Introduction to OpenGL

Evangelou lordanis

Graphics programming in a nutshell

® A combination of math, computer science and programming

® Thegoalisto:
o Describe static or dynamic environments (e.g. 3D scenes)
o Generate images (e.g. photorealistic rendering)

® The majority of cases exploit a GPU to :

o Perform efficient and parallel computations
o Fitin a tight budget of time (60FPS -> ~16ms, 120FPS -> ~8ms)

® Every algorithm can also be employed in a CPU (e.g. scientific work)

® Or design a pipeline that uses the best of both worlds (e.g. game engines)

Why we need a GPU

® Special purpose hardware for :
o Drawing triangles
o Parallel processing for general purpose tasks
® \Very fast with simple operations or highly parallel processes !

o Uses hundreds of processing cores to execute instructions
o Not so fast for other stuff

What we aim for in these courses

Gain an insight about the OpenGL API and its capabilities
Learn how to combine math with graphics programming

Understand the importance of parallel computing

Learn how to use the rasterization pipeline for :
o 3D scene rendering
o Basic environment lighting effects
o Basic post processing effects

Image synthesis

® A high resolution image has millions of pixels (4K - 3840x2160)

® 3 bands for each pixel
o Specifying red, green and blue color values (0 - 255)

Presentation co-author Anastasios Gkaravelis

Image synthesis

® |n order to render a scene we need:
o Geometry
o 3D Coordinates
o Vector Math

What is a Graphics API

Common interface for apps to communicate with different GPUs
Controls the flow of data between CPU - GPU

Instructs the GPU to execute a specific queue of commands

Most Common Graphics APls are:
o Direct3D
o OpenGL
o Vulkan
o Metal

OpenGL

High level API mainly for rendering purposes (but not only)

Operates along with a programmable rendering pipeline through GLSL language
Implemented in device driver

Cross-Platform (Windows, Linux, Mac OS, Mobile)

Hardware-Independent

What OpenGL does not do

OpenGL is strictly for triggering the GPU cores to execute user specific code
Does not create models

Does not create and handle window context

Does not handle input

Does not handle audio

Does not do vector math

SDL library

Handles Windows, Input, Video, Audio, Filesystem, Threads
It provides an interface in C

Cross-Platform (Windows, Linux, Mac OS, Android, Embedded systems)

It can be enhanced using:
o SDL_image: support multiple image formats
o SDL_mixer: support advanced audio functionality
o SDL_ttf: support TrueType font rendering

SDL library

SDL_Init for initializing the SDL

SDL_Window* SDL_CreateWindow to create a window
SDL_GL_SetAttribute for setting OpenGL attributes

SDL_GLContext SDL_GL _CreateContext for creating an openGL context
SDL_GL_SetSwaplnterval to enable/disable V-Sync

SDL_PollEvent for polling window, keyboard, mouse events
SDL_GL_SwapWindow to swap buffer when using double buffering
SDL_GL DeleteContext/SDL_DestroyWindow/SDL_Quit to destroy states

GLSL programming

OpenGL Shading Language

C like syntax

Write programs that run in parallel in the GPU

Can program all stages of the Rasterization pipeline

Strictly input-output

Useful built-in functions (https://www.khronos.org/registry/OpenGL-Refpages/ql4/)

https://www.khronos.org/registry/OpenGL-Refpages/gl4/

GLSL programming

® Scalar values:
o bool, int, uint, float
® \ector values:
o vec2, vec3, vecd
ivec2, ivec3, ivec4
uvec2, uvec3, uvec4d
bvec2, bvec3, bvec3
Vectors can be accessed with operator [] or ({.x .y} for vec2, {.x .y .z} for vec3, etc)
Can also perform swizzle operations e.g. :
m vec3 b = a.xxy
m Vvec2 Cc = a.yX

o O O O O

® Matrices
o mat2, mat3, matd
® Structs composed of primitive types :
o struct data { int a; vec2 b; };

GLM library

® Math library dedicated for vector math in CPU
® Replicates the coding style of GLSL for convenience

® Cross platform

GLSL programming

Download Lab1 from eclass
The program generates an image by rendering a scene

We will apply post processing filters in the generated image

We will alter the color of the final image using a GLSL program

GLSL programming

® Compile and run Lab1 (Release mode)
® You can move with (WASD) or arrow keys and mouse (left click)

® Open shader Assets\Shaders\postproc.frag

GLSL programming

® The project provides an automatic shader reload function by pressing “R”

® If an error occurred :

GLSL programming

® Prints error messages in console

® The shader where the error occurred and in which line in the shader:

GLSL programming

® Fix the error and press “Retry”

GLSL programming

Each GLSL program runs in parallel, with different input and output
We execute an independent program for each pixel on the screen

We spawn as many thread as there are pixels and each thread will write to a different pixel

We can access the thread’s pixel coord using gl_FragCoord.xy

GLSL programming

® \We can access the thread (pixel) coord using g1 _FragCoord.xy

® Sample the image using (sampler_name, coord)
o Where coord is normalized [0, 1] coordinates

® Normalized coordinates are already provided in vec2 uv;

GLSL programming

® Sample the texture at the current pixel position

o vec3 color = (uniform_texture, uv).rgb;

o Texture always return a vec4 (RGBA), we only need the RGB components
® Make the left half of the image with negative colors

o color = vec3(1.0) - color;

GLSL programming

® Sample the texture at the current pixel position

o vec3 color = (uniform_texture, uv).rgb;

o Texture always return a vec4 (RGBA), we only need the RGB components
® Make the left half of the image with negative colors

o color = vec3(1.0) - color;

® Solution:

(uv.x < 0.5)
color = vec3(1.9) - color;

GLSL programming

® Make the bottom left quarter grayscale
o color = vec3(color.r + color.g + color.b) / 3.0;

® Keep from the top right quarter only the green component
o color = color * vec3(@, 1, 0);

GLSL programming

® Make the bottom left quarter grayscale
o color = vec3(color.r + color.g + color.b) / 3.0;
® Keep from the top right quarter only the green component
o color = color * vec3(@, 1, 0);

® Solution:

(uv.y < 0.5 && uv.x < 0.5)

color = vec3(color.r + color.g + color.b) / 3.9;
(uv.y > 0.5 && uv.x > 0.5)

color *= vec3(0,1,0);

GLSL programming

® Checkerboard (10x10)

(int(uv.x * 10) % 2 + int(uv.y * 10) % 2 == 1)
color = vec3(1,0,0);

® Pixelation

ivec2 size = (uniform_texture, 0).xy;
// sample pixels with a 5 pixel stride

float dx = 5.0*(1./size.x);

float dy = 5.0*%(1./size.y);

vec2 coord = vec2(dx* (uv.x/dx),

dy* (uv.y/dy));
color = (uniform_texture, coord).rgb;

GLSL programming

® How about rendering a disk shape in the center of the image?

® Recall that:

° p-{ewer oo -0 <)

® How do we adapt the above case to our algorithm ?
o what indicates parameter r ?
o what indicates parametersaand b ?
o what indicates parameters x and y ?

GLSL programming

® How about rendering a disk shape in the center of the image?

® Recall that:

© D:{(m,y)€R2:\/(m—a)2+(y—b)2§r}

® How do we adapt the above case to our algorithm ?
o what indicates parameter r ?
o what indicates parametersaand b ?
o what indicates parameters x and y ?

® Possible solution* :

vec2 pos = uv - vec2(0.5);
float dist = (pos.x * pos.x + pos.y * pos.y);

(dist < 0.2) color = (1.9) - color;

GLSL programming

® \What about a rectangle?

vec2 pos = uv - vec2(0.5);
if((pos.x) < 0.1 && (pos.y) < 0.1)
color = vec3(1.0) - color;

e HOME

o Change center and size of circle and rectangle
o Put 4 shape in each quarter of the image

GLSL programming

® |et's make a night vision sniper google
® First we need a disk
® For achange let’s convert the space from [0, 1] to [-1, 1]

o vec2 pos = 2.0 * uv - vec2(1.9);
o Now (0,0) is the center of the image

® Create a mask and multiply it with color
float dist (pos);

float mask = (dist < ©.3) ? 1 : ©;
color = color * mask;

GLSL programming

® Use mask with a falloff function
® Radius takes values in [0, 1]
® Make the center visible with a linear falloff function
o mask = 1.0 - dist; // now it takes values in [1, 0]
® Maybe use a quadratic falloff function for a nicer result
o mask = 1.0 - (dist * dist);
® Boost the falloff to make the circle smaller
o mask = 1.0 - (dist * dist) / 0.2;

GLSL programming

® Blend using a “green” filter
o vec3 visionColor = vec3(0.1, 0.95, 0.2);
o color = color * visionColor * mask;
® Maybe boost pixels with little luminance
o Compute the luminance value of the pixel
m float lum = (vec3(0.30, 0.59, 0.11), color);
o Boost pixel luminance
m e.g.color *= 4.0;

GLSL programming

® \What about making it move?? "

® \We can use a periodic function

sin(6)

o We can use the sine function to move up-down the circle . :
O pos.y += 0.4*sin(uniform_time); =

® \What about move in a circular motion?

o Recall the identity cos?6 + sin?6 = 1

o pos += 0.4 * vec2((uniform_time), (uniform_time));
® Maybe move in an ellipse??

o Just squeeze one dimension of the circle
© pos += 0.4 * vec2(0.5 * (uniform_time), (uniform_time));

[N

GLSL programming

Bonus: “Predator” heat vision

® Compute the luminance value of the pixel
® |f the luminance is below 0.5, linear blend between blue and yellow

® |f the luminance is above 0.5, linear blend between yellow and red

vec3 colors[3];
colors[@] = vec3(0.,0.,1.);

colors[1] = vec3(1.,1.,0.);
colors[2] = vec3(1.,0.,0.);
float lum = dot(vec3(@.30, 0.59, 0.11), color.rgb);

float ix = (lum < ©.5)? 0.0 : 1.0;

vec3 a = mix(colors[@], colors[1], ix);
vec3 b = mix(colors[1], colors[2], ix);
color = mix(a, b, (lum - ix * ©.5) / 0.5);

GLSL programming

Bonus: “The Matrix” mirror effect

® To distort the image sample from a different coordinates
® Sample in the direction away from the center of the image

® Choose the sampling position based on a cosine function

vec2 p = 2.0 * uv - 1.0;

float len = (p);

float frequency = 12.0;

float speed = 2.0;

// direction away from the center

vec2 direction = p / len;

// add to UV, the direction scaled by cosine() * 0.02
uv = uv + direction * (len * frequency - uniform_time * speed) * 0.02;
color = (uniform_texture, uv).xyz;

GLSL programming

Bonus: Chromatic Aberration (old TV)

® Sample each color component from a different pixel

® Change the position using in the Y axis using elapsed time

® Change the amplitude of the effect based on an exponential function

float dist = 1.0 - (0.3 * uniform_time, 1.0) - uv.y;
dist = dist * dist;
float time = (1 - 200 * dist) / 2.8;

float power = time;
power *= 0.6;

float red = (uniform_texture, uv + power * vec2(-0.1, 0)).r;
float green = (uniform_texture, uv + power * vec2(-0.05, 0)).g;
float blue = (uniform_texture, uv + power * vec2(-0.025, 0)).b;

color = vec3(red, green, blue);

Next labs

We will learn how to render the previous scene step by step!!!

