
Presentation co-author Anastasios Gkaravelis

Introduction to OpenGL
Evangelou Iordanis

Presentation co-author Anastasios Gkaravelis

Graphics programming in a nutshell

● A combination of math, computer science and programming

● The goal is to :
○ Describe static or dynamic environments (e.g. 3D scenes)
○ Generate images (e.g. photorealistic rendering)

● The majority of cases exploit a GPU to :
○ Perform efficient and parallel computations
○ Fit in a tight budget of time (60FPS -> ~16ms, 120FPS -> ~8ms)

● Every algorithm can also be employed in a CPU (e.g. scientific work)

● Or design a pipeline that uses the best of both worlds (e.g. game engines)

Presentation co-author Anastasios Gkaravelis

Why we need a GPU

● Special purpose hardware for :
○ Drawing triangles
○ Parallel processing for general purpose tasks

● Very fast with simple operations or highly parallel processes !
○ Uses hundreds of processing cores to execute instructions
○ Not so fast for other stuff

Presentation co-author Anastasios Gkaravelis

What we aim for in these courses

● Gain an insight about the OpenGL API and its capabilities

● Learn how to combine math with graphics programming

● Understand the importance of parallel computing

● Learn how to use the rasterization pipeline for :
○ 3D scene rendering
○ Basic environment lighting effects
○ Basic post processing effects

Presentation co-author Anastasios Gkaravelis

Image synthesis

● A high resolution image has millions of pixels (4K - 3840x2160)

● 3 bands for each pixel
○ Specifying red, green and blue color values (0 - 255)

Presentation co-author Anastasios Gkaravelis

Image synthesis

● In order to render a scene we need:
○ Geometry
○ 3D Coordinates
○ Vector Math

Presentation co-author Anastasios Gkaravelis

What is a Graphics API

● Common interface for apps to communicate with different GPUs

● Controls the flow of data between CPU - GPU

● Instructs the GPU to execute a specific queue of commands

● Most Common Graphics APIs are:
○ Direct3D
○ OpenGL
○ Vulkan
○ Metal

Presentation co-author Anastasios Gkaravelis

OpenGL

● High level API mainly for rendering purposes (but not only)

● Operates along with a programmable rendering pipeline through GLSL language

● Implemented in device driver

● Cross-Platform (Windows, Linux, Mac OS, Mobile)

● Hardware-Independent

Presentation co-author Anastasios Gkaravelis

What OpenGL does not do

● OpenGL is strictly for triggering the GPU cores to execute user specific code

● Does not create models

● Does not create and handle window context

● Does not handle input

● Does not handle audio

● Does not do vector math

Presentation co-author Anastasios Gkaravelis

SDL library

● Handles Windows, Input, Video, Audio, Filesystem, Threads

● It provides an interface in C

● Cross-Platform (Windows, Linux, Mac OS, Android, Embedded systems)

● It can be enhanced using:
○ SDL_image: support multiple image formats
○ SDL_mixer: support advanced audio functionality
○ SDL_ttf: support TrueType font rendering

Presentation co-author Anastasios Gkaravelis

SDL library

● SDL_Init for initializing the SDL

● SDL_Window* SDL_CreateWindow to create a window

● SDL_GL_SetAttribute for setting OpenGL attributes

● SDL_GLContext SDL_GL_CreateContext for creating an openGL context

● SDL_GL_SetSwapInterval to enable/disable V-Sync

● SDL_PollEvent for polling window, keyboard, mouse events

● SDL_GL_SwapWindow to swap buffer when using double buffering

● SDL_GL_DeleteContext/SDL_DestroyWindow/SDL_Quit to destroy states

Presentation co-author Anastasios Gkaravelis

GLSL programming

● OpenGL Shading Language

● C like syntax

● Write programs that run in parallel in the GPU

● Can program all stages of the Rasterization pipeline

● Strictly input-output

● Useful built-in functions (https://www.khronos.org/registry/OpenGL-Refpages/gl4/)

https://www.khronos.org/registry/OpenGL-Refpages/gl4/

Presentation co-author Anastasios Gkaravelis

GLSL programming

● Scalar values:
○ bool, int, uint, float

● Vector values:
○ vec2, vec3, vec4

○ ivec2, ivec3, ivec4

○ uvec2, uvec3, uvec4

○ bvec2, bvec3, bvec3

○ Vectors can be accessed with operator [] or ({.x .y} for vec2, {.x .y .z} for vec3, etc)
○ Can also perform swizzle operations e.g. :

■ vec3 b = a.xxy

■ vec2 c = a.yx

● Matrices
○ mat2, mat3, mat4

● Structs composed of primitive types :
○ struct data { int a; vec2 b; };

Presentation co-author Anastasios Gkaravelis

GLM library

● Math library dedicated for vector math in CPU

● Replicates the coding style of GLSL for convenience

● Cross platform

Presentation co-author Anastasios Gkaravelis

GLSL programming

● Download Lab1 from eclass

● The program generates an image by rendering a scene

● We will apply post processing filters in the generated image

● We will alter the color of the final image using a GLSL program

Presentation co-author Anastasios Gkaravelis

GLSL programming

● Compile and run Lab1 (Release mode)

● You can move with (WASD) or arrow keys and mouse (left click)

● Open shader Assets\Shaders\postproc.frag

Presentation co-author Anastasios Gkaravelis

GLSL programming

● The project provides an automatic shader reload function by pressing “R”

● If an error occurred :

Presentation co-author Anastasios Gkaravelis

GLSL programming

● Prints error messages in console

● The shader where the error occurred and in which line in the shader:

Presentation co-author Anastasios Gkaravelis

GLSL programming

● Fix the error and press “Retry”

Presentation co-author Anastasios Gkaravelis

GLSL programming

● Each GLSL program runs in parallel, with different input and output

● We execute an independent program for each pixel on the screen

● We spawn as many thread as there are pixels and each thread will write to a different pixel

● We can access the thread’s pixel coord using gl_FragCoord.xy

Presentation co-author Anastasios Gkaravelis

GLSL programming

● We can access the thread (pixel) coord using gl_FragCoord.xy

● Sample the image using texture(sampler_name, coord)
○ Where coord is normalized [0, 1] coordinates

● Normalized coordinates are already provided in vec2 uv;

Presentation co-author Anastasios Gkaravelis

GLSL programming

● Sample the texture at the current pixel position
○ vec3 color = texture(uniform_texture, uv).rgb;

○ Texture always return a vec4 (RGBA), we only need the RGB components

● Make the left half of the image with negative colors
○ color = vec3(1.0) - color;

Presentation co-author Anastasios Gkaravelis

● Sample the texture at the current pixel position
○ vec3 color = texture(uniform_texture, uv).rgb;

○ Texture always return a vec4 (RGBA), we only need the RGB components

● Make the left half of the image with negative colors
○ color = vec3(1.0) - color;

● Solution:

if(uv.x < 0.5)
color = vec3(1.0) - color;

GLSL programming

Presentation co-author Anastasios Gkaravelis

● Make the bottom left quarter grayscale
○ color = vec3(color.r + color.g + color.b) / 3.0;

● Keep from the top right quarter only the green component
○ color = color * vec3(0, 1, 0);

GLSL programming

Presentation co-author Anastasios Gkaravelis

● Make the bottom left quarter grayscale
○ color = vec3(color.r + color.g + color.b) / 3.0;

● Keep from the top right quarter only the green component
○ color = color * vec3(0, 1, 0);

● Solution:

if(uv.y < 0.5 && uv.x < 0.5)
color = vec3(color.r + color.g + color.b) / 3.0;

if(uv.y > 0.5 && uv.x > 0.5)
color *= vec3(0,1,0);

GLSL programming

Presentation co-author Anastasios Gkaravelis

● Checkerboard (10x10)

● Pixelation

if(int(uv.x * 10) % 2 + int(uv.y * 10) % 2 == 1)
color = vec3(1,0,0);

ivec2 size = textureSize(uniform_texture, 0).xy;
// sample pixels with a 5 pixel stride
float dx = 5.0*(1./size.x);
float dy = 5.0*(1./size.y);
vec2 coord = vec2(dx*floor(uv.x/dx),
dy*floor(uv.y/dy));
color = texture(uniform_texture, coord).rgb;

GLSL programming

Presentation co-author Anastasios Gkaravelis

● How about rendering a disk shape in the center of the image?

● Recall that:
○

● How do we adapt the above case to our algorithm ?
○ what indicates parameter r ?
○ what indicates parameters a and b ?
○ what indicates parameters x and y ?

GLSL programming

Presentation co-author Anastasios Gkaravelis

● How about rendering a disk shape in the center of the image?

● Recall that:
○

● How do we adapt the above case to our algorithm ?
○ what indicates parameter r ?
○ what indicates parameters a and b ?
○ what indicates parameters x and y ?

● Possible solution* :
vec2 pos = uv - vec2(0.5);
float dist = sqrt(pos.x * pos.x + pos.y * pos.y);

if(dist < 0.2) color = vec3(1.0) - color;

GLSL programming

Presentation co-author Anastasios Gkaravelis

● What about a rectangle?

● HOME
○ Change center and size of circle and rectangle
○ Put 4 shape in each quarter of the image

vec2 pos = uv - vec2(0.5);
if(abs(pos.x) < 0.1 && abs(pos.y) < 0.1)

color = vec3(1.0) - color;

GLSL programming

Presentation co-author Anastasios Gkaravelis

● Let’s make a night vision sniper google

● First we need a disk

● For a change let’s convert the space from [0, 1] to [-1, 1]
○ vec2 pos = 2.0 * uv - vec2(1.0);

○ Now (0,0) is the center of the image

● Create a mask and multiply it with color

float dist = length(pos);
float mask = (dist < 0.3) ? 1 : 0;
color = color * mask;

GLSL programming

Presentation co-author Anastasios Gkaravelis

● Use mask with a falloff function

● Radius takes values in [0, 1]

● Make the center visible with a linear falloff function
○ mask = 1.0 - dist; // now it takes values in [1, 0]

● Maybe use a quadratic falloff function for a nicer result
○ mask = 1.0 - (dist * dist);

● Boost the falloff to make the circle smaller
○ mask = 1.0 - (dist * dist) / 0.2;

GLSL programming

Presentation co-author Anastasios Gkaravelis

● Blend using a “green” filter
○ vec3 visionColor = vec3(0.1, 0.95, 0.2);

○ color = color * visionColor * mask;

● Maybe boost pixels with little luminance
○ Compute the luminance value of the pixel

■ float lum = dot(vec3(0.30, 0.59, 0.11), color);

○ Boost pixel luminance
■ e.g. color *= 4.0;

GLSL programming

Presentation co-author Anastasios Gkaravelis

● What about making it move??

● We can use a periodic function
○ We can use the sine function to move up-down the circle
○ pos.y += 0.4*sin(uniform_time);

● What about move in a circular motion?
○ Recall the identity
○ pos += 0.4 * vec2(sin(uniform_time), cos(uniform_time));

● Maybe move in an ellipse??
○ Just squeeze one dimension of the circle
○ pos += 0.4 * vec2(0.5 * sin(uniform_time), cos(uniform_time));

GLSL programming

Presentation co-author Anastasios Gkaravelis

Bonus: “Predator” heat vision

● Compute the luminance value of the pixel

● If the luminance is below 0.5, linear blend between blue and yellow

● If the luminance is above 0.5, linear blend between yellow and red

vec3 colors[3];
colors[0] = vec3(0.,0.,1.);
colors[1] = vec3(1.,1.,0.);
colors[2] = vec3(1.,0.,0.);
float lum = dot(vec3(0.30, 0.59, 0.11), color.rgb);
float ix = (lum < 0.5)? 0.0 : 1.0;
vec3 a = mix(colors[0], colors[1], ix);
vec3 b = mix(colors[1], colors[2], ix);
color = mix(a, b, (lum - ix * 0.5) / 0.5);

GLSL programming

Presentation co-author Anastasios Gkaravelis

Bonus: “The Matrix” mirror effect

● To distort the image sample from a different coordinates

● Sample in the direction away from the center of the image

● Choose the sampling position based on a cosine function

vec2 p = 2.0 * uv - 1.0;
float len = length(p);
float frequency = 12.0;
float speed = 2.0;
// direction away from the center
vec2 direction = p / len;
// add to UV, the direction scaled by cosine() * 0.02
uv = uv + direction * cos(len * frequency - uniform_time * speed) * 0.02;
color = texture2D(uniform_texture, uv).xyz;

GLSL programming

Presentation co-author Anastasios Gkaravelis

Bonus: Chromatic Aberration (old TV)

● Sample each color component from a different pixel

● Change the position using in the Y axis using elapsed time

● Change the amplitude of the effect based on an exponential function

float dist = 1.0 - mod(0.3 * uniform_time, 1.0) - uv.y;
dist = dist * dist;
float time = exp(1 - 200 * dist) / 2.8;
float power = time;
power *= 0.6;
float red = texture(uniform_texture, uv + power * vec2(-0.1, 0)).r;
float green = texture(uniform_texture, uv + power * vec2(-0.05, 0)).g;
float blue = texture(uniform_texture, uv + power * vec2(-0.025, 0)).b;
color = vec3(red, green, blue);

GLSL programming

Presentation co-author Anastasios Gkaravelis

Next labs

We will learn how to render the previous scene step by step!!!

