

COMPUTER GRAPHICS COURSE

Appearance: Local Shading

Georgios Papaioannou - 2014

Basic Concepts

- Central to the energy transport are two measures:
 - The surface area (and the differential surface area)
 - The solid angle (and of course the differential solid angle)

Solid Angles

- The solid angle ω subtended by a surface patch A is defined as the area of the projection of A on the surface of a sphere of radius r, divided by r^2
- Unit: steradian

$$\omega = \frac{A'}{r^2}$$
 $\omega_{sphere} = 4\pi$

Basic Radiometric Quantities (1)

- Radiant energy Q: the energy carried by photons emitted from a light source (Joules)
- Radiant power (flux) $\Phi = dQ/dt$: Rate of energy (W)
- Radiant intensity $I = d\Phi/d\omega$: perceived light through a given solid angle in space (W/steradian)

Basic Radiometric Quantities (2)

• Radiance L: The flow of radiant power emitted through a solid angle that crosses a tilted differential surface dA (W/(steradians· m²))

$$L = \frac{\partial^2 \Phi}{\partial A \partial \omega \cos \theta}$$

Basic Radiometric Quantities (3)

- Irradiance E: Incident flux <u>from all directions</u> on a differential patch dA:
- Radiosity **B**: Total flux exiting a differential patch dA:

Local Shading Models

- Local shading only regards the light interactions at a single point
- All geometry inter-reflections are omitted
- The same holds for shadowing (light blocking)

 Local shading models can be computed at isolated locations, without requiring knowledge about the entire scene → ideal for shader computations

Light Sources

- For a local shading model to work we need emitting bodies
- In graphics, light emitters are frequently modelled separately as light sources
- For simplicity, proper luminaries with mass and surface can be approximated by punctual (point) light sources

Punctual Lights

- Infinitesimally small (point) sources
 - Infinite power density
 - Can explicitly define exitant radiance and intensity
- Can be:
 - Directional (distant compared to world scale)
 - Positional

Punctual Lights - Positional

- We are given a light source position \mathbf{p}_L
- The direction towards the light is calculated per shaded point: $\mathbf{n}_{r-\mathbf{x}}$

$$\mathbf{l} = \frac{\mathbf{p}_L - \mathbf{x}}{|\mathbf{p}_L - \mathbf{x}|}$$

Punctual Lights - Directional

We are given a light source direction I explicitly

Lighting Distribution (1)

- Light sources practically emit a different amount of energy per direction
- We can model this as a distribution $f_e(\omega)$
- For convenience, we usually create punctual lights of constant emission

Lighting Distribution (2)

Lighting Distribution (3)

Examples

IES Lights

- There exists a standardization for defining the emissive properties of light sources
- IES Light description defines the emission of realistic (or measured) light sources for a given set of directions $\omega = (\theta, \varphi)$
 - Supports symmetrical luminaries, too

Light Sources – Spotlights (1)

- Very frequently, we use spotlights in computer graphics, as a procedural way to define a light source with tight emission cone
- Spotlights have 2 brightness zones:
 - Hotspot (full, maximum emission)
 - Fall-off zone (gradual dimming to zero emission)

Light Sources – Spotlights (2)

$$f_L(\mathbf{l}) = \begin{cases} 1, & \mathbf{l} \cdot \mathbf{d}_L > \cos \theta_{\mathrm{H}} \\ 1 - \frac{\cos \theta_{\mathrm{H}} - \mathbf{l} \cdot \mathbf{d}_L}{\cos \theta_{\mathrm{H}} - \cos \theta_{\mathrm{F}}}, & \cos \theta_{\mathrm{H}} \ge \mathbf{l} \cdot \mathbf{d}_L > \cos \theta_{\mathrm{L}} \end{cases}$$

$$0, & otherwise$$

Area Lights

- In reality, there are no punctual light sources!
- Physical light sources are light emitting bodies
 - They have physical properties like surface area and volume

Light Contribution of Area Lights (1)

- Can be done analytically for certain light source geometry types (e.g. spheres, disks etc.)
 - Difficult to handle shadows (see shadowing presentation)
- However, usually area lights are point sampled
 - A number of point samples are chosen on them (see also Monte Carlo light sampling)
 - Each one is treated as a punctual light source
 - Each punctual light sample has its properties derived from the area light (radiance, flux etc.)
 - The sample configuration changes per shaded point to avoid patterns

Light Contribution of Area Lights (2)

Units for Lighting - Watts

- Radiant flux is the total power that emanates from a light emitter (in Watts)
 - Caution: this is the actual produced power, not the consumed power (e.g. electrical)
 - Measured at the emitter surface
 - Over the entire spectrum
 - Our eyes are not equally sensitive to all wavelengths! A lot of energy is wasted (outside the visible spectrum)

Units for Lighting – Lumen

- Is the unit of luminous flux, i.e. the apparent (visible) flux (lm)
- It is related to the radiant power via the luminous efficacy, i.e the ability of source to produce usable lighting per Watt of produced energy
- Maximum possible efficacy: 683 lm/W (at λ =555nm)
- Example:
 - A 100W light bulb with an average efficacy of 30lm/W emits 3000lm

Units for Lighting – Candela

- Is a measure of light intensity, i.e. flux per solid angle
- We can obtain luminous flux by integrating the measured intensity over all emitting directions of the light source

BRDF – The Reflectance Equation (1)

- What is the equilibrium of energy at a differential patch dA?
- Energy leaving the surface in a direction ω_o is the result of:
 - Energy reflected from all incident directions ω_i
 - Energy scattered from all incident directions ω_i as a local effect (diffuse reflection)
 - Energy from all incident directions ω_i being absorbed

BRDF – The Reflectance Equation (2)

• The setup:

BRDF – The Reflectance Equation (3)

• Therefore, given a function $f(\omega_i, \omega_o)$ that indicates how much light from incident direction ω_i contributes to outgoing light in ω_o direction:

$$L_o(\omega_o) = \int_{\Omega} f(\omega_i, \omega_o) L_i(\omega_i) \cos \theta_i \, d\omega_i$$

The BRDF (1)

- $f(\omega_i, \omega_o)$ is the Bidirectional Reflectance Distribution Function
- Provides the relative contribution of each incoming direction to the outgoing lighting in a given direction

$$f(\omega_i, \omega_o) =$$

$$\frac{\mathrm{d}L_o(\omega_o)}{L_i(\omega_i)\cos\theta_i\,\mathrm{d}\omega_i}$$

Source: [PBSM]

The BRDF (2)

- The BRDF characterizes the surface material
- The BRDF is a function of:
 - In/out latitude and longitude
 - Wavelength (so it is different for each R,G,B channel)
- A BRDF can be measured for real materials and
- Approximated by models in most calculations

The BRDF (3)

• Properties:

- Should be positively defined
- Linear operator
- The integral of the BRDF over the entire hemisphere should be ≤ 1 (it is a distribution of non-absorbed radiance)
- Helmholtz reciprocity: For most materials $f(\omega_i, \omega_o) = f(\omega_o, \omega_i)$. Important property for many algorithms

The BRDF (4)

 Therefore, the BRDF also describes how incident light from a given direction is distributed w.r.t outgoing directions

Specular and Diffuse BRDFs

- For the modeling of the BRDF, we typically regard the local scattering and reflection separately:
 - Diffuse BRDF
 - Specular BRDF
- We combine the contribution of both to the reflected color

Diffuse BRDF

- The most common modeling of the local scattering of light (diffuse reflection) is the uniform light scattering
- This BRDF is called a Lambertian BRDF

$$f_d(\omega_i, \omega_o) = f_d = \text{const}$$

Diffuse BRDF – Lambertian Surfaces (1)

Value?

 For ideally diffuse surfaces (pure white), the reflectance integral should be 1 using unit incoming energy:

$$1 = \int_{\Omega} f_d \cos \theta_i \, d\omega_i \Rightarrow 1 = f_d \int_{\Omega} \cos \theta_i \, d\omega_i = f_d \pi \Rightarrow$$

$$f_d = \frac{1}{\pi}$$

Diffuse BRDF – Lambertian Surfaces (2)

And accounting for absorption, we have loss of energy: Replace 1 with the albedo ρ (or k_d) of the surface:

$$f_d = \frac{\rho}{\pi}$$

Specular BRDF – A Simple Model

- The commonest model for specular BRDFs is the Phong model
- It was later modified by Blinn (Blinn-Phong model)
- It is an empirical model, not a physically-based one
- Tries to model the specular highlight by using:
 - A specular color (the reflectance color K_s)
 - A specular exponent factor ("tightness" of the highlight)

The Phong Model for Specular BRDF (1)

 With the Phong model, outgoing radiance is directly given by a custom reflectance equation:

Diffuse reflection Specular reflection
$$L_o(\vec{\mathbf{v}}) = \begin{cases} (k_d \vec{\mathbf{n}} \cdot \vec{\mathbf{l}} + k_s (\vec{\mathbf{r}} \cdot \vec{\mathbf{v}})^n) L_i(\vec{\mathbf{l}}), & \vec{\mathbf{n}} \cdot \vec{\mathbf{l}} > 0 \\ 0, otherwise \end{cases}$$

The Phong Model for Specular BRDF (2)

I: Vector towards light source (ω_i)

n: Surface normal vector

v: Vector towards the eye (ω_o)

r: Direction of ideal reflection

The Phong Model for Specular BRDF (3)

Interpretation:

Outgoing directions near the ideal reflection direction receive more energy

The falloff of this distribution is controlled by the tightness

of the highlight (exponent)

Phong Model: The Reflection Vector

- If $\vec{r_1}$ is the projection of \vec{r} on \vec{n} , then $\vec{r_1} = \vec{n} \cos\theta = \vec{n} (\vec{n} \vec{l})$
- Additionally, $\vec{\mathbf{t}} = \overrightarrow{\mathbf{r}_1} \vec{\mathbf{l}}$, and $\vec{\mathbf{r}} = \vec{\mathbf{l}} + 2\vec{\mathbf{t}}$:

$$\vec{\mathbf{r}} = 2\vec{\mathbf{n}}(\vec{\mathbf{n}}\,\vec{\mathbf{l}}) - \vec{\mathbf{l}}$$

The Blinn Model (1)

- Similar to Phong
- Replaces the specular part with the following:

$$k_{S}(\vec{\mathbf{n}}\cdot\vec{\mathbf{h}})^{n}$$

• Where \vec{h} is the "halfway" vector between the incident and outgoing direction:

The Blinn Model (2)

- Why is the Blinn model better?
 - More consistent with the notion of "micro-facet" geometry at a microscopic level (see next)
 - Validated to be more accurate (compared to photos)
 - Faster to compute:

$$\vec{\mathbf{h}} = \frac{\vec{\mathbf{v}} + \vec{\mathbf{l}}}{|\vec{\mathbf{v}} + \vec{\mathbf{l}}|}$$

The Blinn Model (3)

Is the Phong-Blinn Model Realistic?

- It is not a physically-based shading model
- It could have been a "plausible" model, if it were not for the fact that it is not normalized
- It takes some manipulation to convert to a BRDF

The Importance of Being Normalized (1)

- Why is it important for the model to be normalized?
- Remember, the BRDF represents a distribution!
- For a fixed reflectivity, the total flux leaving the surface (i.e. the surface radiosity) must be constant wr.t. input energy
- → Energy preserving

• So, we must normalize the BRDF so that the reflectance integral is ≤ 1

The Importance of Being Normalized (2)

Clearly this is not the case here:

• Should be:

Normalized Blinn-Phong Model

Converting the Blinn-Phong Model to BRDF

- When the Blinn-Phong model is used within the reflectance equation, the entire integral has to be normalized (for maximum reflectivity)
- Also, $k_s + k_d$ must equal 1 or less (reflected vs transmitted and scattered back)

Blinn-Phong BRDF (1)

• By requiring the specular BRDF integral to be 1 for $k_s=1$ and maximum flow direction $\vec{\mathbf{v}}=\vec{\mathbf{n}}$,

$$1 = \int_{\Omega} (\vec{\mathbf{n}} \cdot \vec{\mathbf{h}})^n \cos \theta \, d\omega \xrightarrow{\hat{\mathbf{h}} = \frac{\vec{\mathbf{n}} + \vec{\mathbf{l}}}{|\vec{\mathbf{n}} + \vec{\mathbf{l}}|}} 1 = \int_{\Omega} \cos^n \frac{\theta}{2} \cos \theta \, d\omega$$

• the normalization factor f_n becomes:

$$f_n = \frac{(n+2)(n+4)}{8\pi(n+2^{-\frac{n}{2}})}$$

Blinn-Phong BRDF (2)

• Therefore, the complete BRDF becomes:

$$f_{Blinn}(\omega_o, \omega_i) = \frac{k_d}{\pi} + k_s \frac{(n+2)(n+4)}{8\pi(n+2^{-\frac{n}{2}})} \cos^n a$$

a being the angle between the halfway vector and the normal

Need for a Physically-based Reflectance Model

• The Blinn-Phong BRDF:

- Requires the user to guess the coefficients k_s , k_d
- These coefficients vary with angle of incidence
- Cannot correctly model the behaviour of metals (different reflectivity at normal and grazing angles)
- Is based on a counter-intuitive notion of an exponent to set the "glossiness" of a surface

The Torrance – Sparrow Microfacet Model (1)

- Models arbitrarily "rough" surfaces
- Aggregation of V-shaped grooves

The Torrance – Sparrow Microfacet Model (2)

- Assumes surface is composed of many microfacets individual optically flat surfaces too small to be seen
- Each microfacet reflects an incoming ray of light in only one outgoing direction (ideal reflector)
- Only those microfacets which happen to have their surface normal m oriented exactly halfway between 1 and v (i.e. h)will reflect visible light

The Torrance – Sparrow Microfacet Model (3)

- Perfect mirror sides:
 - On/off contribution of micro-facets
 - Specular component proportional to fraction of facets facing in the h direction

Shadowing and Masking

- Not all microfacets with $\mathbf{m} = \mathbf{h}$ will contribute
- Some will be blocked by other microfacets from either 1 (shadowing) or v

masking (shadow)

interception

Inter-reflections

 In reality, blocked light continues to bounce; some will eventually contribute to the BRDF

 Microfacet BRDFs ignore this – blocked light is lost (see Oren-Nayar model for inter-reflection

contribution)

The Cook – Torrance Model (1)

- Uses the Torrance-Sparrow surface model
- Accounts for self-shadowing / masking light attenuation
- Accounts for directional reflectivity changes (Fresnel term)

The Cook – Torrance Model (2)

$$f_S = \frac{1}{\pi} \frac{DGF}{(\mathbf{n} \cdot \mathbf{l})(\mathbf{n} \cdot \mathbf{v})}$$

Distribution, Geometry, Fresnel

Saturates color to light source color with full brightness at grazing angles

 In the original model, maximum reflectivity if not attenuated (similar to Lambert diffuse scattering)

Cook – Torrance – Distribution Term (1)

- Represents the micro-facet density oriented along a direction h
- It is a normalized term: expresses the fraction (probability) of facets turned towards h
- Any distribution function can be used!
- Some reasonable ones though:
 - Gauss
 - Beckmann
 - Normalized Blinn-Phong

$$f_{s} = \frac{1}{\pi} \frac{\mathbf{D}GF}{(\mathbf{n} \cdot \mathbf{l})(\mathbf{n} \cdot \mathbf{v})}$$

Cook – Torrance – Distribution Term (2)

• An example:

$$D(a) = \frac{3}{21}$$

Cook – Torrance – Distribution Term (2)

Beckmann Distribution:

Typically used in BRDFs

$$D(a) = \frac{e^{-\frac{\tan^2 a}{m^2}}}{\pi m^2 \cos^4 a}, \qquad a = a\cos(\mathbf{n} \cdot \mathbf{h})$$

- Physically-based: m represents the RMS slope of the micro-facets
 - $-m \rightarrow 0$: polished materials (caution with near zero values)

Cook – Torrance – Distribution Term (3)

Beckmann Distribution:

- Relatively expensive (not preferred for RT graphics)
- A faster alternative (no acos(), no tan(), just dot products):

$$D(a) = \frac{e^{\frac{\tan^2 a}{m^2}}}{\pi m^2 \cos^4 a}$$

$$\tan^2 a = \frac{\sin^2 a}{\cos^2 a} = \frac{1 - \cos^2 a}{\cos^2 a}, \qquad \cos a = \mathbf{n} \cdot \mathbf{h}$$

Cook – Torrance – Distribution Term (4)

Beckmann distribution example

No other factor apart from the $\mathbf{n} \cdot \mathbf{l}$ and the Beckmann distribution of micro-facets:

Cook – Torrance – Fresnel Term (1)

- Fraction of light reflected from optically flat surface given light direction I and surface normal h
- Value range: 0 to 1, spectral (RGB)
- Transmitted light = 1 reflected

$$f_{s} = \frac{1}{\pi} \frac{DGF}{(\mathbf{n} \cdot \mathbf{l})(\mathbf{n} \cdot \mathbf{v})}$$

Cook – Torrance – Fresnel Term (2)

- Depends on refractive index and light angle
 - As angle increases, at first the reflectance barely changes, then for very glancing angles goes to 1 at all wavelengths

Cook – Torrance – Fresnel Term (3)

Fresnel Reflectance

water

Cook – Torrance – Fresnel Term (4)

Cook – Torrance – Fresnel Term (5)

Cook – Torrance – Fresnel Term (6)

Normal-Incidence Fresnel for Metals

No subsurface term; this is only source of color

Metal	$F(0^{\circ})$ (Linear)	$F(0^{\circ})$ (sRGB)	Color
Gold	1.00,0.71,0.29	1.00,0.86,0.57	
Silver	0.95,0.93,0.88	0.98,0.97,0.95	
Copper	0.95,0.64,0.54	0.98,0.82,0.76	
Iron	0.56,0.57,0.58	0.77,0.78,0.78	
Aluminum	0.91,0.92,0.92	0.96,0.96,0.97	

Cook – Torrance – Fresnel Term (7)

Normal-Incidence Fresnel for Non-Metals

 Subsurface term (diffuse) usually also present in addition to this Fresnel reflectance

Insulator	$\boldsymbol{F}(0^{\circ})$ (Linear)	$\boldsymbol{\mathit{F}}(0^{\circ}) \; (\mathrm{sRGB})$	Color
Water	0.02,0.02,0.02	0.15,0.15,0.15	
Plastic / Glass (Low)	0.03,0.03,0.03	0.21,0.21,0.21	
Plastic High	0.05,0.05,0.05	0.24,0.24,0.24	
Glass (High) / Ruby	0.08,0.08,0.08	0.31,0.31,0.31	
Diamond	0.17,0.17,0.17	0.45,0.45,0.45	

Cook – Torrance – Fresnel Term (8)

- Fresnel equations produce the reflectivity of polarized and unpolarized light
- A simple formula can approximate reasonably the reflectivity for unpolarized light (Schlick approximation formula):

$$F_{Schlick} = c_0 + (1 - c_0)(1 - \mathbf{l} \cdot \mathbf{h})^5$$

Cook – Torrance – Geometric Term (1)

 Accounts for the loss of light due to either light interception or shadowing

$$f_{S} = \frac{1}{\pi} \frac{DGF}{(\mathbf{n} \cdot \mathbf{l})(\mathbf{n} \cdot \mathbf{v})}$$

Cook – Torrance – Geometric Term (2)

$$G_{\text{intercept}} = \frac{2(\hat{\mathbf{n}} \cdot \hat{\mathbf{h}})(\hat{\mathbf{n}} \cdot \hat{\mathbf{v}})}{\hat{\mathbf{v}} \cdot \hat{\mathbf{h}}}$$

Cook – Torrance – Geometric Term (3)

• If we swap the roles of light and view direction:

$$G_{\text{shadow}} = \frac{2(\hat{\mathbf{n}} \cdot \hat{\mathbf{h}})(\hat{\mathbf{n}} \cdot \hat{\mathbf{l}})}{\hat{\mathbf{l}} \cdot \hat{\mathbf{h}}} = \frac{2(\hat{\mathbf{n}} \cdot \hat{\mathbf{h}})(\hat{\mathbf{n}} \cdot \hat{\mathbf{l}})}{\hat{\mathbf{v}} \cdot \hat{\mathbf{h}}}$$

masking (shadow)

Cook – Torrance – Geometric Term (3)

 Combining both and keeping the most dominant (smallest) factor:

$$G = \min \left\{ 1, \frac{2(\hat{\mathbf{n}} \cdot \hat{\mathbf{h}})(\hat{\mathbf{n}} \cdot \hat{\mathbf{v}})}{\hat{\mathbf{v}} \cdot \hat{\mathbf{h}}}, \frac{2(\hat{\mathbf{n}} \cdot \hat{\mathbf{h}})(\hat{\mathbf{n}} \cdot \hat{\mathbf{l}})}{\hat{\mathbf{v}} \cdot \hat{\mathbf{h}}} \right\}$$

Combined G

Without G

With G

Cook Torrance – Comparison (1)

Non-metal

Cook Torrance – Comparison (2)

Working with Shading Models

- Implementing a shading model (correctly) requires:
 - Understanding what quantities we handle within our rendering system (radiance, intensity, flux, irradiance etc)
 - A firm grasp of the conversions between the above
 - Understanding what the visible (fragment) geometry represents
 - Correct definition of light sources and their properties
 - Properly normalized (energy-conserving) models

Plausible Shading – Measuring Light

- For area lights, we typically sample radiance from points on their surface
- For point lights, the above process has no meaning
- We rather rely on the intensity of the source for that:
 - Given the total flux of the source Φ :

$$-\Phi = \int_{sphere} I(\omega) d\omega \xrightarrow{uniform} \Phi = 4\pi I \Rightarrow I = \Phi/4\pi$$

- For point sources sufficiently far from a shaded point, $L_i \approx I/r^2$, r the distance to the light source

Plausible Shading – BRDFs

- Use energy conserving BRDFs
 - Make sure to balance the reflected vs transmitted (diffuse + sub. scattered + refracted) energy
 - Use the Fresnel terms for this
 - Take care of metallic surfaces (remember they do not transmit / scatter light from the surface substrate)
- See separate example shader (demo) for putting all these together

Plausible Shading – The Scale Effect

- Remember, micro-facet geometry behaves differently at different scales
 - You may need to introduce macro-scale irregularities into the BRDF roughness for distant objects

Plausible Shading - Texturing

 Event the most perfect surfaces exhibit subtle details that vary spatially

 We provide texturing for important attributes of the surface to simulate reality (weathering, chaotic

structure etc.)

Contributors

Georgios Papaioannou

Sources:

- [PBSM] SIGGRAPH 2010 Course: Physically Based Shading Models in Film and Game Production
- T. Theoharis, G. Papaioannou, N. Platis, N. M. Patrikalakis,
 Graphics & Visualization: Principles and Algorithms, CRC
 Press