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Transformations 



ABOUT TRANSFORMATIONS 



• They are operators on vectors and points of a 
corresponding vector or affine space 

• They alter the coordinates of shape vertices 
• They are basic building blocks of geometric design: 

– Help us manipulate shapes to produce new ones 
– Help us express relations between coordinate systems in a 

virtual world 
 

Transformations 



Affine Transformations 

• An affine transformation Φ on an affine space is a 
transformation that preserve affine combinations 
 
 
 

• For shapes in 𝔼𝔼2 and 𝔼𝔼3 this is an important 
property: 

• To transform a shape we only need to transform its 
defining vertices 

𝐩𝐩 = �𝑎𝑎𝑖𝑖𝐩𝐩𝑖𝑖

𝑛𝑛

𝑖𝑖=0

⟹ Φ 𝐩𝐩 = �𝑎𝑎𝑖𝑖Φ(𝐩𝐩𝑖𝑖)
𝑛𝑛

𝑖𝑖=0

 



Affine Transformations on Vertices 

• Example: 
 
 
 
 

• The midpoint of the transformed endpoints is the 
transformed midpoint 
– Similarly, all transformed points on the line segment can 

be linearly interpolated form the transformed endpoints 

Φ(𝐩𝐩1) 

Φ(𝐩𝐩0) 

𝐩𝐩1 

𝐩𝐩0 

Φ 

Φ 



Affine Transformations in 2D and 3D 

• Mappings of the form Φ 𝐩𝐩 = 𝐀𝐀 ∙ 𝐩𝐩 + 𝐭𝐭  are affine 
transformations in 𝔼𝔼2 and 𝔼𝔼3 

• 2D: 
– 𝐀𝐀 is a 2X2 matrix and  

– 𝐭𝐭   is an offset vector in matric column form: 𝐭𝐭 = 𝑡𝑡𝑥𝑥 𝑡𝑡𝑦𝑦
𝑇𝑇

 

• 3D: 
– 𝐀𝐀 is a 3X3 matrix and  

– 𝐭𝐭   is an offset vector in matric column form: 𝐭𝐭 = 𝑡𝑡𝑥𝑥 𝑡𝑡𝑦𝑦 𝑡𝑡𝑧𝑧
𝑇𝑇

 

 



Linear Transformations 

• Linear transformations are affine transformations 
with the following properties: 
– Preserve additivity:  Φ 𝐩𝐩 + 𝐪𝐪 = Φ 𝐩𝐩 + Φ 𝐪𝐪  
– Preserve scalar multiplication: Φ 𝑐𝑐𝐩𝐩 = cΦ 𝐩𝐩  

 
• Important:  

– The affine transformation Φ 𝐩𝐩 = 𝐀𝐀 ∙ 𝐩𝐩 + 𝐭𝐭   is not linear 
(why?) 

– But the transformation Φ 𝐩𝐩 = 𝐀𝐀 ∙ 𝐩𝐩 is! 



2D TRANSFORMATIONS 



Geometric Transformations in 2D 

• The 4 common linear transformations that are used 
in computer graphics are: 
– Translation 
– Rotation 
– Scaling 
– Shearing 

 
• All of the above transformations are invertible, i.e. 

given Φ 𝐩𝐩 , there always exists the inverse 
transformation Φ−1 𝐩𝐩 :  

 𝐩𝐩′ = Φ 𝐩𝐩 ⟺ 𝐩𝐩 = Φ−1 𝐩𝐩′  

,

,
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2D Translation 

• Moves a point on the plane 

Y 

X 

𝐩𝐩′ = 𝐈𝐈𝐩𝐩 + 𝐭𝐭 = 𝐩𝐩 + 𝐭𝐭 

𝑡𝑡𝑥𝑥 

𝑡𝑡𝑦𝑦 

(𝑝𝑝𝑥𝑥, 𝑝𝑝𝑦𝑦) 

(𝑝𝑝𝑥𝑥 + 𝑡𝑡𝑥𝑥, 𝑝𝑝𝑦𝑦 + 𝑡𝑡𝑦𝑦) 



2D Scaling 

• When 𝑠𝑠𝑥𝑥 = 𝑠𝑠𝑦𝑦, then the scaling is isotropic 
(preserves angles) 

Y 

X 

(2, 2) 

(2, 5) 

(3, 7) 

(4, 5) 

(4, 2) 

Y 

X 

(4, 1) 

(4, 2.5) 
(6, 3.5) 

(8, 2.5) 

(8, 1) 

𝐒𝐒𝑠𝑠𝑥𝑥,𝑠𝑠𝑦𝑦 =
𝑠𝑠𝑥𝑥 0
0 𝑠𝑠𝑦𝑦

 𝐩𝐩′ = 𝐒𝐒𝑠𝑠𝑥𝑥,𝑠𝑠𝑦𝑦𝐩𝐩 



2D Rotation 

• Rotates a point around the origin by angle θ 

( ) ( )
( ) ( )

cos cos cos sin sin cos sin

sin cos sin sin cos sin cos

x l l x y

y l l x y

ϕ θ ϕ θ ϕ θ θ θ

ϕ θ ϕ θ ϕ θ θ θ

′ = + = − = −

′ = + = + = +

( ),x y′ ′ ′=p

( ),x y=p

Y 

X 

l 

l 
θ 
φ 

𝐑𝐑𝜃𝜃 = cos𝜃𝜃 − sin𝜃𝜃
sin𝜃𝜃 cos𝜃𝜃  

𝐩𝐩′ = 𝐑𝐑𝜃𝜃𝐩𝐩 



2D Rotation - Examples 

Rotations are always relative to the coordinate system origin! 



2D Shearing 

• Skews the shape by translating a point in one axis 
proportionally to its coordinate on the other axis 

X 

(6, 2) 
(8, 2) 

(10, 4) (12, 4) 

Y 

X 
(2, 2) (4, 2) 

(2, 4) (4, 4) 

Y 

(2, 6) 

(2, 8) (4, 10) 

(4, 12) Y 

X 

b=2 α=2 

𝐒𝐒𝐒𝐒𝑥𝑥,𝑎𝑎 = 1 𝑎𝑎
0 1  

𝐩𝐩′ = 𝐒𝐒𝐒𝐒𝑥𝑥,𝑎𝑎𝐩𝐩 

𝐒𝐒𝐒𝐒𝑦𝑦,𝑏𝑏 = 1 0
𝑏𝑏 1  

𝐩𝐩′ = 𝐒𝐒𝐒𝐒𝑦𝑦,𝑏𝑏𝐩𝐩 



Composite Transformations 

• Useful transformations in computer graphics and 
visualization rarely consist of a single basic affine 
transformation  

• Transformation composition is the stacking of 
operators (function composition): 
 
 

• We can efficiently compute composite linear 
transformations 
 

Φ ∘ Γ 𝐩𝐩 = Φ(Γ 𝐩𝐩 ) 



Composite Linear Transformations (1) 

 
• A useful property of linear transformations is that a 

composite transformation can be expressed as 
matrix multiplication: 
 
 

• In graphics, it allows the efficient computation of 
multiple composite transformations  

Φ ∘ Γ 𝐩𝐩 = 𝚽𝚽 ∙ 𝚪𝚪 ∙ 𝐩𝐩 



• Example: 

Composite Linear Transformations (2) 

𝑅𝑅45o 𝑆𝑆1,2 𝐩𝐩 = 𝐑𝐑45o𝐒𝐒1,2𝐩𝐩 



• Transformations are not commutative in general!  

Composite Linear Transformations (3) 

𝐑𝐑45o𝐒𝐒1,2𝐩𝐩 ≠ 𝐑𝐑45o𝐒𝐒1,2𝐩𝐩 



Composite Linear Transformations (4) 

• Unfortunately, translation cannot be expressed as a 
linear transformation and is therefore impossible to 
express it as a matrix multiplication 

• We must convert the transformation to a linear one 



Homogeneous Coordinates (1) 

• With homogeneous coordinates, we augment the 
dimensionality of the space by one  

• So 𝑥𝑥,𝑦𝑦 𝑇𝑇 coordinates become 𝑥𝑥,𝑦𝑦,𝑤𝑤 𝑇𝑇 
• Similarly, all transformations are now expressed as 

3X3 matrices 
– For w=1 we get the basic representation of a point: 

𝑥𝑥,𝑦𝑦, 1 𝑇𝑇 
– All points which are multiples of each other are equivalent 
– Typically, we work with the basic representation of points 



Homogeneous Coordinates (2) 

• Therefore the 2D space becomes a plane (slice) 
embedded in 3D space at w=1 



Homogeneous Coordinates (3) 

• Points on the homogeneous 2D plane define an 
affine space and not a vector space 
– Adding two vectors results in a vector outside the plane 

(remember we also add the w coordinates!) 

• The origin of our homogeneous coordinate system is 
typically (0,0,1) (or (0,0,w) in general) 

• Since addition is not defined in our space, how is 
translation expressed? 



Homogeneous Transformations (1) 

• Translation in our augmented, homogeneous space 
can be expressed as a linear transformation:  
– (it is actually a skew (shearing) transformation of x,y w.r.t. 

w in 3D) 

 
 
 

𝑥𝑥′
𝑦𝑦′
𝑤𝑤

=
1 0 𝑡𝑡𝑥𝑥
0 1 𝑡𝑡𝑦𝑦
0 0 1

𝑥𝑥
𝑦𝑦
𝑤𝑤

𝑤𝑤=1
𝑥𝑥′,𝑦𝑦′ = 𝑥𝑥,𝑦𝑦 + (𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦) 

𝑤𝑤 = 1 
(𝑡𝑡𝑥𝑥, 𝑡𝑡𝑦𝑦) 𝑥𝑥, 𝑦𝑦  



Homogeneous Transformations (2) 

• Now all geometric transformations can be performed 
by matrix multiplication alone! 

• We can arbitrarily combine transformations in a 
unified manner  

𝑅𝑅𝜃𝜃1 𝛵𝛵𝐯𝐯1 𝑅𝑅𝜃𝜃2 𝛵𝛵𝐯𝐯2 𝑆𝑆𝑠𝑠1,𝑠𝑠2 … 𝐩𝐩 … = 𝐑𝐑𝜃𝜃1𝚻𝚻𝐯𝐯1𝐑𝐑𝜃𝜃2𝚻𝚻𝐯𝐯2𝐒𝐒𝑠𝑠1,𝑠𝑠2 …𝐩𝐩 



Homogeneous 2D Transformations 

• In matrix form (3X3) the homogeneous 2D 
transformations become: 

𝐑𝐑𝜃𝜃 =
cos𝜃𝜃 − sin𝜃𝜃 0
sin𝜃𝜃 cos𝜃𝜃 0

0 0 1
 

𝐒𝐒𝑠𝑠𝑥𝑥,𝑠𝑠𝑦𝑦 =
𝑠𝑠𝑥𝑥 0 0
0 𝑠𝑠𝑦𝑦 0
0 0 1

 

𝐓𝐓𝑡𝑡𝑥𝑥,𝑡𝑡𝑦𝑦 =
1 0 𝑡𝑡𝑥𝑥
0 1 𝑡𝑡𝑦𝑦
0 0 1

 𝐒𝐒𝐒𝐒𝑥𝑥,𝑎𝑎 =
1 𝑎𝑎 0
0 1 0
0 0 1

 

𝐒𝐒𝐒𝐒𝑦𝑦,𝑏𝑏 =
1 0 0
𝑏𝑏 1 0
0 0 1

 



Representing Shape Transformations 

• In the following, we will apply transformations to 
entire shapes 

• This is equivalent to applying the transformations on 
each defining vertex of the shape 

• Notation: 

𝐌𝐌1 ∙ 𝐌𝐌2 ∙ 𝑅𝑅𝑅𝑅𝑐𝑐𝑡𝑡 = 𝐌𝐌1 ∙ 𝐌𝐌2 ∙ 𝐯𝐯1 𝐯𝐯2 𝐯𝐯3 𝐯𝐯4 = 𝐌𝐌1 ∙ 𝐌𝐌2 ∙
𝑥𝑥1 𝑥𝑥2 𝑥𝑥3
𝑦𝑦1 𝑦𝑦2 𝑦𝑦3
1 1 1

𝑥𝑥4
𝑦𝑦4
1

 

shape shape vertices 



Categorizing the Transformations 

• Affine: preserve linear combinations 
• Linear: can be expressed by a concatenation of 

matrices, preserve parallel lines 
• Similitudes: preserve ratios of distances and angles 
• Rigid: preserve distances 



Inverse Transformations  

• The inverse of geometric transformation is the 
inverse matrix 𝐌𝐌−1 of the original transformation 𝐌𝐌 

• The inverse of a concatenated transformation is the 
concatenation of the inverse matrices in reverse 
order: 
 
 

• Inverse of standard transformations: 

𝐌𝐌1𝐌𝐌2𝐌𝐌3 …𝐌𝐌𝑛𝑛
−1 = 𝐌𝐌𝑛𝑛

−1 …  𝐌𝐌3
−1𝐌𝐌2

−1𝐌𝐌1
−1 

𝐑𝐑𝜃𝜃−1 = 𝐑𝐑−𝜃𝜃 𝐒𝐒𝑠𝑠𝑥𝑥,𝑠𝑠𝑦𝑦
−1 = 𝐒𝐒 1

𝑠𝑠𝑥𝑥
, 1𝑠𝑠𝑦𝑦

 𝐓𝐓𝑡𝑡𝑥𝑥,𝑡𝑡𝑦𝑦
−1 = 𝐓𝐓−𝑡𝑡𝑥𝑥,−𝑡𝑡𝑦𝑦 



Shape Composition 

• We can use geometric transformations to create 
complex shapes from simple primitive ones 
– We use the transformations to modify instances of the 

original shapes and arrange them in their pose in the 
composite object 

Original primitives (object space coords)        Composite object             Colored object 



2D Transformation Example (1) 

• Given the following primitives 
 
 
 

• Build this: 

1 1 

1 

2 

y y 

x x 

y 

x 

1 

0.5 

1 

4 

3 
1 1 

A B 



2D Transformation Example (2) 

• First, let us try to decompose the target shape into 
primitives: 
 
 
 

• Observe that in 2D we can order primitives in 
different layers to hide parts of the geometry 

• Second, locate the origin of the resulting shape and 
compare it to the one of the primitives 

? 

Three shape groups: 
- Chassis  
- Wheels 
- Windshield 



2D Transformation Example (3) 

• Chassis (3XB parts) 
 
 

• Looks like no scaling is required, just translations and 
rotations 

• Now observe where the pivot point should end in 
each one:  
 
 
 

y 

x 

C1 C2 C3 

y 

x 

C1 C2 C3 
B 



2D Transformation Example (4) 

• C1: Rotate +90 degrees 
(remember, it is a CCW 
system)  

• Then translate by (1, 2.5) 
 
 
 
 
 
 

y 

x 

C1 
B 

 
 
 
 

y 

x 

C1 

2.5 

1 

• The transformation then 
is: 
 
 
 
 
 
 

C1 = 𝐓𝐓(1.0,2.5)𝐑𝐑𝜋𝜋
2

B 

Important! 
 

Rightmost transformations are 
applied first to the shapes 

(vertices) 
 

Here, we first rotate then 
translate 

 



2D Transformation Example (5) 

y 

x 

C1 
B 

y 

x 

C1 

𝐑𝐑𝜋𝜋
2
𝐓𝐓(1.0,2.5)B ≠ C1 

Important! 
 

Order of transformation does 
matter 

(remember: transformations are 
relative to origin)  



2D Transformation Example (6) 

• Now lets do C2: This only requires a translation 
 
 
 
 

y 

x 

C1 C2 C3 
B 

C2 = 𝐓𝐓(3.0,0.5)B 



2D Transformation Example (7) 

• C3: Rotate 180 degrees, then translate  
 
 
 
 
 
 
 

y 

x 

C1 C3 C2 
B 

y 

x 

C1 C3 C2 

C3 = 𝐓𝐓(2.0,1.5)𝐑𝐑𝜋𝜋B 



2D Transformation Example (8) 

• The windshield Wd is a single piece 
• Although it is not a rotated version of B, it has a 

slightly different scale in the X axis, giving it a more 
slanted slope 
 
 
 
 
 
 

y 

x 

C1 C3 C2 
B 

Wd = 𝐓𝐓(4.0,1.5)𝐒𝐒1.5,1.0B 

y 

x 

C1 C3 C2 
B 

Wd Wd 



2D Transformation Example (9) 

y 

x 
B 

𝐒𝐒1.5,1.0B 

Important! 
 

If you want to leave one 
coordinate unchanged, use a 

scaling factor of 1 

y 

x 
B 

𝐒𝐒1.5,0.0B 

Wrong! 
 

Never, ever zero the scaling 
factors!  

This collapses the shape and the 
operation is irreversible (try 
inverting the corresponding 

scaling matrix…) 



2D Transformation Example (10) 

• The wheels are easy to add since they are identical and 
only require a uniform scaling and translation 

• Room for optimization:  
– Create a “wheel” object (by scaling once the original shape A) 
– Then only perform the translation:  

 
 
 
 
 

y 

x 

C1 C3 C2 

Wheel = 𝐒𝐒0.5,0.5A 

Wd y 

x 
A 

Wheel 

W1 = 𝐓𝐓(1.0,0.5)Wheel 
W2 = 𝐓𝐓(3.0,0.5)Wheel 



Let us Add Some Animation (1) 

• What if instead of the flat-colored wheels we had a 
more interesting shape that would look better if 
rotated? 

• What if the car could also move forward? 

y 

x 

y 

x 



Let us Add Some Animation (2) 

• Again, we need to decompose the problem and 
prioritize the motion: 
– Clearly, the wheels must be rotated around their axis 
– This must take place before moving them off the origin 
– The wheels should move in par with the rest of the car  
– Therefore, the translation of the car should happen after 

the composition of the entire vehicle 

y 

x 



Let us Add Some Animation (3) 

• To spin the wheels, we must apply a rotation to the 
“wheel” entity, before translation 

• Uniform scale and rotation can be safely 
interchanged 

• We rotate according to a user-defined angle θ(t) 
• So, the new Wheel is: 

y 

x 

y 

x 

-θ(t) 

Wheel = 𝐑𝐑−𝜃𝜃(𝑡𝑡)𝐒𝐒0.5,0.5A 

Note: Now the angle is negative, 
since this is a CW rotation 



Let us Add Some Animation (4) 

• Now to more efficiently apply the forward motion to 
the entire car, let’s: 
– First group all of its components  
– Then apply the translation to the “car” group  

y 

x 

y 

x 

Car 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑎𝑎𝑀𝑀 = 𝐓𝐓(𝑠𝑠(𝑡𝑡),0.0)Car 

𝑠𝑠(𝑡𝑡) 



Let us Add Some Animation (5) 

• Congratulations! You have just made your first 
transformation hierarchy, i.e. dependent 
transformations 

• More on this in the Scene Management chapter  

y 

x 



Mirroring (1) 

• Via the scaling transformation, we can perform a 
switch of sides of the coordinates along an axis, by 
negating the scaling factor:  

y 

x 

𝐒𝐒−1,1 

𝐒𝐒1,−1 



Mirroring (2) 

• However, caution must be exercised because 
mirroring changes the order of the vertices from 
CCW to CW and vice versa 

• This can seriously impact many algorithms that 
depend on the correct ordering of the vertices (see 
Rasterization and shading) 

• So, mirroring is best avoided, unless a re-ordering of 
the vertices can be done y 

x 
𝐯𝐯0 

𝐯𝐯1 

𝐯𝐯2 𝐯𝐯2 

𝐯𝐯1 

𝐯𝐯0 



Viewport Transformation (1) 

• Shape coordinates on the 2D canvas or image plane 
are expressed relative to a global absolute coordinate 
system, which is independent of the output device 
size and resolution 
– E.g. a pdf document page has the 2D origin at one corner 

and may be measured in real units, such as centimeters 

• The viewport transformation maps the coordinate 
system of the 2D canvas (image plane) to that of the 
actual viewport that the image should be generated 
in 



Viewport Transformation (2) 

Global reference system and 
units (e.g. cm) 

Viewport (pixel units) 



Viewport Transformation (3) 

• What steps does the viewport transformation 
involve? 
– Definitely, we must first express the shapes relative to the 

corner of the window 
– We must scale the units 
– We must then express the contents of the window relative 

to the viewport’s shifted location in the image buffer (or 
screen)  



Viewport Transformation (4) 

• Express the shapes relative to the corner of the 
window: 
– “subtract” the window corner from the point coordinates 
 “move” the point and the window so that the two 
coordinate systems coincide:    
 

x 

y 

y 

x 
1 

2 

4 

5.5 𝐩𝐩 

𝐩𝐩𝑤𝑤 = 𝐩𝐩 − 𝐨𝐨𝑤𝑤 = 𝐓𝐓−𝐨𝐨𝑤𝑤𝐩𝐩 

𝐨𝐨𝑤𝑤 
y 

x 
1 

2 
𝐩𝐩𝑤𝑤 



𝐩𝐩𝑤𝑤 

Viewport Transformation (5) 

• Now we must map the canvas units to the viewport 
size. Two options usually: 
– We are given a fixed “points-per-unit” metric (e.g. dpi – 

dots per inch), which is directly the scaling factor (can be 
different in x and y) 

– We are given the final resolution of the actual window, in 
“points” (pixels), in which case, we must derive the x, y 
scaling factors: 

y 

x 1cm 

2cm 

𝑤𝑤 (𝑐𝑐𝑐𝑐) 

ℎ(𝑐𝑐𝑐𝑐) 

y 

x 100 pixels 

220 
pixels 

𝐩𝐩𝑣𝑣 
𝑀𝑀𝑅𝑅𝑠𝑠𝑥𝑥 

𝑀𝑀𝑅𝑅𝑠𝑠𝑦𝑦 𝐩𝐩𝑣𝑣 = 𝐒𝐒𝑟𝑟𝑟𝑟𝑠𝑠𝑥𝑥
𝑤𝑤 ,

𝑟𝑟𝑟𝑟𝑠𝑠𝑦𝑦
ℎ
𝐩𝐩𝑤𝑤 



Viewport Transformation (6) 

• Finally, we must (optionally) express the viewport 
coordinates w.r.t. the screen or drawing buffer:  

x 

y 

4 

5.5 

𝐩𝐩𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛 = 𝐩𝐩𝑣𝑣 + 𝐨𝐨𝑣𝑣 = 𝐓𝐓𝐨𝐨𝒗𝒗𝐩𝐩𝑣𝑣 

𝐨𝐨𝑣𝑣 

y 

x 

𝐩𝐩𝑣𝑣 
𝑀𝑀𝑅𝑅𝑠𝑠𝑥𝑥 

𝑀𝑀𝑅𝑅𝑠𝑠𝑦𝑦 

x 

y 

764 px 

470 px 

𝐨𝐨𝑣𝑣 

y 

x 

𝐩𝐩𝑠𝑠𝑠𝑠𝑟𝑟𝑟𝑟𝑟𝑟𝑛𝑛 
𝑀𝑀𝑅𝑅𝑠𝑠𝑥𝑥 

𝑀𝑀𝑅𝑅𝑠𝑠𝑦𝑦 

Drawing area 



3D TRANSFORMATIONS 



About 3D Transformations 

• Going to 3D, means adding one more coordinate, the 
z direction 

• All 3D vectors are now expressed as 4-element 
columns in homogeneous coordinates 

• All transformations become 4X4 matrixes 
• Nothing else changes 



A Third Dimension. Now What? 

• Translation and scaling are augmented by a z 
coordinate 

• Rotation: 
– We now have three coordinate axes to rotate around 
– In 2D, shapes revolved around a “z” axis perpendicular to 

the plane 
– In 3D, this becomes the rotation around Z 
– … and we also introduce a rotation around X and around Y 



3D Geometric Transformations (1) 

Translation: 
 
 
 
 
Scaling: 

 
 𝐒𝐒𝑠𝑠𝑥𝑥,𝑠𝑠𝑦𝑦,𝑠𝑠𝑧𝑧 =

𝑠𝑠𝑥𝑥 0 0 0
0 𝑠𝑠𝑦𝑦 0 0
0 0 𝑠𝑠𝑧𝑧 0
0 0 0 1

 

𝐓𝐓𝑡𝑡𝑥𝑥,𝑡𝑡𝑦𝑦,𝑡𝑡𝑧𝑧 =

1 0 0 𝑡𝑡𝑥𝑥
0 1 0 𝑡𝑡𝑦𝑦
0 0 1 𝑡𝑡𝑧𝑧
0 0 0 1
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3D Geometric Transformations (2) 

Rotation around Z: 
 
 
 

Rotation around X: 
 
 
 

Rotation around Y: 
 
 

𝐑𝐑𝑧𝑧,𝜃𝜃 =

cos𝜃𝜃 − sin𝜃𝜃 0 0
sin𝜃𝜃 cos𝜃𝜃 0 0

0 0 1 0
0 0 0 1

 

𝐑𝐑𝑥𝑥,𝜃𝜃 =

1 0 0 0
0 cos𝜃𝜃 − sin𝜃𝜃 0
0 sin𝜃𝜃 cos𝜃𝜃 0
0 0 0 1

 

𝐑𝐑𝑦𝑦,𝜃𝜃 =

cos𝜃𝜃 0 sin𝜃𝜃 0
0 1 0 0

− sin𝜃𝜃 0 cos 𝜃𝜃 0
0 0 0 1
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y 
z x 

y 

z x 

y 

z x 

y 



Rule of Thumb for Rotations 

• Positive angles follow the curled hand, when thumb 
lies along the positive axis direction 
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y 

x 

x 

z 

z 



3D Geometric Transformations (3) 

• Shearing: Many skew combinations. Examples: 

𝐒𝐒𝐒𝐒𝑦𝑦→𝑥𝑥 =

1 𝑎𝑎 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 

𝐒𝐒𝐒𝐒𝑦𝑦,𝑧𝑧→𝑥𝑥 =

1 𝑎𝑎 𝑏𝑏 0
0 1 0 0
0 0 1 0
0 0 0 1

 

𝐒𝐒𝐒𝐒𝑦𝑦→𝑥𝑥,𝑧𝑧 =

1 𝑎𝑎 0 0
0 1 0 0
0 𝑏𝑏 1 0
0 0 0 1
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x 

y 



3D Transformations – Example (1) 

Build this: 
 

Out of these: 
 

1 

1 

1 
1 

1 1 
1 

1 

z x 

y 

z x 

y 

z x 

y 

z 

y 



3D Transformations – Example (2) 

• First, let’s identify 
the elements of 
the structure: 

 

1 

1 

1 
1 

1 1 
1 

1 

𝑀𝑀𝐶𝐶𝑏𝑏𝑅𝑅 𝑊𝑊𝑅𝑅𝑊𝑊𝑀𝑀𝑅𝑅 𝑀𝑀𝑦𝑦𝐶𝐶𝑀𝑀𝑀𝑀𝑊𝑊𝑅𝑅𝑀𝑀 

𝑊𝑊𝑅𝑅𝑊𝑊𝑀𝑀𝑅𝑅 

𝑀𝑀𝐶𝐶𝑏𝑏𝑅𝑅 
𝑀𝑀𝐶𝐶𝑏𝑏𝑅𝑅 

𝑀𝑀𝐶𝐶𝑏𝑏𝑅𝑅 

𝑀𝑀𝑦𝑦𝐶𝐶𝑀𝑀𝑀𝑀𝑊𝑊𝑅𝑅𝑀𝑀 

𝑀𝑀𝑦𝑦𝐶𝐶𝑀𝑀𝑀𝑀𝑊𝑊𝑅𝑅𝑀𝑀 

z x 

y 

z x 

y 

z x 

y 

z 

y 



3D Transformations – Example (3) 

• It is also some times more 
convenient to think in 2D 
in order to decompose the 
transformations into 
simpler steps 
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y 

z 

x 

x z 

y y 

4 

2 
0.5 

4 
0.5 

1 

1 1 1 1 
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1 

A 

B 
C 

D E 

F 



3D Transformations – Example (4) 

• Since one of the Cube corners is already at the origin, it 
is more convenient to first scale and then translate the 
piece to form part A  

 

z 
A 

1 

1 

1 z x 

y 
y 

𝐴𝐴 = 𝐓𝐓(1,0,0)𝐒𝐒(4,0.5,1)𝑀𝑀𝐶𝐶𝑏𝑏𝑅𝑅 
1 

4 
0.5 



3D Transformations – Example (5) 

• We have 2 identical parts. We create deformed cylinder 
to match the column shape and then two instances of 
the same object are placed in their final position  

 

B 

𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝑐𝑐𝑀𝑀 = 𝐒𝐒(0.5,2.5,0.5)𝑀𝑀𝑦𝑦𝐶𝐶𝑀𝑀𝑀𝑀𝑊𝑊𝑅𝑅𝑀𝑀 

1 
1 

z x 

y 

z x z 

y 

C 

𝐵𝐵 = 𝐓𝐓(1.5,0.5,0.5)𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝑐𝑐𝑀𝑀 
𝑀𝑀 = 𝐓𝐓(4.5,0.5,0.5)𝑀𝑀𝑀𝑀𝐶𝐶𝐶𝐶𝑐𝑐𝑀𝑀 

3.5 
0.5 



3D Transformations – Example (6) 

• The wedge is not 
conveniently oriented for 
scaling, since we need to 
scale along the hypotenuse 
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𝑊𝑊𝑅𝑅𝑊𝑊𝑀𝑀𝑅𝑅 



3D Transformations – Example (6) 

• The wedge is not 
conveniently oriented for 
scaling, since we need to 
scale along the hypotenuse 
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y F 

x 

y 

x 

y 

𝐓𝐓(3,3.5,−0.5)𝐒𝐒4 2
2 , 2

2 ,2
𝐑𝐑
𝑧𝑧,−3𝜋𝜋4

𝑊𝑊𝑅𝑅𝑊𝑊𝑀𝑀𝑅𝑅 



3D Transformations – Example (7) 

• The two doors must 
parametrically swing 
open  

• The door rotation is 
defined according to a 
local pivot axis 

• The two rotations are of 
exactly opposite angle 

 
 

z 

y 

D 
E 

Local pivot axes 

𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑𝑟𝑟 



3D Transformations – Example (8) 

• More convenient to first 
scale the cube then 

• Translate it so that the Y 
axis coincides with the 
local pivot axis 

• Then move the parts to 
their final position 
 

 
 

z 

y 

D 
E 

Local pivot axes 



3D Transformations – Example (9) 

𝐒𝐒1,2.5,0.2𝑀𝑀𝐶𝐶𝑏𝑏𝑅𝑅 

𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀′ = 𝐓𝐓(0,0.5,−0.1)𝐒𝐒1,2.5,0.2𝑀𝑀𝐶𝐶𝑏𝑏𝑅𝑅 

𝐷𝐷𝑝𝑝𝑖𝑖𝑣𝑣𝑑𝑑𝑡𝑡 = 𝐑𝐑𝑦𝑦,−𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀
′ 

𝐸𝐸𝑝𝑝𝑖𝑖𝑣𝑣𝑑𝑑𝑡𝑡 = 𝐑𝐑𝑦𝑦,𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐑𝐑𝑦𝑦,𝜋𝜋𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀′ = 𝐑𝐑𝑦𝑦,𝜋𝜋+𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐷𝐷𝑀𝑀𝑀𝑀𝑀𝑀
′ 

𝐸𝐸𝑝𝑝𝑖𝑖𝑣𝑣𝑑𝑑𝑡𝑡 
𝐷𝐷𝑝𝑝𝑖𝑖𝑣𝑣𝑑𝑑𝑡𝑡 

z 
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z 
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z 
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3D Transformations – Example (9) 

D = 𝐓𝐓(2,0,0.5)𝐑𝐑𝑦𝑦,−𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐓𝐓(0,0.5,−0.1)𝐒𝐒1,2.5,0.2𝑀𝑀𝐶𝐶𝑏𝑏𝑅𝑅 
 
E = 𝐓𝐓(4,0,0.5)𝐑𝐑𝑦𝑦,𝜋𝜋+𝜃𝜃𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝐓𝐓(0,0.5,−0.1)𝐒𝐒1,2.5,0.2𝑀𝑀𝐶𝐶𝑏𝑏𝑅𝑅 
 

z 

y 

D 
E 



Application – Transformation About Pivot (1)  

• Very often, we require an arbitrary transformation 
relative to a user-defined pivot point and not the 
origin of the coordinate system 

? 



Application – Transformation About Pivot (2)  

• Method:  
– Bring the shape and the pivot point to the origin 
– Apply the transformation 
– Bring the shape back 

𝐌𝐌𝑝𝑝𝑖𝑖𝑣𝑣𝑑𝑑𝑡𝑡(𝐩𝐩) = 𝐓𝐓−𝐩𝐩𝐌𝐌𝐓𝐓𝐩𝐩 

Note here that we only translated along the 
x,z coordinates of p, since the y coordinate 

is unaffected by the particular rotation 



Application – Rotation Around Arbitrary Axis (1) 

• Sometimes we need to rotate a shape around an 
arbitrary axis. How can we do that? 
 

 

 
 
 
 

• The idea is to convert the arbitrary rotation to an 
axis-aligned rotation  The arbitrary axis must be 
forced to coincide with one coord. system axis 

𝐯𝐯 



Application – Rotation Around Arbitrary Axis (2) 

Y 

X 

Z 

Y 

X 

Z 

𝐯𝐯 = (𝑀𝑀𝑥𝑥, 𝑀𝑀𝑦𝑦, 𝑀𝑀𝑧𝑧) 

𝑀𝑀𝑦𝑦2 + 𝑀𝑀𝑧𝑧2 

𝜃𝜃1 
𝜃𝜃1 

𝑀𝑀𝑥𝑥 

𝑀𝑀𝑦𝑦 

𝑀𝑀𝑧𝑧 𝑀𝑀𝑦𝑦2 + 𝑀𝑀𝑧𝑧2 
−𝜃𝜃2 

𝑀𝑀𝑥𝑥 

𝜃𝜃1 = atan(𝑀𝑀𝑦𝑦 , 𝑀𝑀𝑧𝑧) 𝜃𝜃2 = atan(𝑀𝑀𝑥𝑥, 𝑀𝑀𝑥𝑥2 + 𝑀𝑀𝑧𝑧2) 

Collapse 𝐯𝐯 axis on e.g. z axis… 



Application – Rotation Around Arbitrary Axis (3) 

Y 

X 
Z 

Y 

X 

Z 

−𝜃𝜃1 

𝜃𝜃2 

Y 

X 

Z 

𝐑𝐑𝐯𝐯,𝜃𝜃 = 𝐑𝐑𝑥𝑥,−𝜃𝜃1𝐑𝐑𝑦𝑦,𝜃𝜃2𝐑𝐑𝑧𝑧,𝜃𝜃𝐑𝐑𝑦𝑦,−𝜃𝜃2𝐑𝐑𝑥𝑥,𝜃𝜃1 
 
 

𝜃𝜃  

Do the rotation around z instead … and revert to the 𝐯𝐯 axis 



𝐩𝐩 =
𝐶𝐶𝑥𝑥 𝑀𝑀𝑥𝑥 𝑤𝑤𝑥𝑥
𝐶𝐶𝑦𝑦 𝑀𝑀𝑦𝑦 𝑤𝑤𝑦𝑦
𝐶𝐶𝑧𝑧 𝑀𝑀𝑧𝑧 𝑤𝑤𝑧𝑧

𝑝𝑝𝑢𝑢′
𝑝𝑝𝑣𝑣′
𝑝𝑝𝑤𝑤′

+
𝑐𝑐𝑥𝑥
𝑐𝑐𝑦𝑦
𝑐𝑐𝑧𝑧

 

Change of Basis Transformation (1) 

• Let 𝐩𝐩′ = 𝐩𝐩 𝑢𝑢𝑣𝑣𝑤𝑤 be the coordinates of 𝐩𝐩 w.r.t. a coordinate 
system {𝐜𝐜,𝐮𝐮, 𝐯𝐯,𝐰𝐰} 

• By definition, this means that:   𝐩𝐩 = 𝑝𝑝𝑢𝑢′ 𝐮𝐮+𝑝𝑝𝑣𝑣′ 𝐯𝐯+𝑝𝑝𝑤𝑤′ 𝐰𝐰 + 𝒄𝒄  or 
 
 
 

• And in homogeneous coordinates: 
 

 
𝐩𝐩 =

𝐶𝐶𝑥𝑥 𝑀𝑀𝑥𝑥 𝑤𝑤𝑥𝑥 𝑐𝑐𝑥𝑥
𝐶𝐶𝑦𝑦 𝑀𝑀𝑦𝑦 𝑤𝑤𝑦𝑦 𝑐𝑐𝑦𝑦
𝐶𝐶𝑧𝑧 𝑀𝑀𝑧𝑧 𝑤𝑤𝑧𝑧 𝑐𝑐𝑧𝑧
0 0 0 1 

𝑝𝑝𝑢𝑢′
𝑝𝑝𝑣𝑣′
𝑝𝑝𝑤𝑤′
1

= 𝐓𝐓𝐜𝐜 ∙ 𝐁𝐁 ∙ 𝐩𝐩′ 

y 

x 

z 

𝐮𝐮 

𝐰𝐰 

𝐯𝐯 

𝐜𝐜 

𝐨𝐨 

𝑝𝑝𝑢𝑢′  

𝑝𝑝𝑤𝑤′  

𝑝𝑝𝑣𝑣′  



Change of Basis Transformation (2) 

• So the transformation 𝐓𝐓𝐜𝐜 ∙ 𝐁𝐁 is a rotation followed by 
translation that expresses the point from {𝐜𝐜,𝐮𝐮, 𝐯𝐯,𝐰𝐰} 
to {𝐨𝐨, 𝐞𝐞�𝑥𝑥 , 𝐞𝐞�𝑦𝑦 , 𝐞𝐞�𝑧𝑧} 

• Therefore, the transformation 𝐁𝐁−1 ∙ 𝐓𝐓−𝐜𝐜= 𝐁𝐁𝑇𝑇 ∙ 𝐓𝐓−𝐜𝐜 
    expresses the point from {𝐨𝐨, 𝐞𝐞�𝑥𝑥 , 𝐞𝐞�𝑦𝑦 , 𝐞𝐞�𝑧𝑧} to {𝐜𝐜,𝐮𝐮, 𝐯𝐯,𝐰𝐰}  

 
• This pair of change of basis transformations is 

extremely useful in graphics, since we very often 
need to move from one coordinate system to 
another in many computations 
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