
COMPUTER GRAPHICS COURSE

Georgios Papaioannou - 2014

The GPU

The Hardware Graphics Pipeline (1)

• Essentially maps procedures of the rasterization
pipeline to hardware stages

• Certain stages are optimally implemented in fixed-
function hardware (e.g. rasterization)

• Other tasks correspond to programmable stages

The Hardware Graphics Pipeline (2)

• Vertex attribute streams are loaded
onto the graphics memory along
with
– Other data buffers (e.g. textures)
– Other user-defined data (e.g. material

properties, lights, transformations,
etc.)

Vertex Generation

Vertex Processing

Primitive Generation

Primitive Processing

Fragment Generation

Fragment Processing

Pixel Operations

Vertices

Vertices

Primitives

Primitives

Fragments

Fragments Fixed stage

Programmable stage

Shaders

• A shader is a user-provided program that
implements a specific stage of a rendering pipeline

• Depending on the rendering architecture, shaders
my be designed and compiled to run in software
renderers (on CPUs) or on H/W pipelines (GPU)

• Shaders should be trivially interchangeable by design
– They serve specific purposes
– Small, callable modules

GPU Shaders

• The GPU graphics pipeline has several programmable
stages

• A shader can be compiled, loaded and made active
for each one of the programmable stages

• A collection of shaders, each one corresponding to
one stage comprise a shader program

• Multiple programs can be interchanged and executed
in the multiprocessor cores of a GPU

The Lifecycle of Shaders

• Shaders are loaded as source code (GLSL, Cg, HLSL
etc.)

• They are compiled and linked to shader programs by
the driver

• They are loaded as machine code in the GPU
• Shader programs are made current (activated) by the

host API (OpenGL, Direct3D etc)
• When no longer needed, shader resources are

released

Programmable Stages – Vertex Shader

• Executed:
– Once per input vertex

• Main role:
– Transforms input vertices
– Computes additional per vertex attributes
– Forwards vertex attributes to the primitive assembly and rasterization

(interpolation)

• Input:
– Primitive vertex
– Vertex attributes (optional)

• Output:
– Transformed vertex (mandatory)
– “out” vertex attributes (optional)

Programmable Stages – Tesselation

• An optional three-stage pipeline to subdivide primitives into
smaller ones (triangle output)

• Stages:
– Tesselation Control Shader (programmable): determines how many

times the primitive is split along its normalized domain axes
• Executed: once per primitive

– Primitive Generation: Splits the input primitive
– Tesselation Evaluation Shader (programmable): determines the

positions of the new, split triangle vertices
• Executed: once per split triangle vertex

Programmable Stages – Geometry Shader

• Executed:
– Once per primitive (before rasterization)

• Main role:
– Change primitive type
– Transform vertices according to knowledge of entire primitive
– Amplify the primitive (generate extra primitives)
– Wire the primitive to a specific rendering “layer”

• Input:
– Primitive vertices
– Attributes of all vertices (optional)

• Output:
– Primitive vertices (mandatory)
– “out” attributes of all vertices (optional)

Programmable Stages – Fragment Shader

• Executed:
– Once per fragment (after rasterization)

• Main role:
– Determine the fragment’s color and transparency
– Decide to keep or “discard” the fragment

• Input:
– Interpolated vertex data

• Output:
– Pixel values to 1 or more buffers (simultaneously)

Programmable Stages – Compute Shader

• Executed:
– Explicitly by the host application

• Main role:
– Compute data using the massively parallel cores of the GPU
– Not part of the “rendering” pipeline
– Assists in many computational tasks related to the rendering

• Input:
– None (only some shader-specific built-in variables): The compute

shader reads directly from GPU memory buffers

• Output:
– None: The compute shader writes directly to GPU memory buffers

Shaders - Data Communication (1)

• Each stage passes along data to the next via
input/output variables
– Output of one stage must be consistent with the input of

the next

• The host application can also provide shaders with
other variables that are globally accessible by all
shaders in an active shader program
– These variables are called “uniform“ variables

Shaders – Data Communication (2)

Vertex
Shader

Geometry
Shader

Fragment
Shader

vertex
attribute
buffers

vertex position +
“out” attributes

fragment
colors

vertex positions +
 “in” attributes

interpolation

vertex positions +
“out” attributes

primitive
assembly

fragment
coordinates +
 interpolated “in”
 attributes

uniforms

Host application (CPU)

Other resources (buffers, textures)

Shader Invocation Example

Vertex Shader
invoked 6 times

Geometry Shader
invoked 2 times

Fragment Shader
invoked 35 times
(for the hidden
fragments, too)

Images from [GPU]

The OpenGL Pipeline Mapping

http://openglinsights.com/pipeline.html

The Graphics Processing Unit

• GPU is practically a combination of a
MIMD/SIMD supercomputer on a chip!

• Main purpose:
– Programmable graphics co-processor for image

synthesis
– H/W acceleration to all visual aspects of computing,

including video decompression

• Due to its architecture and processing power, it
is nowadays also used for demanding general-
purpose computations GPUs are evolving
towards this!

GPU: Architectural Goals

CPU
• Optimized for low-latency access

to cached data sets
• Control logic for out-of-order and

speculative execution

GPU
• Optimized for data-parallel,

throughput computation
• Architecture tolerant of memory

latency
• More ALU transistors

 Image source: [CDA]

Philosophy of Operation

• CPU architecture must minimize latency within each
thread

• GPU architecture hides latency with computation
from other threads

Image source: [CDA]

Mapping Shaders to H/W: Example (1)

• A simple Direct3D fragment shader example
 (see [GPU])

Content from [GPU]

Mapping Shaders to H/W: Example (2)

Content from [GPU]

Compile the Shader:

Mapping Shaders to H/W: CPU-style (1)

Content adapted from [GPU]

Execute the Shader on a single core:

PC

Mapping Shaders to H/W: CPU-style (2)

Content adapted from [GPU]

A CPU-style core:

• Optimized for low-
latency access to
cached data

• Control logic for out-of-
order and speculative
execution

• Large L2 cache

GPU: Slimming down the Cores

Content adapted from [GPU]

• Optimized for data-parallel,
throughput computation

• Architecture tolerant of
memory latency

• More computations
More ALU transistors

• Need to lose some core
circuitry

• Remove single-thread
optimizations

GPU: Multiple Cores

• Multiple threads

Content from [GPU]

GPU: …More Cores

Content from [GPU]

What about Multiple Data?

• Shaders are inherently executed many times over
and over on multiple records from their input data
streams (SIMD!)

Content adapted from [GPU]

Amortize cost /
complexity of
instruction
management to
multiple ALUs
Share instruction
unit

SIMD Cores: Vectorized Instruction Set

Content adapted from [GPU]

Adding It All Up: Multiple SIMD Cores

Content adapted from [GPU]

In this example: 128 data records processed simultaneously

Multiple SIMD Cores: Shader Mapping

Content adapted from [GPU]

Unified Shader Architecture

• Older GPUs had split roles for the shader cores
– Imbalance of utilization

• Unified architecture:
– Pool of “Stream Multiprocessors”
– H/W scheduler to designate shader instructions to SMs

Under the Hood

Components:
• Global memory

– Analogous to RAM in a CPU
server

• Streaming

Multiprocessors (SMs)
– Perform the actual

computations
– Each SM has its own:
– Control units, registers,

execution pipelines, caches
• H/W scheduling

Image source: [CDA]

The Stream Multiprocessor

E.g. FERMI SM:
• 32 cores per SM
• Up to 1536 live threads

concurrently (32 active: a
“warp”)

• 4 special-function units
• 64KB shared mem+ L1

cache
• 32K 32-bit registers

Image source: [CDA]

The “Shader” (Compute) Core

Each core:
• Floating point & Integer

unit
• IEEE 754-2008 floating-

point standard
• Fused multiply-add

(FMA) instruction
• Logic unit
• Move, compare unit
• Branch unit

Image source: Adapted from [CDA]

Some Facts

• Typical cores per unit:512-2048
• Typical memory on board: 2-12GB
• Global memory bandwidth: 200-300 GB/s
• Local SM memory aggregate bandwidth: >1TB/s
• Max processing power per unit:2-4.5 TFlops
• A single motherboard can host up to 2-3 units

GPU Interconnection

Current typical configurations:
• CPU – GPU comminication via PCIe X16

– Scalable
– High computing power
– High energy profile
– Constrains on PCIe throughput

• Fused CPU – GPU
– Potentially integrated SoC design (e.g. i5,i7, mobile GPUs)
– High-bandwidth buses (CPU-memory-GPU, e.g. PS4)
– Truly unified architecture design (e.g. mem. addresses)
– Less flexible scaling (or none at all)

Utilization and Latency (1)

• Global memory access can
seriously stall the SMs
– up to 800 cycles is typical

• Solution: Many interleaved

thread groups (“warps”)
live on the same SM

…

SM
 100%

 utilized!

Block 1 Block 2

Thread
0-31

Thread
32-63

Thread
64-95

Thread
96-127

SM

…

…

…

…

…

…

…

Utilization and Latency (2)

• Divergent code paths (branching) pile up!
• Unrollable loops cost = max iterations

Content adapted from [GPU]

Contributors

• Georgios Papaioannou

• Sources:
– [GPU] K. Fatahalian, M. Houston, GPU Architecture (Beyond

Programmable Shading - SIGGRAPH 2010)
– [CDA] C. Woolley, CUDA Overview, NVIDIA

	Slide Number 1
	The Hardware Graphics Pipeline (1)
	The Hardware Graphics Pipeline (2)
	Shaders
	GPU Shaders
	The Lifecycle of Shaders
	Programmable Stages – Vertex Shader
	Programmable Stages – Tesselation
	Programmable Stages – Geometry Shader
	Programmable Stages – Fragment Shader
	Programmable Stages – Compute Shader
	Shaders - Data Communication (1)
	Shaders – Data Communication (2)
	Shader Invocation Example
	The OpenGL Pipeline Mapping
	The Graphics Processing Unit
	GPU: Architectural Goals
	Philosophy of Operation
	Mapping Shaders to H/W: Example (1)
	Mapping Shaders to H/W: Example (2)
	Mapping Shaders to H/W: CPU-style (1)
	Mapping Shaders to H/W: CPU-style (2)
	GPU: Slimming down the Cores
	GPU: Multiple Cores
	GPU: …More Cores
	What about Multiple Data?
	SIMD Cores: Vectorized Instruction Set
	Adding It All Up: Multiple SIMD Cores
	Multiple SIMD Cores: Shader Mapping
	Unified Shader Architecture
	Under the Hood
	The Stream Multiprocessor
	The “Shader” (Compute) Core
	Some Facts
	GPU Interconnection
	Utilization and Latency (1)
	Utilization and Latency (2)
	Contributors

