
COMPUTER GRAPHICS COURSE

Georgios Papaioannou - 2017

Basic Animation

https://gr.pinterest.com/jkrjr/pleasures-or-vices/

FUNDAMENTAL CONCEPTS

Introduction

• Computer animation: “life” given by presenting a sequence of
still images (frames) in rapid succession:

– Sufficiently high rate  HVS perceives them as smooth
motion or animation

• Minimum rate required for smooth motion ≈ 12 fps:

– Below that, motion appears jerky

• In general, the frames-per-second (fps) limit is not constant; it
depends on speed of movement of the objects as well as on
illumination parameters

“Tweening” and Key Frames

• Traditionally, most cartoon animation
was performed by tweening, the
drawing of frames in-between key-
frames

• A key frame is a characteristic (or key)
snapshot of the animation sequence
that contains a significant stance of
the moving geometry or imagery

Image source: http://rebloggy.com/post/animation-little-witch-academia-little-witch-academy-studio-trigger/47083677471

Computer-based Key Frame Animation

• In computer animation, key frames hold either directly the
vertex data of the geometry or the parameters of higher-level
entities (the simplest being transformation parameters)

• The data are interpolated using any available or suitable
method (linear, spline, etc.)

Tweening and Animation Parameters

• Typical animations require a lot of parameters if tweening is
performed at a low representation level

Animation Control Methods

• Impossible for an animator to define every animation variable
for every frame; animation control methods have been
developed

• Examples:

– Hierarchical mesh deformation techniques

– Procedural and representational methods for animating
rigid bodies

– Physics and collision-driven approaches

– Skeletal animation for animating human-like or animal-like
characters

Animation Control Methods

• These methods use common low level techniques such as:
– Interpolation,

– Collision detection

– Motion blur

• Higher level animation control methods examined:
– Rigid body animation

– Skeletal animation

– Deformable models

– Particle systems

Procedural Animation

• The encapsulation of the animation of an object in a
procedure:
– Animation sequences can automatically be generated, often in real-

time

– Particle systems: Largest subclass of procedural animation

– Rigid body and Skeletal animation: Can also be done procedurally

– Behavioral animation: Subclass of procedural animation where objects
determine their own actions, taking into account their environment

LOW-LEVEL ANIMATION TECHNIQUES

A Lower Layer of Tools

• Interpolation techniques: Means by which computer takes
over the task of tweening

• Collision detection: Essential for realism by detecting when
moving objects collide so that appropriate action can be taken

• Anti-aliasing in time (Motion blur): essential to most
animations

• Morphing: Allows smooth transition from one graphical object
to another (in a # of frames)

Interpolation

• Animation uses interpolation to do the tweening work
automatically

• Extreme values of the animation variables are specified by the
user

• Values of animation variables are linked to frames of the
animation:

– Since there is a 1-1 mapping between frames & time,
animation variables are linked to time

• Use parametric functions 𝑓(𝑡) to interpolate the animation
variables between extreme values, e.g. 𝐩(𝑡0) and 𝐩(𝑡1),
which become the interpolation control points

Interpolation – Simple Example

Choosing the Right Animation Variable

• Care must be taken in selecting the variables to be
interpolated :

– Importance of animation variable selection, e.g.: Choosing
(a) the endpoint and (b) the rotation angle as animation
variable

Interpolation and Control Points

• Interpolation is based on a parameter 𝑡 representing time

• Key frame values are control points for the animation

• They form time-value pairs, e.g.: (𝑡0, 𝑣0), (𝑡1, 𝑣1)

• Control points are not in general equidistant in the time
domain:

• Interpolation functions pass through the interpolation control
points, so 𝑓 𝑡0 = 𝑣0, 𝑓 𝑡1 = 𝑣1 for some 𝑡0 , 𝑡1

𝑡

𝑣

𝑡0 𝑡1 𝑡2

𝑡3

𝑣0
𝑣1

𝑣2

𝑣3

Linear Interpolation

• Simplest form of interpolation

• For two key points (𝑡0, 𝑣0), (𝑡1, 𝑣1):

𝑣 = 𝑣0 1 − 𝑠 + 𝑣1𝑠, 𝑠 =
𝑡 − 𝑡0
𝑡1 − 𝑡0

• For larger key point sequences, 𝑡0 and 𝑡1 are replaced with
the nearest time stamps 𝑡𝑝𝑟𝑒𝑣 and 𝑡𝑛𝑒𝑥𝑡 that 𝑡 falls between:

𝑡𝑝𝑟𝑒𝑣 ≤ 𝑡 < 𝑡𝑛𝑒𝑥𝑡

Linear Interpolation

• Good for:

– Interpolating any value in dense key frame sets

– Linear motions

– Linear state transitions of animation control variables (e.g.
Euler rotation angles)

• Bad for:

– Sparse interpolation of positional data

– Interpolation of dramatic pose changes

Bezier Interpolation

• Quadratic Bezier function interpolates between control values
𝑣0 and 𝑣2 using an extra value 𝑣1 as an attractor:

• The nth degree Bezier function interpolates between 𝑣0 and
𝑣𝑛 using 𝑛 − 1 attractor values 𝑣𝑖, 𝑖: 1…𝑛 − 1

•

2 2 2

0 1 2() (1) 2 (1) 1 [0,]B t t v t t v t v t     

Other Parametric Interp. Functions

• Functions of parametric curves 𝐗(𝑡) are good interpolation
functions:

– Their tangent vector 𝐗′(𝑡) defines velocity  useful when
used to describe motion

– The arc length travelled along such a curve function can be
computed by integrating velocity

• Caution: In general arc length travelled is not proportional to
the time parameter 𝑡:

– Can not use constant differences of 𝑡 to get constant arc
lengths of travel

– If this is desired, arc-length reparameterization (*) of a
curve is required

(*) See for example notes: http://www.personal.psu.edu/sxj937/Notes/Reparametrization.pdf

Curve Reparameterization Example

Control points 𝐹(𝑡), equidistant 𝑡 samples 𝐹(𝑠), equidistant 𝑠 samples

Interpolating Rotations

• Suppose we express an arbitrary rotation as a synthesis of 3
basic rotations

• Animate this by gradually incrementing θx, θy , θz 
problems:

– Rather difficult to estimate basic rotation angles that make
up the required rotation about an arbitrary axis

– Encounter a “twisting” motion, as the rotations are applied
sequentially & the object seems to rotate alternately
about the 3 axes

– Encounter a phenomenon known as gimbal lock

 () () ()x x y y z z   R R R

Gimbal Lock Example

This particular sequence of rotations causes rotation around the x axis to be

countered by rotation around the z axis

Quaternions

• Used as an alternative way to express rotation

• A quaternion consists of 4 real numbers: 𝐪 = (𝑠, 𝑥, 𝑦, 𝑧)

– 𝑠 scalar part of quaternion 𝐪

– 𝐯 = (𝑥, 𝑦, 𝑧) vector part of quaternion 𝐪

• Alternative representation: 𝐪 = (𝑠, 𝐯)

• Can be viewed as an extension of complex numbers in 4D:

– Using “imaginary units” 𝑖, 𝑗 and 𝑘 such that: 𝑖2 = 𝑗2 =
𝑘2 = −1 and 𝑖𝑗 = 𝑘, 𝑗𝑖 = −𝑘 and so on by cyclic
permutation, quaternion q may be written as:

𝐪 = 𝑠 + 𝑥𝑖 + 𝑦𝑗 + 𝑧𝑘

Quaternions

• A real number 𝑢 corresponds to the quaternion: 𝐪 = (𝑢, 𝟎)

• An ordinary vector 𝐯 corresponds to the quaternion: 𝐪 =
(0, 𝐯)

• A point 𝐩 corresponds to the quaternion: 𝐪 = (0, 𝐩)

Properties of Quaternions (1)

• Addition between quaternions:

• Multiplication between quaternions:

• Multiplication is associative

• Multiplication is not commutative

1 2 1 1 2 2 1 2 1 2(,) (,) (,)q q s v s v s s v v     

1 2 1 2 1 2 1 2 2 1 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

· (· ,)

(, ,

,)

q q s s s s

s s x x y y z z s x x s y z z y

s y y s z x x z s z z s x y y x

     

     

     

v v v v v v

Properties of Quaternions (2)

• The conjugate quaternion of q is defined as:

• It holds that:

• The norm of 𝑞 is defined as:

(,)q s v

1 2 2 1· ·q q q q

2 22 2 2 2 2 · ·q q q q q s s x y z       v

Properties of Quaternions (3)

• It holds that: 𝑞1 ∙ 𝑞2 = 𝑞1 × 𝑞2

• A unit quaternion is one whose norm:

• The inverse quaternion of q is defined as:

• It holds that:

• If then

1q 

1

2

1
q q

q

 

1 1· · 1q q q q  

1q  1q q 

Quaternion-based Rotations

• Quaternion rotation is more stable, requires fewer
calculations & consecutive rotations can be handled in a
smooth way

• Two extreme positions of the rotation can be represented by
2 unit quaternions:

• corresponding to the initial position and

• corresponding to the position after

rotation by 𝜃 around

0 (1,) q  0

1
ˆ(sin , cos)

2 2
q

 
 n

n̂

*

See proof in [TP*10]

Applying Quaternion Rotations

• The quaternion rotation 𝑞 = (𝑐𝑜𝑠
𝜃

2
, 𝑠𝑖𝑛

𝜃

2
𝐧) = (𝑠, 𝐯) can be

applied to a point 𝐩 in quaternion form as:

𝑝′ = 𝑞 ∙ 𝑝 ∙ 𝑞−1 = 𝑞 ∙ 𝑝 ∙ ത𝑞

p = (0, p)

• Thus: 𝑝′ = 0, 𝑠2 − 𝐯 ∙ 𝐯 𝐩 + 2𝐯 𝐯 ∙ 𝐩 + 2𝑠 𝐯 × 𝐩

Rotated point

Composite Rotations with Quaternions

• Expressing 2 consecutive rotations:

• The composite rotation is represented by the unit quaternion:
𝑞 = 𝑞2𝑞1

• Quaternion multiplication is simpler, requires fewer
operations and is numerically more stable than rotation
matrix multiplication

2 1 1 2 2 1 1 2 2 1 2 1·(· ·)· (·)· ·(·) (·)· ·(·)q q q q q q q q q q q q p p p

Converting to and from Quaternions (1)

• Given a quaternion 𝑞 = 𝑠, 𝑥, 𝑦, 𝑧 , the corresponding rotation
matrix is:

Converting to and from Quaternions (2)

• Given a rotation matrix:

• The corresponding quaternion 𝑞 = 𝑠, 𝑥, 𝑦, 𝑧 is:

Converting to and from Quaternions (3)

• If s is near zero (or zero), a different set of values for the
quaternion vector part can be used:

Interpolating Quaternions

• Linear interpolation between these 2 quaternions will not
produce expected smooth rotation between the 2 positions:

– Instead a motion that would accelerate towards the
middle

• Geometrically, unit quaternions representing rotations lie on
the surface of the 4-D unit hypersphere  linear interpolation
interpolates on the chord through them

Spherical Linear Interpolation

• Smooth interpolation of the rotation can be achieved by
performing spherical linear interpolation (slerp):

– Interpolation on the surface of the 4D unit hypershpere,
along the great arc between 𝐪0 and 𝐪1:

– where 𝜔 = 𝜃/2, 𝜃 the angle between the two directions

0 1

sin(1) sin
() , [0,1]

sin sin
S

t t
q t q q t

 

 


  

COLLISION DETECTION

Introduction

• At a coarse level, the objective of collision detection is to find
pairs of objects which potentially intersect

• At a next level, collision detection determines:

– if a pair of objects truly intersects

– the intersection locus (point, edge, surface)

Introduction

• When objects collide:

– We want to avoid inter-penetrations between solid/rigid
objects

– Respond according to Newton's third law of motion (see
physics simulation)

Newton’s third law of motion:

When one body exerts a force on a second body, the

second body simultaneously exerts a force equal in

magnitude and opposite in direction on the first body.

Applications

• Determine collision and hit events in 2D and 3D computer
games (that subsequently cause changes in the gameplay and
animation sequences)

• Determine interaction
points and surfaces in
physics simulation

Strategies – Continuous (a Priori)

• Consider a sweep volume as the object moves (or evolves in
time) between two frames

– Accurate collision

– Very expensive to compute, especially for non-convex
objects

Strategies – Discrete (a Posteriori)

• Sample the time interval and test instances of the animated
object(s) at them for intersection

– Flexible and cheaper – favored in real-time applications

– Can miss intersections
Missed

intersection!

Improving Discrete Collisions

• Sampling interval can be refined based on intersection test
results!

• Example:

Ideal

collision

sample

𝐩(𝑡0)

𝐩(𝑡0 + Δ𝑡)

𝐩(𝑡0 + 2Δ𝑡)

𝐩(𝑡0 + 3Δ𝑡)

𝐪

𝐧

Infinite plane (𝐪,𝐧)Missed

collision

Time Test: (𝐩 − 𝐪) ∙ 𝒏

𝑡0
𝑡0 + Δ𝑡
𝑡0 + 2Δ𝑡

> 𝑒
> 𝑒
< 𝑒 (but not yet negative: Too close)

Indication that steps

must be refined! 

Adaptive sampling

Collision Detection Complexity

• In general, for 𝑁 objects, 𝑂(𝑁2) tests have to be made among
them

• Each test entails 𝑂(𝑀𝑖 ∙ 𝑀𝑗) primitive intersection tests,

where 𝑀𝑖 , 𝑀𝑗 the number of primitives of the two objects

• How to improve this:

– Limit 𝑁 (collision detection is not required between all
object combinations)  collision groups

– Perform hierarchical tests

– Make Object-object or primitive-primitive tests really
cheap

Bounding Volume Hierarchies (1)

Preprocessing:

• Hierarchically group collision targets in clusters

• Find (convex) bounds for each cluster

• This bounding volume will serve as approximate collider for
the cluster

• Keep grouping clusters in hierarchies

Run time, follow a branch and bound approach:

• Perform collision detection on high-level hierarchy nodes

– If successful, proceed to check lower hierarchy levels

– Otherwise, skip subtrees

Bounding Volume Hierarchies (2)

• Simple mathematical primitives such as spheres and boxes are
used as bounding volumes

• Often, the bounds are manually placed or adjusted

– Automatic bounds calculation does not know to dismiss
soft or insignificant detail parts

• BVHs are also ideal for articulated models. They can follow the
same structure and animation

SKELETAL ANIMATION

Skin and Bones

• We can think of a mesh as a “skin” that is wrapped around an
animated skeleton

• The skeleton is a hierarchy of linked joints or “bones”

Skeletal Animation Principle

• The surface is smoothly animated by:

– Assigning dependence weights of mesh vertices to bones
(which joints the vertices “stick” to)

– Rigidly animating the bones

– Interpolating the motion of the skin from the bones

A Simple Kinematic Chain (1)

• Let us define a simple chain of
dependent “joint” nodes 𝐩𝑗, each one

being associated with its parent via a
(rigid) transformation 𝐌𝑗 = 𝐓𝑗𝐑𝑗

• Node 0 is expressed relative to the
object’s (or world) reference frame,
so:

𝐩0 = 𝐌0 ∙ 𝟎
𝐩𝑗= 𝐌𝑗 ∙ 𝐩𝑗−1= 𝐌0𝐌1…𝐌𝑗 ∙ 𝟎

𝐌𝐼𝑛𝑖𝑡(𝑗)

𝐌0

𝐌1

𝐌𝑗

𝐩𝑗

𝐩1

𝐩0

𝟎

A Simple Kinematic Chain (2)

• If we initially know the positions 𝐩𝑗 and

no other transformation is applied, then

• 𝐌𝐼𝑛𝑖𝑡(𝑗) = 𝐓𝐩0 ∙ 𝐓𝐩1−𝐩0 ⋯𝐓𝐩𝑗−𝐩𝑗−1 = 𝐓𝐩𝑗

• 𝐌𝐼𝑛𝑖𝑡(𝑗) expresses a point from the local

reference frame of node j (centered at 𝐩𝑗)

to the global reference frame

• Conversely, 𝐌𝐼𝑛𝑖𝑡(𝑗)
−1 takes an arbitrary

vertex from the global coordinate system
and expresses it relative to 𝐩𝑗

𝐌0

𝐌1

𝐌𝑗

𝐩𝑗

𝐩1

𝐩0

𝟎

A Simple Kinematic Chain (3)

• So, given an arbitrary vertex 𝐯𝑖 on
the mesh to be animated, it can be
expressed relative to node 𝐩𝑗 using

𝐌𝐼𝑛𝑖𝑡(𝑗)
−1 :

• 𝐯𝑖 𝑗 = 𝐌𝐼𝑛𝑖𝑡(𝑗)
−1 ∙ 𝐯𝑖

𝐩𝑗

𝐯𝑖
𝐯𝑖(𝑗)

𝟎

Animating the Joints

• Typically an articulated structure is
animated by recalculating a new local
rigid motion 𝐌𝑗

′ at each animation

frame

• Then the changed position of each
node and the respective local
coordinate frame is defined w.r.t. the
global system by the transformation:

𝐌𝐺𝑙𝑜𝑏𝑎𝑙(𝑗) = 𝐌0
′𝐌1

′ ⋯𝐌𝑗
′

𝟎𝟎

𝐌𝑗
′

𝐌1
′

𝐩0
′

𝐌0
′

𝐩𝑗
′

𝐩1
′

Animating the Skin Vertices

• To find the new position 𝐯𝑖
′ of the 𝑖-th

dependent skin vertex, we simply:

– Express it in local joint coordinates

– Apply the new global chain
transformation

𝐯𝑗
′ = 𝐌𝐺𝑙𝑜𝑏𝑎𝑙(𝑗) ∙ 𝐌𝐼𝑛𝑖𝑡(𝑗)

−1 ∙ 𝐯𝑗

𝟎𝟎

𝐌𝑗
′

𝐌1
′

𝐩0
′

𝐌0
′

𝐩𝑗
′

𝐩1
′

𝐯𝑖
′

𝐂𝑗

• 𝐂𝑗 is computed for every joint once per frame and reused

for all vertices associated with the j-th joint

Soft Skinning

• If we exclusively assign each skin vertex to a joint, the
resulting animated mesh will be very rigid and abrupt folds
will be formed at the joints (usually with mesh self-
intersections)

• We clearly want a gradual transition of the effect of each joint
across the skin to result in a smooth deformation

• Solution:

– Each vertex depends on multiple (usually adjacent) joints
with a weighted contribution from each one

Vertex Weights

• Assume we have 𝑁 joints in total and each vertex is allowed
to be affected by max 𝑀 of them

– Bounding 𝑀 to a small value (e.g. 4) facilitates the GPU
implementation of the procedure

• Each vertex then depends on the corresponding joints using a
set of (convex) weights:

• This in turn means that the rigid motion of a skeletal joint
affects multiple vertices in a different degree of influence

𝑤𝑘 ≥ 0 𝑘 = 1…𝑀,෍

𝑘=1

𝑀

𝑤𝑘 = 1

Indexing the Joints

• For each weight 𝑤𝑘, we also need to keep track which one of
the 𝑁 bones is the 𝑘-th one used by vertex 𝑖

• So, each skin vertex is accompanied by:

– A table of 𝑀 precomputed weights 𝑤𝑘

– A table of (integer) associations 𝑗(𝑘) between 𝑘 and the ID
𝑗 of the referenced joint in the (global) array of joints

𝑤1

𝑤2

𝑤3

𝑗(1)

𝑗(2)

𝑗(3)

Position and

other vertex

data

Skinning

data

𝐯0

𝑤1

𝑤2

𝑤3

𝑗(1)

𝑗(2)

𝑗(3)

𝐯1

…

𝐂0

𝐂1

𝐂𝑁𝑀 =3

⋮

Joint array (updated per frame)

Weighted Vertex Animation

• Given now:

– The skin vertices at rest pose 𝐯𝑖
– the joint weights 𝑤𝑘 and indices 𝑗(𝑘),

• The final updated position 𝐯𝑖
′ of each skin vertex is:

𝐯𝑖
′ = ෍

𝑘=1

𝑀

𝑤𝑘𝐂𝑗 𝑘 ∙ 𝐯𝑖

Weight Selection

• Weights are usually assigned manually or

• Assisted by automatic weight pre-calculation:

– Method A (Nearest neighbors)
• Non zero weights for closest 2 bones of each vertex

• Weighting according to distance

– Method B (Envelope)
• For each bone pair, assign a (unit) weight to each vertex it

encounters within an area of effect (power envelop)

• Normalize weights for each vertex (unit sum)

Weight Selection and Rest Pose (1)

• Bones need to be initially arranged as far
apart as possible (min. interference)

• Rest pose: Crucifixion with spread
appendages.

Weight Selection and Rest Pose (2)

• Spread position: No interference
across hierarchy branches

• Standing position: Arm and torso
vertices share bones

• Same with legs

Are we Done?

• The problem with using a matrix formulation for the joint
transformations is that while skinning, we weight (linearly
blend) the matrices to get the desired result

• This in effect has the same problems as linearly interpolating
final positions rather than orientations in key frame animation
(see interpolation section)

– Many undesirable artifacts arise, especially for large
movements of the rig w.r.t the rest pose

Image from [KC*07]

Dual Quaternion Skinning - Introduction

• To overcome the problem of linearly blending transformation
matrices, we need to reshape the parameters to be
interpolated into a more convenient form

– This form should have similar SLERP-like interpolation (see
quaternions)

– All tuples of parameters must be compactly but fully
represented (translation + rotation, scaling is not relevant)

Dual Quaternions

• Dual quaternions are an expansion of dual numbers to the
quaternion form (or a quaternion of dual numbers, if you
want)

• A dual number is defined similar to a complex number:

ො𝑎 = 𝑎0 + 𝜀𝑎𝜀, 𝜀2 = 0

• A dual quaternion is similarly defined as a quaternion of dual
coordinates: ෝ𝐪 = ෝ𝑤 + 𝑖 ො𝑥 + 𝑗 ො𝑦 + 𝑘 Ƹ𝑧

• Or the concatenation of two quaternions (follows from the
above): ෝ𝐪 = 𝐪0 + 𝜀𝐪𝜀

Dual Quaternions and Rigid Motion

• Multiplication of a quaternion and a dual quaternion is a dual
quaternion

• A unit* (i.e. unit length) dual quaternion always represents a
composition of a rotation and translation

• Given:

– Rotation quat. of 𝜃 angle around 𝐧: 𝑞0 = 𝑠𝑖𝑛
𝜃

2
, 𝑐𝑜𝑠

𝜃

2
𝐧

– Translation dual quat. by 𝐭: Ƹ𝑡 = 1 + 𝜀
1

2
𝐭

• A rotation followed by translation is:

Ƹ𝐭 = 1 + 𝜀
1

2
𝐭 ∙ 𝑞0 = 𝑞0 + 𝜀

1

2
𝑡𝑞0, 𝑡 = (0, 𝐭)

* For a brief summary of the algebra of dual quaternions see [KC*07]

Revisiting Weighted Averages

• Having expressed all transformations in dual quaternion form,

• We can:

– Multiply dual quaternions instead of matrices to obtain
global transformations in kinematic chains 

• Always unify dual quaternions after multiplication (to ensure that
they still represent a rigid motion)

• Greatly improves arithmetic stability

– Perform a weighted average of dual quaternions for
skinning to solve artifacts:

𝐷𝐿𝐵 𝐰, ො𝑞1, … , ො𝑞𝑀 =
𝑤1 ො𝑞1 +𝑤2 ො𝑞2 +⋯+𝑤𝑀 ො𝑞𝑀
𝑤1 ො𝑞1 +𝑤2 ො𝑞2 +⋯+𝑤𝑀 ො𝑞𝑀

Dual Quaternion Results

Linear blending Dual Quaternion

Linear blending

Motion Capture (MoCap)

It is the process of recording and transforming the motion of live
subjects (humans or otherwise) in order to analyze it or transfer
it to synthetic avatars

Applications of MoCap

• Film production, games and live motion transfer (interactive
applications, see for example Kinect games)

• Low latency, close to real time, results can be obtained 
applicable in both offline and real-time rendering apps

• Cost reduction for keyframe-based animation sequences

– Motion complexity irrelevant

– Animator only fine-tunes results

– Many variations of a motion can be obtained quickly

• Complex movement and realistic physical interactions such as
secondary motions, weight and exchange of forces can be
easily recreated in a physically accurate manner

Main MoCap Technologies

• Optical Tracking

– Marker tracking

– Markerless tracking

– Other

• Inertial Tracking

• Magnetic tracking

• Hybrid

Optical Tracking

• Optical systems utilize data captured from image sensors
to triangulate the 3D position of a point between two or more
cameras calibrated to provide overlapping projections

Optical Tracking and Interaction

• Optical tracking systems are commonly used nowadays for
commodity interaction devices such as:

– Wireless position/orientation trackers (e.g. Wii mote)

– VR headset navigation tracking (head orientation and
position)

SteamVR HTC Vive Lighthouse Tracking System

Optical Tracking – Marker Tracking (1)

• Marker tracking. Markers (active or retro-
reflective) are placed on the subject and their
position reconstructed from the multiple views

• Active markers:

– LED-powered markers enable higher
marker-to-background contrast  better
clarity/accuracy

– LED activation can be time-modulated to
provide unique signatures (IDs) for each
marker

– LEDs need power and control/sync circuitry

Optical Tracking – Marker Tracking (2)

• Passive markers:

– Reflective surfaces, often beyond the visible
range

– Color coding can distinguish markers or
groups/configurations of them

– Easy to increase density

– Very lightweight

Optical Tracking – Markerless Tracking

• Markerless tracking. Full-body 2D/3D geometry is captured
(scanned) and salient points (corresponding to joints) are
inferred by shape analysis

– No obtrusive gear or suits

– Fast setup

– Less accurate or detailed than marker tracking

– Ideal for interaction

Optical Tracking Properties

• Pros:

– Lightweight user equipment

– Easily extensible

– Can capture groups of subjects

• Cons:

– Occlusion issues (especially in group capture). Can be
mitigated with extra sensors/cameras

– Position capture only. Orientation must be inferred from
neighboring detected points

Inertial Tracking

• Inertial measurement units (IMUs), combining a gyroscope, a
magnetometer, and an accelerometer, measure rotational
rates. These rotations are transmitted to a base computer
translated into a skeleton

• They are handy but may loose
accuracy due to error propagation and
need re-sync

• Good for orientation tracking and high
occlusion performances

• Often complement other tracking
techniques

Magnetic Tracking

• Measure the induction current generated by the pairing of 3
perpendicular coils on both the receiver and transmitter

– Oldest tracking system

– Can be cumbersome

– Immune to any non-metallic obstacles

– Relatively small volume coverage

– Electromagnetic interference causes distortion

TEMPORAL ANTIALIASING MOTION BLURRING

Temporal Antialiasing

• The removal of artifacts due to high-speed animation not
adequately sampled by a) the image synthesis pipeline, b) the
human visual system

– Shutter sync: A very distinctive artifact where objects
appear either stationary or moving backwards due to
inadequate frame rate

• Typically addressed with super-sampling the time domain and
low-pass filtering (motion blurring)

https://www.youtube.com/watch?v=y
r3ngmRuGUc

Shutter Speed and Motion Blurring

• Motion blurring can be used to simulate the exposure time of
a physical camera:

– The sensor accumulates light during the interval the
shutter is open (exposure time)

– Corresponds to an integral of the input light over the open
shutter time interval

Increasing exposure time

Fast-moving Objects (1)

Fast-moving Objects (2)

Fast-moving Objects (3)

• Motion appears jerky

• The motion is under-sampled: No information is present
about the in-between positions of the object 

• Aliasing in the temporal domain

• Higher velocity  greater aliasing (frame rate is fixed)

Solutions

• Increase the frame rate

• Pre-filter the signal (filter before sampling)

• Post-filter the signal (filter after sampling)

• Similar strategies to spatial antialiasing!

Camera Aperture

Camera Shutter Speed

• Controls the time interval the shutter remains open

Mathematical Formulation

• Measurement equation: Responsible for gathering the energy
at a single pixel captured by the sensor. Accounts for:

– Lens aperture

– Exposure time

• Considering only the temporal domain:

𝐿 𝐱 = න

𝑡1

𝑡2

න

𝐷(𝐱)

න

Ω

𝐿 𝐬, 𝜔, 𝑡 𝑊 𝐬,𝜔, 𝑡 𝑑𝜔𝑑𝐬𝑑𝑡

𝐿 𝐱 = න

𝑡1

𝑡2

𝐿 𝐱, 𝑡 𝑊 𝐱, 𝑡 𝑑𝑡

Reconstruction filter

zero aperture and non-zero shutter

5D integral (𝑥, 𝑦, 𝜑, 𝜃, 𝑡)

Antialiasing with Stochastic Sampling (1)

• The temporal dimension is sampled at random values of 𝑡,
𝑡1 ≤ 𝑡 ≤ 𝑡2 and the results are weighted according to 𝑊(𝐱, 𝑡)

Antialiasing with Stochastic Sampling (2)

Antialiasing with Stochastic Sampling (3)

Antialiasing with Stochastic Sampling (4)

Antialiasing with Stochastic Sampling (5)

Antialiasing with Stochastic Sampling (6)

Energy Conservation

• For a fixed exposure time, speed affects the intensity of the
resulting image, as energy is “spread” to larger distances:

Shutter Profiles (1)

Shutter Profiles (2)

Shutter Profiles (3)

Real-time (RT) Post-filtering

• Re-use samples from previous frames

– Camera jitter + exponential averaging

– Motion vectors help recovering fragment position in the
past

[Kari14]

“Infiltrator” Unreal Engine 4 demo © Epic Games

Motion-blur as Post-process Effect

• Typical solution for video games and real-time applications

Temporal Pixel Reprojection and Velocity

• Locate the transformed position of the current pixel in the
previous frame

– Retain transformation(s) from the previous frame(s)

– Transform and interpolate vertices

– For each pixel obtain transformed positions

– (optional) store pixel trajectories in velocity buffers

100

?

Temporal Pixel Reprojection and Velocity

Depth buffer

Velocity buffer

2 float channels: dx, dy

http://www.adriancourreges.com/blog/2016/09/09/doom-2016-graphics-study/

RT Post-filtering: Re-using Samples

• I found a sample from the previous frame! can I re-use it?

– Does it come from the right surface?
• Sample could be from a different object or a mix of objects (e.g.

edge → background + foreground)

• Sample comes from the right object but it has drastically different
properties

– e.g. don’t want to re-use samples across the faces of a cube

– Did the current fragment even exist in the previous frame?
• Was partially or completely occluded?

• POV change?

• Were we even rendering it? (i.e. popped into existence in the
current frame)

– …

102[Salv15]

RT Post-filtering: Artifacts
103

“A boy and his kite” Unreal Engine 4 demo © Epic Games

Pros:
- Very fast run-time
- Easy to integrate in existing applications
Cons:
- Visibility/occlusion is not properly resolved (can result in artifacts,
“incorrect” image)

Contributors

• Georgios Papaioannou

• Theoharis Theoharis

• Pavlos Mavridis

References

[TP*06] T. Theoharis, G. Papaioannou, N. Platis, N. M. Patrikalakis, Graphics
& Visualization: Principles and Algorithms, CRC Press

[KC*07] Ladislav Kavan, Steven Collins, Jiří Žára, and Carol O'Sullivan. 2007.
Skinning with dual quaternions. In Proceedings of the 2007
symposium on Interactive 3D graphics and games (I3D '07). ACM,
New York, NY, USA, 39-46.
DOI=http://dx.doi.org/10.1145/1230100.1230107

[Kari14] B. Karis, “High Quality Temporal Anti-Aliasing” in “Advances In Real-
Time Rendering for Games” Course, SIGGRAPH, 2014

[Salv15] M. Salvi, “Anti-Aliasing: Are We There Yet?” in “Open Problems in
Real-time Rendering” Course, SIGGRAPH, 2015

