COMPUTER GRAPHICS COURSE

Viewing and Projections

VIEWING TRANSFORMATION

The Virtual Camera

- All graphics pipelines perceive the virtual world through a virtual observer (camera), also positioned in the 3D environment
"eye" (virtual camera)

Eye Coordinate System (1)

- The virtual camera or "eye" also has its own coordinate system, the eye coordinate system

Eye Coordinate System (2)

- Expressing the scene's geometry in the ECS is a natural "egocentric" representation of the world:
- It is how we perceive the user's relationship with the environment
- It is usually a more convenient space to perform certain rendering tasks, since it is related to the ordering of the geometry in the final image

Eye Coordinate System (3)

- Coordinates as "seen" from the camera reference frame

Eye Coordinate System (4)

- What "egocentric" means in the context of transformations?
- Whatever transformation produced the camera system \rightarrow its inverse transformation expresses the world w.r.t. the camera
- Example: If I move the camera "left", objects appear to move "right" in the camera frame:

Moving to Eye Coordinates

- Moving to ECS is a change of coordinates transformation
- The WCS \rightarrow ECS transformation expresses the 3D environment in the camera coordinate system
- We can define the ECS transformation in two ways:
- A) Invert the transformations we applied to place the camera in a particular pose
- B) Explicitly define the coordinate system by placing the camera at a specific location and setting up the camera vectors

WCS \rightarrow ECS: Version A (1)

- Let us assume that we have an initial camera at the origin of the WCS
- Then, we can move and rotate the "eye" to any pose (rigid transformations only: No sense in scaling a camera):

$$
\left\{\mathbf{o}_{c}, \overrightarrow{\mathbf{u}}, \overrightarrow{\mathbf{v}}, \overrightarrow{\mathbf{w}}\right\}=\overbrace{\mathbf{R}_{1} \mathbf{R}_{2} \mathbf{T}_{1} \mathbf{R}_{2} \ldots . \mathbf{T}_{n} \mathbf{R}_{m}\left\{\mathbf{0}, \hat{\mathbf{e}}_{1}, \hat{\mathbf{e}}_{2}, \hat{\mathbf{e}}_{3}\right\}}^{\mathbf{M}_{c}}
$$

- The eye space coordinates of shapes, given their WCS coordinates can be simply obtained by:

$$
\mathbf{v}_{E C S}=\mathbf{M}_{c}^{-1} \mathbf{v}_{W C S}
$$

WCS \rightarrow ECS: Version A (2)

- This version of the WCS \rightarrow ECS transformation computation is useful in cases where:
- The camera system is dependent on (attached to) some moving geometry (e.g. a driver inside a car)
- The camera motion is well-defined by a simple trajectory (e.g. an orbit around an object being inspected)

WCS \rightarrow ECS: Version B ("Look At") (1)

- Let us directly define a camera system by specifying where the camera is, where does it point to and what is its roll (or usually, its "up" or "right" vector)

WCS \rightarrow ECS: Version B ("Look At") (2)

- The camera coordinate system offset is the eye (camera) position $\mathbf{0}_{c}$
- Given the look-at position (the camera target) $\mathbf{p}_{t g t}$ and \mathbf{o}_{c}, we can determine the "front" direction:

$$
\overrightarrow{\mathbf{d}}_{\text {front }}=\mathbf{p}_{t g t}-\mathbf{o}_{c} \text { (normalized) }
$$

WCS \rightarrow ECS: Version B ("Look At") (3)

- The "up" or "right" vector need not be given precisely, as we can infer the coordinate system indirectly
- Let us provide an "upright" up vector: $\overrightarrow{\mathbf{d}}_{u p}=(0,1,0)$
- Provided that $\overrightarrow{\mathbf{d}}_{u p}$ is not parallel to $\overrightarrow{\mathbf{d}}_{\text {front }}$:

$$
\begin{aligned}
& \widehat{\mathbf{w}}=-\overrightarrow{\mathbf{d}}_{\text {front }} /\left\|\overrightarrow{\mathbf{d}}_{\text {front }}\right\| \\
& \overrightarrow{\mathbf{u}}=\overrightarrow{\mathbf{d}}_{\text {front }} \times \overrightarrow{\mathbf{d}}_{\text {up }}, \quad \widehat{\mathbf{u}}=\overrightarrow{\mathbf{u}} /\|\overrightarrow{\mathbf{u}}\| \\
& \hat{\mathbf{v}}=\widehat{\mathbf{w}} \times \widehat{\mathbf{u}}
\end{aligned}
$$

WCS \rightarrow ECS: Version B ("Look At") (4)

- We can use the derived local camera coordinate system to define the change of coordinates transformation (see 3D Transformations):

$$
\mathbf{p}_{E C S}=\left[\begin{array}{cccc}
u_{x} & u_{y} & u_{z} & 0 \\
v_{x} & v_{y} & v_{z} & 0 \\
w_{x} & w_{y} & w_{z} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot \mathbf{T}_{-\mathbf{o}_{c}} \cdot \mathbf{p}_{W C S}
$$

WCS \rightarrow ECS: Version B ("Look At") (5)

- This version of the WCS \rightarrow ECS transformation computation is useful in cases where:
- There is a free roaming camera
- The camera follows (observes) a certain target in space
- The position (and target) are explicitly defined

PROJECTIONS

Projection

- Is the process of transforming 3D coordinates of shapes to points on the viewing plane
- Viewing plane is the 2D flat surface that represents an embedding of an image into the 3D space
- We can define viewing systems where the "projection" surface is not planar (e.g. fish-eye lenses etc.)
- (Planar) projections are define by a projection (viewing) plane and a center of projection (eye)

Taxonomy

- Two main categories:
- Parallel projections: infinite distance between CoP and viewing plane
- Perspective projections: Finite distance between CoP and viewing plane

Where do We Perform the Projections?

- Since in projections we "collapse" a 3D shape onto a 2D surface, we essentially want to loose one coordinate (say the depth z)
- Therefore, it is convenient to perform the projection when shapes are expressed in the ECS

Orthographic Projection (1)

- The simplest projection:
- Collapse the coordinates on plane parallel to xy at z=d (usually 0)

$$
\begin{aligned}
& y^{\prime}=y \\
& x^{\prime}=x \\
& z^{\prime}=d
\end{aligned}
$$

Orthographic Projection (2)

- Very simple matrix representation
- Note that the rank of the matrix is less than its dimension: This not a reversible transformation!
- This is also intuitively justified since we "loose" all information about depth

$$
\mathbf{P}_{\text {ORTHO }}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & d \\
0 & 0 & 0 & 1
\end{array}\right]
$$

The Pinhole Camera Model

- It is an ideal camera (i.e. cannot exist in practice)
- It is the simplest modeling of a camera:

For simplicity, graphics use a "front" symmetrical projection plane

The Perspective Projection

- From similar triangles, we have:

$$
\begin{aligned}
& y^{\prime}=\frac{d \cdot y}{z} \\
& x^{\prime}=\frac{d \cdot x}{z} \\
& z^{\prime}=d
\end{aligned}
$$

Matrix Form of Perspective Projection

- The perspective projection is not a linear operation (division by z) \rightarrow
- It cannot be completely represented by a linear operator such as a matrix multiplication

$$
\begin{aligned}
& \mathbf{P}_{P E R}=\left[\begin{array}{llll}
d & 0 & 0 & 0 \\
0 & d & 0 & 0 \\
0 & 0 & d & 0 \\
0 & 0 & 1 & 0
\end{array}\right] \\
& \text { Requires a division by the w coordinate } \\
& \text { to rectify the homogeneous coordinates } \\
& \mathbf{P}_{P E R} \cdot \mathbf{p}_{W C S}=\left[\begin{array}{c}
x \cdot d \\
y \cdot d \\
z \cdot d \\
z
\end{array}\right] \\
& {\left[\begin{array}{c}
x \cdot d \\
y \cdot d \\
z \cdot d \\
z
\end{array}\right] / z=\left[\begin{array}{c}
x \cdot d / z \\
y \cdot d / z \\
d \\
1
\end{array}\right]}
\end{aligned}
$$

Properties of the Perspective Projection

- Lines are projected to lines
- Distances are not preserved
- Angles between lines are not preserved unless lines are parallel to the view plane
- Perspective foreshortening: The size of the projected shape is inversely proportional to the distance to the plane

The Impact of Focal Distance d

What Happens After Projection? (1)

- Coordinates are transformed to a "post-projective" space

What Happens After Projection? (2)

- Remember also that "depth" is for now collapsed to the focal distance
- How then are we going to use the projected coordinates to perform "depth" sorting in order to remove hidden surfaces?
- Also, how do we define the extents of what we can see?

Preserving the Depth

- Regardless of what the projection is, we also retain the transformed z values
- For numerical stability, representation accuracy and plausibility of displayed image, we limit the z-range
- $n \leq z \leq f$,
- $n=$ near clipping value,
$-f=$ far clipping value,

The View Frustum

- The boundaries (line segments) of the image, form planes in space:
- The intersection of the visible subspaces, defines what we can see inside a view frustum

The Clipping Volume (1)

- The viewing frustum, forms a clipping volume
- It defines which parts of the 3D world are discarded, i.e. do not contribute to the final rendering of the image
- For many rendering architectures, this is a closed volume (capped by the far plane)

The Clipping Volume (2)

- After projection, the contents of the clipping volume are warped to match a rectangular paralepiped
- This post-projective volume is usually considered normalized and its local coordinate system is called Canonical Screen Space (CSS)
- The respective device coordinates are also called Normalized Device Coordinates (NDC)

Orthographic Projection Revisited (1)

- Let us now create an orthographic projection that transforms a specific clipping box volume (left, right, bottom, top, near, far) to CSS:
- $x_{e}=l$, the left clip plane;
- $x_{e}=r$, the right clip plane, $(r>l)$;
- $y_{e}=b$, the bottom clip plane;
- $y_{e}=t$, the top clip plane, $(t>b)$;
- $z_{e}=n$, the near clip plane;

- $z_{e}=f$, the far clip plane, $\left(f<n\right.$, since the z_{e} axis points toward the observer.)

Orthographic Projection Revisited (2)

Notice the change of handedness here:
(-1 corresponds to "near", while "far" is 1)

- A simple translation \rightarrow scaling transformation can warp the clipping volume into NDC

Orthographic Projection Revisited (3)

$\mathbf{M}_{\mathbf{E C S} \rightarrow \mathbf{C S S}}^{\mathbf{O R T H O}}=\mathbf{S}\left(\frac{2}{r-l}, \frac{2}{t-b}, \frac{2}{f-n}\right) \cdot \mathbf{T}\left(-\frac{r+l}{2},-\frac{t+b}{2},-\frac{n+f}{2}\right) \cdot \mathbf{I D}$

$$
\begin{aligned}
& =\left[\begin{array}{cccc}
\frac{2}{r-l} & 0 & 0 & 0 \\
0 & \frac{2}{t-b} & 0 & 0 \\
0 & 0 & \frac{2}{f-n} & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \cdot\left[\begin{array}{cccc}
1 & 0 & 0 & -\frac{r+l}{2} \\
0 & 1 & 0 & -\frac{t+b}{2} \\
0 & 0 & 1 & -\frac{n+f}{2} \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cccc}
\frac{2}{r-l} & 0 & 0 & -\frac{r+l}{r-l} \\
0 & \frac{2}{t-b} & 0 & -\frac{t+b}{t-b} \\
0 & 0 & \frac{2}{f-n} & -\frac{n+f}{f-n} \\
0 & 0 & 0 & 1
\end{array}\right] .
\end{aligned}
$$

Perspective Projection Revisited (1)

- We want a similar transformation to warp the contents of the perspective frustum into a normalized cube space (CSS)
- Let us now see what happens to geometry when the Cartesian coordinates are perspectively projected (warped) after the transformation:

Perspective Projection Revisited (2)

- In perspective projection, the clipping space is a capped pyramid (frustum)
- $z_{e}=n$, the near clipping plane;
- $z_{e}=f$, the far clipping plane $(f<n)$.
$t=|n| \cdot \tan \left(\frac{\theta}{2}\right)$,
$b=-t$,
$r=t \cdot$ aspect,
$l=-r$.

Perspective Projection Revisited (3)

- We still need to perform the perspective division
- We also need to retain the depth information
- Depth must obey the same transformation (division by z) \rightarrow retain straight lines
- So it must be of the general form: $z_{s}=A+B / z_{e}$
- Solving A and B for the boundary conditions:

$$
f=A+B / f \text { and } n=A+B / n:
$$

- $A=n+f$
- $B=-n f \rightarrow$
- $z_{s}=n+f-n f / z_{e}$

Perspective Projection Revisited (4)

- $Z_{s}=n+f-n f / z_{e}$

$$
\mathbf{P}_{\mathbf{V T}}=\left[\begin{array}{cccc}
n & 0 & 0 & 0 \\
0 & n & 0 & 0 \\
0 & 0 & n+f & -n f \\
0 & 0 & 1 & 0
\end{array}\right]
$$

Perspective Projection Revisited (5)

Post-projective (NDC) space

Perspective Projection Revisited (6)

- Next, we must normalize the result to bring it to the CSS coordinates:
$\mathbf{M}_{\mathbf{E C S} \rightarrow \mathbf{C S S}}^{\mathrm{PERSP}}=\mathbf{S}\left(\frac{2}{r-l}, \frac{2}{t-b}, \frac{2}{f-n}\right) \cdot \mathbf{T}\left(0,0,-\frac{n+f}{2}\right) \cdot \mathbf{P}_{\mathbf{V T}}$
$=\left[\begin{array}{cccc}\frac{2}{r-l} & 0 & 0 & 0 \\ 0 & \frac{2}{t-b} & 0 & 0 \\ 0 & 0 & \frac{2}{f-n} & 0 \\ 0 & 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{cccc}1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & -\frac{n+f}{2} \\ 0 & 0 & 0 & 1\end{array}\right] \cdot\left[\begin{array}{cccc}n & 0 & 0 & 0 \\ 0 & n & 0 & 0 \\ 0 & 0 & n+f & -n f \\ 0 & 0 & 1 & 0\end{array}\right]$
$=\left[\begin{array}{cccc}\frac{2 n}{r-l} & 0 & 0 & 0 \\ 0 & \frac{2 n}{t-b} & 0 & 0 \\ 0 & 0 & \frac{n+f}{f-n} & -\frac{2 n f}{f-n} \\ 0 & 0 & 1 & 0\end{array}\right]$.

Perspective Projection Revisited (7)

- Of course, we still need to divide with the w coordinate after the matrix multiplication

Extended Perspective Projection (1)

- In general, the frustum axis is not aligned with the viewing direction
- To bring this frustum to the CSS normalized volume, we must first skew it

Viewing direction

Extended Perspective Projection (2)

- Why do we need an off-axis projection?

Stereo

Multi-view rendering

Planar reflections

Extended Perspective Projection (3)

- The center of the near and far cap must coincide with the z axis
- Therefore, using the z-based shear transformation:

$$
\mathbf{S H}_{\mathbf{x y}}=\left[\begin{array}{cccc}
1 & 0 & A & 0 \\
0 & 1 & B & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

- We require: $\frac{l_{0}+r o}{2}+A n_{o}=0 \quad \frac{b_{0}+t o}{2}+B n_{o}=0$

Perspective: Putting Everything Together (1)

- The final extended perspective transformation matrix:
$\mathbf{M}_{\text {ECS } \rightarrow \text { CSS }}^{\text {PERSP-NON-SYM }}=\mathbf{M}_{\text {ECS } \rightarrow \text { CSS }}^{\text {PERSP }} \cdot \mathbf{S H}_{\text {NON-SYM }}$

$$
\begin{aligned}
& =\left[\begin{array}{cccc}
\frac{2 n}{r-l} & 0 & 0 & 0 \\
0 & \frac{2 n}{t-b} & 0 & 0 \\
0 & 0 & \frac{n+f}{f-n} & -\frac{2 n f}{f-n} \\
0 & 0 & 1 & 0
\end{array}\right] \cdot\left[\begin{array}{cccc}
1 & 0 & -\frac{l+r}{2 n} & 0 \\
0 & 1 & -\frac{b+t}{2 n} & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& =\left[\begin{array}{cccc}
\frac{2 n}{r-l} & 0 & -\frac{l+r}{r-l} & 0 \\
0 & \frac{2 n}{t-b} & -\frac{b+t}{t-b} & 0 \\
0 & 0 & \frac{n+f}{f-n} & -\frac{2 n f}{f-n} \\
0 & 0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

Contributors

- Georgios Papaioannou
- Sources:
- T. Theoharis, G. Papaioannou, N. Platis, N. M. Patrikalakis, Graphics \& Visualization: Principles and Algorithms, CRC Press

