
COMPUTER GRAPHICS COURSE

Georgios Papaioannou - 2014

COMPUTER GRAPHICS COURSE

Georgios Papaioannou - 2010

Volume Rendering

Introduction – Data Visualization

• Visualization and computer graphics:

– Visualization is a procedure for mapping
data and calculations to meaningful visual
representations that are easy to grasp and
interpret

– Visualization algorithms:
• Create a visualization object from the raw data

• Specify its display parameters

– Graphics algorithms implement these
specifications & produce images

Why visualize the data?

• The human visual system can rapidly make
meaningful associations of intensity and shape with
useful values and their relationship

• Example (raw data):

Why visualize the data? (2)

• Example (intensity-coded data):

Data Representation

• Data attributes:
– Dimensionality

– Scale

– Regions of Interest (ROI)

– Structure

– Critical points

– Type

– Sampling type and quantization

Going 3D: Scalar Data Visualization

• Two major methods:

– Isosurface visualization

– Direct volume rendering

Isosurfaces

• Isosurface is a hyperplane embedded in an N-
dimensional space that corresponds to a constant
scalar value or boundary condition in general

Isosurfaces vs Direct Volume Rendering

• Isosurfaces:

– Create sharp renderings

– But: only part of the information present in the scalar field
is visible on the isosurfaces

• Isosurface rendering requires:

– Either surface extraction algorithms (and direct rendering)

– Or direct isosurface rendering (ray tracing, volume
splatting/slicing)

Isosurface Extraction Algorithms

• Often data contain clusters of values, which can be
separated by surfaces

• Isosurface algorithms determine these separating
surfaces

• Input: surface density thresholds

• Once these isosurfaces are established:

– Easy to display via standard graphics techniques
(polygons)

Marching Cubes (MC) Algorithm

• Input: Scalar volume data set and isosurface
threshold

• Output: isosurface polygons

• For every voxel (cube):

• Compare the values at its 8 vertices to the threshold

• Label the vertex as 1 (inside, smaller than isosurface
value) or 0 (outside, greater than isosurface value)

• Concatenate all labels and use descriptor to index a
table of pre-computed surface-cube intersections

Marching Cubes (MC) Algorithm (2)

• Segmentation example:

Outside

Inside

Marching Cubes (MC) Algorithm (3)

for (i,j,k voxels):

L1=Segment (i,j,k);

L2=Segment (i+1,j,k);

...

L8=Segment (i+1,j+1,k+1);

// string/binary concatenation operator

index=L1++L2++L3++L4++L5++L6++L7++L8;

// locate corresponding normalized combination (rotated version)

bindex=MatchSurfaceForm(index);

// return relative rotation transformation to normalized form

transform=MatchSurfaceTransform(index);

// retrieve corresponding (rotated) polygons

polygons = PrecomputedSurfaces(bindex,transform);

// ... and adjust edge vertices to fall on isosurface

for (p=0; p<polygons.size(); p++)

ComputePreciseEdgePosition(p,voxel(i,j,k));

for (p=0; p<polygons.size(); p++)

ComputeNormal(p, voxel(i,j,k)); // also compute vertex normals

MC – Pre-computed Voxel Polygons

• 28 ways to label vertices of a cube:

– Requires 256 pre-computed surface-cube
intersection patterns

– Reduced to just 15 by taking advantage of:

Mirror symmetry

Rotational symmetry

Inside/outside symmetry

MC – Pre-computed Voxel Polygons (2)

• 15 intersection patterns provide the topology of the polygonal
intersection surface wrt the cube edges

MC – Edge Vertex Adjustment

• The exact points of intersection along each cube edge are
determined by interpolation:

– If the edge vertices v1,v2 have associated field values
val(v1), val(v2) and the isosurface threshold thres

intersection point p can be expressed as:

1

2 1

1 2

()
,

() ()

(1)

thres val
t

val val

t t

v

v v

p v v

MC – Normal Vectors

• Normal vectors can be calculated at voxel vertices by
the volume density gradient (first order derivatives):

• They are interpolated to obtain the isosurface
polygon vertex normals

(1, ,) (1, ,)
(, ,) ,

(, 1,) (, 1,)
(, ,) ,

(, , 1) (, , 1)
(, ,)

x

y

z

v i j k v i j k
g i j k

x

v i j k v i j k
g i j k

y

v i j k v i j k
g i j k

z

MC - Comments

• Major disadvantages of MC algorithm:

– Large number of polygons created for the isosurface

– This number is not proportional to the isosurface
complexity:

Depends primarily on the density of the grid

• MC can be fully accelerated by the GPU (see
example)

Direct Volume Visualization

• Can be used to render isosurface data but also

• Display transparency-weighted density clouds

• Can use complex shading (shadows, absorption,
forward scattering etc)

• Central Techniques to this genre are:

– Ray marching

– Volume slicing

Direct Volume Rendering Operations

• Sampling

– Establishes the sampling pattern and evaluates volume
values at sample locations

• Classification

– Classifies and maps volume data to density and color

• Shading

– Illuminates the samples. For isosurfaces, the normal
vectors are also extracted and used.

• Combination

– Combines the samples with other samples in the line of
sight

Volume Sampling

• Samples are projected on the view plane

• Commonly samples are drawn on the line of sight
through each pixel (ray marching)

• The location of the samples is determined by the
rendering algorithm

• Data samples are interpolated at sample locations
from the initial volume data structure.

• Usually, tri-linear interpolation is used, although
cubic interpolation is also common

Classification

• Converts scalar values to density and color

– Density is used to define the transparency of a point.

• More complex classifiers do not just use the local
scalar value, but also other features

• Classification can be performed before or after
sample interpolation (pre-/post-classification)

Transfer Functions

• Volume data express measured quantities or
normalized intensity

• Not always adjusted to the visible color range

• We need to highlight and visualize only certain
intensity ranges (as in isosurface rendering)

• We need to enhance contrast for clarity

• Transfer functions map the scalar data values to
volume density and color, in order to enhance the
useful information

Transfer Functions (2)

• Density and color are usually separately mapped and
encoded as RGBA values

• Any function or user-defined curve can be used

• Common functions:

– Step functions

– Sigmoid functions

Density

R

G

B

Pre-classification vs Post-classification

Light Propagation Equations

• 4 phenomena affect light traveling through a
medium:

– Absorption

– Out-scattering

– Emission

– In-scattering

Absorption
Out-scattering

In-scattering
dt

Attenuation

Attenuation

(,)
(,) (,) (,) (,) (,)

(,) (,) (,)

o
o i o i

a s

dL
L L dL L

dt

p
p p p p p

p p p

odL

dt

d
p p΄

0

(,)

()

d

t dt

rT e

p

p p

ω

Transmittance:

Fraction of light transmitted from
p to p΄

Beer’s Law

• For constant σ (homogeneous medium),
transmittance becomes:

• If absorption is constant along small ray segments:
,from Beer’s law and the definition of transmittance
we get:

() d

rT e p p

1 1 2 2 1 1(...)

1

1

1 1

1

()

() ()

N Nd d d

r N

N

r N i i

i

T e

T T

p p

p p p p

In-scattering – Phase Functions

• The directional distribution of scattered light at a
point is called a phase function.

• It is similar to the BSDF but expresses the probability
that light from ω is deflected towards ω΄ :

() : () 1
S

p p d

ω

In-scattering – Phase Functions (2)

• Popular phase functions:

– Isotropic

– Henyey-Greenstein

– Mie (atmosphere)

– Rayleigh (droplets, steam etc)

1
()

4
isotropicp

2

3/ 2
2

1 1
()

4 1 2 cos
Henyey Greenstein

g
p

g g

In-scattering Equation

() (,)
(,) (,) (,)

IN

o
e i

S

dL
L p L d

dt

p
p p p

Lo(ω)

Li(p,ω΄)

() (,)IN

odL

dt

p

In-scattering Equation (2)

• In-scattering equation is actually computed
recursively, although usually 1-2 levels are used:

Zero contribution

1st order 2nd order

Combining Out/In-scattering

() ()(,) (,) (,)IN OUT

o oL L L p p p

()

0

(,) (,) (,) (,) ()

t

IN

o e r

S

L L t p t L t d T t dt

 p p p p p p

() (,) () (,)OUT

o r iL T L p p q q

Direct Volume Illumination

• We can simplify the equation by omitting all indirect
(in-scattering) paths:

ω

p

q

Direct Volume Illumination (2)

• This is the first order light bounce

• Includes shadow calculation

• It is very common to use uniform phase function

0

0

(,) ()

(,) (,) (,) ()

()
() (,) (,) ()

4

r background

t

e r

S

t

r background e L r

L T t L

L t p t L t d T t dt

color t
T L L t L t T t dt

p p q

p p p p p

p
p q p p p p

Direct Volume Illumination (3)

• In discrete sampling form:

1

1

1

11
()

1

2 1

1
()

1

(,) ()

() ()

()
() ()

4

k k k

m m m

r background

iN

i

i k

M
i

i e i L

m

L T L

L L e

color
L L L e

N

x x x

q q q

p x x

x x

x
x x

M

N

xi
qm

Direct Volume Illumination (4)

• No Shadow, just the illuminated samples (Le):

1

11
()

1 1

2 1

(,) () () () k k k

iN

r background e e i

i k

L T L L L e

x x x

N
p x x x x

N

xi

Isosurface Rendering

• After classification, local sample density determines
the “presence” of the sample in the integral

• If the transfer function has sharp transitions, then
isosurfaces at various density values are formed

Isosurface Shading

• To shade the isosurface samples, a local illumination
mode can be used

• Requires normal vectors

• Normals are directly computed from the density
gradient

– Pro-processed: After precomputing the transfer function
and its effect. Can be restrictive

– On the fly: Best quality and versatility, but requires six
texture fetches for gradient computation

Rendering

• Texture-based:

– Volume slicing using 2D axis-aligned slice texures

– Volume slicing using 3D textures

• Direct volume ray marching

– CPU

– GPU

Volume Rendering – Axes-Aligned Slicing

• A number of slice textures is generated from the
volume along the 3 axes

• For GPU rendering: Post-classification is possible

• The axis that is most perpendicular to the view plane
is chosen for slice projection

XY plane XZ plane popping

AA Slicing - Comments

• Popping effects when changing axis

• Can perform full illumination only if the volume is
also accessible to a fragment shader as a 3D texture

• Blending is performed via standard direct rendering
modes

• Slice alpha values are mapped to transmittance

• Transmittance is precalculated for specific slice
thickness

Volume Rendering – View-Aligned
Slicing

• View-aligned cross sections of the volume space are
created and textured using the volume data as 3D
texture

• Slice distance determines transmittance alpha

• Slices must be conventionally blended

View-Aligned Slicing - Comments

• Very efficient GPU implementation

• Full shading possible via fragment shaders and
volume (3D texture) access

Volume Rendering – Volume Ray Marching

• Most generic technique

• CPU and GPU implementation

• Cast rays from view plane towards the volume

Ray Marching – Sampling Intervals

• Constant sampling intervals create visible banding

• Stratified stochastic jittering produces smoother
results and avoids banding

GPU Volume Visualization - Ray Marching

• Requires a surface to draw fragments as initial ray
points:

• View-aligned plane (e.g. screen-filling quad)

• Volume-aligned closed surface such as box, sphere

• Easy to combine with cutting planes

• Iterate for a number of samples along each ray

• Add jittering

• Perform arbitrarily complex lighting computations
and post-classification

Contributors

• Georgios Papaioannou

