometry - Curves

• 2D/3D curves are by definition infinitesimally thin
and insubstantial, and therefore non-renderable per
se.

• They are 1D embeddings in 2D or 3D space
• They are used in graphics to define boundaries,

trajectories and higher-dimension entities (e.g.
parametric surfaces)

• We sometimes “plot” the curves, i.e. approximate
them by pixels (of non-zero area) on an image plane

Representing Geometry - Points

• Points (isolated vertices) in 3D and 2D
space are sometimes drawn to represent:
– Scattered data of variable density
– “very small” (sub-pixel) objects, such as

particles

• We typically use these in massive
quantities to approximate either surface
data or volume data (a processes called
point-based rendering)

• Points are not necessarily rendered as
single pixels

 http://www-sop.inria.fr/reves/Basilic/2005/BDS05/

Surfaces

• Surfaces are composed or modelled via an
aggregation of surface elements

• These elements can be:
– Curved parametric patches
– Flat polygons  usually triangles

• An organization of a surface into connected
polygonal surface elements is called a mesh

Mesh Example

Triangle Meshes

• The most common type of
polygonal mesh
representation

• Very convenient to use in
real-time rendering!

The Ingredients of Meshes

• What are their data?
– Flat elements approximating both curved and flat surfaces

• Where are they?
– Vertices of triangles (points on the plane or in space)

• What is their shape?
– Connectivity among vertices defines the structure of the

mesh

• How do they look?
– Material and shading attributes per vertex – interpolated /

predicted inside each triangle

The Triangle

• A set of three (ordered) vertices (points in space)
• Connectivity:

– Implied by order of points or
– Given explicitly

 𝐩𝐩0

𝐩𝐩1

𝐩𝐩2

The triangle’s “normal” vector
𝐧𝐧 = (𝑎𝑎, 𝑏𝑏, 𝑐𝑐)

The triangle’s plane
𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 + 𝑑𝑑 = 0

Triangles - Useful Properties

• Minimal: The most elementary surface shape (3
points define an oriented plane)

• Always convex!
– This is not true for generalized n-gons
– A very useful property in calculations: its boundary

coincides with its convex hull

• Any other polygon can be decomposed into a set of
triangles!

Linear Combinations on the Plane

• Any point on the plane of the triangle can be
uniquely written as a linear combination of the three
triangle vertices. In fact:

• For any number k of vectors and scalar coefficients:

 is their linear combination 𝐪𝐪 = �𝑎𝑎𝑖𝑖𝐯𝐯𝑖𝑖

𝑘𝑘

𝑖𝑖=1

Representing the Triangle Interior

• Given the three triangle vertices (corners), any point
inside the triangle (both in 2D and 3D) can be
expressed as an affine combination of them

• This is an important property that translates to:
– We only need the three corners of a triangle to fully

describe its interior

• Relates to the topic of “affine transformations”

• To interpolate parameters across a triangle we need
to find the set of (unique) parameters 𝑢𝑢, 𝑣𝑣,𝑤𝑤 that
define 𝐪𝐪 as the linear combination of all 3 vertices

𝐪𝐪 = 𝑤𝑤𝐩𝐩0 + 𝑢𝑢𝐩𝐩1 + 𝑣𝑣𝐩𝐩2
• All vertex attributes can be linearly interpolated at

arbitrary locations on the plane using these
barycentric coordinates

Barycentric Coordinates

p0 p1

q

p2

w
u

v

Barycentric Coordinates - Usage

• Barycentric coordinates are extremely useful in
triangle rendering, as they are used for:
– Interpolating triangle properties for arbitrary points inside

the triangle
– Performing point containment tests for various primitive

intersection tests

Interpreting Barycentric Coordinates (1)

• They form a parametric
space of:
– two independent

parameters (𝑢𝑢, 𝑣𝑣)
– One dependent

parameter
 (𝑤𝑤 = 1 − 𝑢𝑢 − 𝑣𝑣)

𝐩𝐩1

𝐩𝐩2

𝐩𝐩0
(0,0,1)

(0,1,0)

(1,0,0)

𝑢𝑢 + 𝑣𝑣 = 1

𝑢𝑢

𝑣𝑣

• All points with:
𝑢𝑢 > 0 𝐴𝐴𝐴𝐴𝐴𝐴 𝑣𝑣 > 0 𝐴𝐴𝐴𝐴𝐴𝐴 𝑤𝑤 > 0

 Lie inside the triangle

• Geometric properties:
– Barycentric coordinates equal the ratio of triangle areas formed by the

opposite side and the query point against the total triangle area
– Can be exploited to computed them:

Interpreting Barycentric Coordinates (2)

total

v

total

u

A
Av

A
Auvuw ==−−= ,,1

𝐩𝐩0

𝛢𝛢𝑤𝑤
𝛢𝛢𝑢𝑢

𝛢𝛢𝑣𝑣

q w
u

v


𝐩𝐩1

𝐩𝐩2

𝐩𝐩0 𝐩𝐩1

𝐩𝐩2

Finding the Barycentric Coordinates (1)

• Let 𝐩𝐩𝑖𝑖 = 𝑥𝑥𝑖𝑖 ,𝑦𝑦𝑖𝑖 , 𝑧𝑧𝑖𝑖 , 𝑖𝑖 = 0. . 2 the triangle vertices
and 𝐪𝐪 = 𝑥𝑥𝑞𝑞 ,𝑦𝑦𝑞𝑞 , 𝑧𝑧𝑞𝑞 the query point. Then:
 𝑤𝑤𝑥𝑥0 + 𝑢𝑢𝑥𝑥1 + 𝑣𝑣𝑥𝑥2 = 𝑥𝑥𝑞𝑞

𝑤𝑤𝑦𝑦0 + 𝑢𝑢𝑦𝑦1 + 𝑣𝑣𝑦𝑦2 = 𝑦𝑦𝑞𝑞
𝑤𝑤𝑧𝑧0 + 𝑢𝑢𝑧𝑧1 + 𝑣𝑣𝑧𝑧2 = 𝑧𝑧𝑞𝑞

𝑤𝑤=1−𝑢𝑢−𝑣𝑣
𝑥𝑥0 + 𝑢𝑢(𝑥𝑥1−𝑥𝑥0) + 𝑣𝑣(𝑥𝑥2−𝑥𝑥0) = 𝑥𝑥𝑞𝑞
𝑦𝑦0 + 𝑢𝑢(𝑦𝑦1−𝑦𝑦0) + 𝑣𝑣(𝑦𝑦2−𝑦𝑦0) = 𝑦𝑦𝑞𝑞
𝑧𝑧0 + 𝑢𝑢(𝑧𝑧1−𝑧𝑧0) + 𝑣𝑣(𝑧𝑧2−𝑧𝑧0) = 𝑧𝑧𝑞𝑞

𝑢𝑢(𝑥𝑥1−𝑥𝑥0) + 𝑣𝑣(𝑥𝑥2−𝑥𝑥0) = 𝑥𝑥𝑞𝑞 − 𝑥𝑥0
𝑢𝑢(𝑦𝑦1−𝑦𝑦0) + 𝑣𝑣(𝑦𝑦2−𝑦𝑦0) = 𝑦𝑦𝑞𝑞 −𝑦𝑦0 ⇔

(𝑥𝑥1−𝑥𝑥0) (𝑥𝑥2−𝑥𝑥0)
(𝑦𝑦1−𝑦𝑦0) (𝑦𝑦2−𝑦𝑦0)

𝑢𝑢
𝑣𝑣 =

𝑥𝑥𝑞𝑞 − 𝑥𝑥0
𝑦𝑦𝑞𝑞 −𝑦𝑦0

Dropping the coordinate line with the “least precision” *, say here z :

* To be discussed during course

Finding the Barycentric Coordinates (2)

• Using Cramer’s rule, we can solve the 2X2 linear
system analytically to obtain 𝑢𝑢, 𝑣𝑣 and therefore 𝑤𝑤

𝑢𝑢 =

(𝑥𝑥𝑞𝑞−𝑥𝑥0) (𝑥𝑥2−𝑥𝑥0)
(𝑦𝑦𝑞𝑞−𝑦𝑦0) (𝑦𝑦2−𝑦𝑦0)
(𝑥𝑥1−𝑥𝑥0) (𝑥𝑥2−𝑥𝑥0)
(𝑦𝑦1−𝑦𝑦0) (𝑦𝑦2−𝑦𝑦0)

=
𝑥𝑥𝑞𝑞 − 𝑥𝑥0 𝑦𝑦2 − 𝑦𝑦0 − (𝑦𝑦𝑞𝑞 − 𝑦𝑦0)(𝑥𝑥2 − 𝑥𝑥0)
𝑥𝑥1 − 𝑥𝑥0 𝑦𝑦2 − 𝑦𝑦0 − (𝑦𝑦1 − 𝑦𝑦0)(𝑥𝑥2 − 𝑥𝑥0)

𝑣𝑣 =

(𝑥𝑥1−𝑥𝑥0) (𝑥𝑥𝑞𝑞−𝑥𝑥0)
(𝑦𝑦1−𝑦𝑦0) (𝑦𝑦𝑞𝑞−𝑦𝑦0)
(𝑥𝑥1−𝑥𝑥0) (𝑥𝑥2−𝑥𝑥0)
(𝑦𝑦1−𝑦𝑦0) (𝑦𝑦2−𝑦𝑦0)

=
𝑥𝑥1 − 𝑥𝑥0 𝑦𝑦𝑞𝑞 − 𝑦𝑦0 − (𝑦𝑦1 − 𝑦𝑦0)(𝑥𝑥𝑞𝑞 − 𝑥𝑥0)
𝑥𝑥1 − 𝑥𝑥0 𝑦𝑦2 − 𝑦𝑦0 − (𝑦𝑦1 − 𝑦𝑦0)(𝑥𝑥2 − 𝑥𝑥0)

𝑤𝑤 = 1 − 𝑢𝑢 − 𝑣𝑣

Mesh Data Representation and Storage

• (Triangle) meshes are collections of triangles
• Can be:

– A set of disjoint, independent triangles (a triangle “soup”)
– A set of vertices “shared” among triangles, given a set of

“connections”:

T0

T1
T2

T3

T4
T5

T6
T7

Triangle Representation (1)

• Triangle data are typically stored in:
– Self-contained triangle arrays
– Indexed attribute arrays

• Vertex attributes:
– All data related to a single vertex of a triangle
– These include at least the position of each vertex
– May include additional data such as color, per vertex

normal vector, texture coordinates, user-defined variables
etc

• Per triangle attributes:
– Data associated to the entire triangle (e.g. material,

geometric normal etc)

Triangle Data: An Example (1)

class Triangle
{
 float vertex[3][3]; // 3 vertices X 3 coords
 float vertex_normal[3][3]; // 3 vertices X 3 coords
 float vertex_color[3][3]; // 3 vertices X 3 components
 float plane_normal [3]; // xyz
 class Material * p_mat; // pointer to material data
};

Shared material: many triangles use the same material,
so the triangle only points to this single material instance

Can I do better?

Per vertex attributes

Triangle Data: An Example (2)

• Can I do better?
– Observe that many vertices are repeated in the triangle

data:

• We can save significant storage and bandwidth (this

will become important later – see real-time graphics)
if we:
– Keep per vertex attribute data separately
– Index the vertex attributes

Triangle Data: An Example (3)

class Triangle
{
 unsigned int v_index[3]; // 3 vertices X 1 index
 unsigned int n_index[3]; // 3 vertices X 1 index
 unsigned int c_index[3]; // 3 vertices X 1 index
 float plane_normal [3]; // xyz
 class Material * p_mat; // pointer to material data
};

Per vertex attributes

Triangle Data: Attribute Buffers

• Now we can have separate attribute buffers of
different size:

12 triangles, indexing:

8 vertices

6 normals

1 color

Unindexed vs Indexed Data

• Memory savings from this indexing (cube example):
– Cost for per vertex data in unindexed cube triangles:
 27 floats (4 bytes each) X 12 triangles = 1296 bytes
– Cost for per vertex data in indexed cube triangles:
 9X12 integer indices (4 bytes each) = 432 bytes
 8 vertices X 3 floats = 96 bytes
 6 normals X 3 floats = 72 bytes
 1 color X 3 floats = 12 bytes
 total: 612 bytes

Attribute Structures (1)

• In this example, we waste a lot of memory in
indexing

• Alternatively, we could use a per vertex structure and
index a single array of vertex objects:

class Triangle
{
 unsigned int index[3]; // 3 vertices X 1 structure index
 float plane_normal [3]; // xyz
 class Material * p_mat; // pointer to material data
};

Attribute Structures (2)

• Now we have a single attribute buffer:

12 triangles, indexing:

24 structures

Total bytes: 144 (indices) + 864 (data) = 1008 bytes

This is larger than the separate data buffer size!!! Then why use it…???

Attribute Structures (3)

• Why use a more “wasteful” indexing?
– The particular cube example is an extreme case that reuses

many data
– Most typical objects have attribute buffers of comparable

length
– But most importantly:

• Using a single per vertex index, abstracts the data
that a vertex carries!
– The triangle (i.e. connectivity) structure does not have to

care about how many attributes each vertex has

A More Typical Indexed Mesh

• Using unindexed triangles
(positions+normals):

 3,596,688 bytes
• Using separate attribute

buffers:
 1,867,560 bytes
• Using a single vertex object

buffer:
 1,268,112 bytes

Level of Detail (1)

• For distant/small versions of objects, detail is lost, i.e.
cannot be sufficiently sampled and displayed

• There is no point in attempting to display rich detail if
we are not going to see it!  waste of bandwidth
and processing power

Level of Detail (2)

20,000 Triangles 3,000 Triangles 1,500 Triangles

We generate lower resolution
versions (levels of detail) and
use the most appropriate
ones according to distance or
scale

LOD – Selection (1)

• The selection criteria of a LOD must answer the
question:
– What is the simplest LOD for which no visual artifacts

appear?
– Sometimes, in order to be more aggressively efficient, we

allow artifacts to become noticeable, or
– Completely disable the rendering of an object

• Criteria usually map the expected on-screen scale of
an object (in pixels) to a LOD

LOD – Selection (2)

• Sometimes, we allow LODs to coexist  blending
between different levels

Image-based Rendering: Proxies (1)

• For distant or simply too many repeated objects, it is
not efficient to approximate certain LODs with
polygonal models

• We can use polygonal proxies (billboards, fins etc.) to
“host” an image representation of the object, often
with transparency

Image-based Rendering: Proxies (2)

http://nickporcino.com/meshula-net-archive/posts/post119.html

Contributors

• Georgios Papaioannou

• Sources:
– T. Theoharis, G. Papaioannou, N. Platis, N. M. Patrikalakis,

Graphics & Visualization: Principles and Algorithms, CRC
Press

	Slide Number 1
	How do we Represent our World?
	Representing Geometry - Surfaces
	Representing Geometry - Volume
	Representing Geometry - Curves
	Representing Geometry - Points
	Surfaces
	Mesh Example
	Triangle Meshes
	The Ingredients of Meshes
	The Triangle
	Triangles - Useful Properties
	Linear Combinations on the Plane
	Representing the Triangle Interior
	Barycentric Coordinates
	Barycentric Coordinates - Usage
	Interpreting Barycentric Coordinates (1)
	Interpreting Barycentric Coordinates (2)
	Finding the Barycentric Coordinates (1)
	Finding the Barycentric Coordinates (2)
	Mesh Data Representation and Storage
	Triangle Representation (1)
	Triangle Data: An Example (1)
	Triangle Data: An Example (2)
	Triangle Data: An Example (3)
	Triangle Data: Attribute Buffers
	Unindexed vs Indexed Data
	Attribute Structures (1)
	Attribute Structures (2)
	Attribute Structures (3)
	A More Typical Indexed Mesh
	Level of Detail (1)
	Level of Detail (2)
	LOD – Selection (1)
	LOD – Selection (2)
	Image-based Rendering: Proxies (1)
	Image-based Rendering: Proxies (2)
	Contributors

