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The GPU 



The Hardware Graphics Pipeline (1) 

• Essentially maps procedures of the rasterization 
pipeline to hardware stages 

• Certain stages are optimally implemented in fixed-
function hardware (e.g. rasterization) 

• Other tasks correspond to programmable stages 



The Hardware Graphics Pipeline (2) 

• Vertex attribute streams are loaded 
onto the graphics memory along 
with 
– Other data buffers (e.g. textures) 
– Other user-defined data (e.g. material 

properties, lights, transformations, 
etc.) 
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Shaders 

• A shader is a user-provided program that  
implements a specific stage of a rendering pipeline 

• Depending on the rendering architecture, shaders 
my be designed and compiled to run in software 
renderers (on CPUs) or on H/W pipelines (GPU) 
 

• Shaders should be trivially interchangeable by design 
– They serve specific purposes 
– Small, callable modules 



GPU Shaders 

• The GPU graphics pipeline has several programmable 
stages 

• A shader can be compiled, loaded and made active 
for each one of the programmable stages 

• A collection of shaders, each one corresponding to 
one stage comprise a shader program 

• Multiple programs can be interchanged and executed 
in the multiprocessor cores of a GPU 



The Lifecycle of Shaders 

• Shaders are loaded as source code (GLSL, Cg, HLSL 
etc.) 

• They are compiled and linked to shader programs by 
the driver 

• They are loaded as machine code in the GPU 
• Shader programs are made current (activated) by the 

host API (OpenGL, Direct3D etc) 
• When no longer needed, shader resources are 

released 



Programmable Stages – Vertex Shader 

• Executed: 
– Once per input vertex  

• Main role:  
– Transforms input vertices 
– Computes additional per vertex attributes 
– Forwards vertex attributes to the primitive assembly and rasterization 

(interpolation) 

• Input:  
– Primitive vertex  
– Vertex attributes (optional) 

• Output: 
– Transformed vertex (mandatory) 
– “out” vertex attributes (optional) 



Programmable Stages – Tesselation  

• An optional three-stage pipeline to subdivide primitives into 
smaller ones (triangle output) 

• Stages: 
– Tesselation Control Shader (programmable): determines how many 

times the primitive is split along its normalized domain axes 
• Executed: once per primitive 

– Primitive Generation: Splits the input primitive  
– Tesselation Evaluation Shader (programmable): determines the 

positions of the new, split triangle vertices 
• Executed: once per split triangle vertex  

  



Programmable Stages – Geometry Shader 

• Executed: 
– Once per primitive ( before rasterization) 

• Main role:  
– Change primitive type  
– Transform vertices according to knowledge of entire primitive 
– Amplify the primitive (generate extra primitives) 
– Wire the primitive to a specific rendering “layer”   

• Input:  
– Primitive vertices  
– Attributes of all vertices (optional) 

• Output: 
– Primitive vertices (mandatory) 
– “out” attributes of all vertices (optional) 

 



Programmable Stages – Fragment Shader 

• Executed: 
– Once per fragment ( after rasterization) 

• Main role:  
– Determine the fragment’s color and transparency  
– Decide to keep or “discard” the fragment  

• Input:  
– Interpolated vertex data 

• Output: 
– Pixel values to 1 or more buffers (simultaneously) 

 



Programmable Stages – Compute Shader 

• Executed: 
– Explicitly by the host application 

• Main role:  
– Compute data using the massively parallel cores of the GPU 
– Not part of the “rendering” pipeline 
– Assists in many computational tasks related to the rendering 

• Input:  
– None (only some shader-specific built-in variables): The compute 

shader reads directly from GPU memory buffers 

• Output: 
– None: The compute shader writes directly to GPU memory buffers 

 



Shaders - Data Communication (1) 

• Each stage passes along data to the next via 
input/output variables 
– Output of one stage must be consistent with the input of 

the next 

• The host application can also provide shaders with 
other variables that are globally accessible by all 
shaders in an  active shader program  
– These variables are called “uniform“ variables 



Shaders – Data Communication (2) 
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Shader Invocation Example 

Vertex Shader 
invoked 6 times 

Geometry Shader 
invoked 2 times 

Fragment Shader 
invoked 35 times 
(for the hidden 
fragments, too) 

Images from [GPU] 



The OpenGL Pipeline Mapping 

http://openglinsights.com/pipeline.html 



The Graphics Processing Unit 

• GPU is practically a combination of a 
MIMD/SIMD supercomputer on a chip! 

• Main purpose: 
– Programmable graphics co-processor for image 

synthesis 
– H/W acceleration to all visual aspects of computing, 

including video decompression  

• Due to its architecture and processing power, it 
is nowadays also used for demanding general-
purpose computations  GPUs are evolving 
towards this! 
 



GPU: Architectural Goals 

CPU 
• Optimized for low-latency access 

to cached data sets 
• Control logic for out-of-order and 

speculative execution 
 

GPU 
• Optimized for data-parallel, 

throughput computation 
• Architecture tolerant of memory 

latency 
• More ALU transistors 

 

 Image source: [CDA] 



Philosophy of Operation 

• CPU architecture must minimize latency within each 
thread 

• GPU architecture hides latency with computation 
from other threads 

 

Image source: [CDA] 



Mapping Shaders to H/W: Example (1) 

• A simple Direct3D fragment shader example 
    (see [GPU])   

Content from [GPU] 



Mapping Shaders to H/W: Example (2) 

Content from [GPU] 

Compile the Shader: 



Mapping Shaders to H/W: CPU-style (1) 

Content adapted from [GPU] 

Execute the Shader on a single core: 

PC 



Mapping Shaders to H/W: CPU-style (2) 

Content adapted from [GPU] 

A CPU-style core:  

• Optimized for low-
latency access to 
cached data  

• Control logic for out-of-
order and speculative 
execution 

• Large L2 cache 
 



GPU: Slimming down the Cores 

Content adapted from [GPU] 

• Optimized for data-parallel, 
throughput computation 

• Architecture tolerant of 
memory latency 

• More computations  
More ALU transistors  

• Need to lose some core 
circuitry  

• Remove single-thread 
optimizations 
 



GPU: Multiple Cores 

• Multiple threads 

Content from [GPU] 



GPU: …More Cores 

Content from [GPU] 



What about Multiple Data? 

• Shaders are inherently executed many times over 
and over on multiple records from their input data 
streams (SIMD!)  

Content adapted from [GPU] 

Amortize cost / 
complexity of 
instruction 
management to 
multiple ALUs  
Share instruction 
unit 



SIMD Cores: Vectorized Instruction Set 

Content adapted from [GPU] 



Adding It All Up: Multiple SIMD Cores  

Content adapted from [GPU] 

In this example: 128 data records processed simultaneously 



Multiple SIMD Cores: Shader Mapping  

Content adapted from [GPU] 



Unified Shader Architecture 

• Older GPUs had split roles for the shader cores  
– Imbalance of utilization  

• Unified architecture: 
– Pool of “Stream Multiprocessors”  
– H/W scheduler to designate shader instructions to SMs 



Under the Hood 

Components: 
• Global memory 

– Analogous to RAM in a CPU 
server 

 
• Streaming 

Multiprocessors (SMs) 
– Perform the actual 

computations 
– Each SM has its own: 
– Control units, registers, 

execution pipelines, caches 
• H/W scheduling 

Image source: [CDA] 



The Stream Multiprocessor 

E.g. FERMI SM: 
• 32 cores per SM 
• Up to 1536 live threads 

concurrently (32 active: a 
“warp”) 

• 4 special-function units 
• 64KB shared mem+ L1 

cache 
• 32K 32-bit registers 

Image source: [CDA] 

 



The “Shader” (Compute) Core  

Each core: 
• Floating point & Integer 

unit 
• IEEE 754-2008 floating-

point standard 
• Fused multiply-add 

(FMA) instruction 
• Logic unit 
• Move, compare unit 
• Branch unit 

Image source: Adapted from [CDA] 

 



Some Facts 

• Typical cores per unit:512-2048 
• Typical memory on board: 2-12GB 
• Global memory bandwidth: 200-300 GB/s 
• Local SM memory aggregate bandwidth: >1TB/s 
• Max processing power per unit:2-4.5 TFlops 
• A single motherboard can host up to 2-3 units 

 



GPU Interconnection 

Current typical configurations: 
• CPU – GPU comminication via PCIe X16 

– Scalable 
– High computing power 
– High energy profile 
– Constrains on PCIe throughput 

• Fused CPU – GPU 
– Potentially integrated SoC design (e.g. i5,i7, mobile GPUs) 
– High-bandwidth buses (CPU-memory-GPU, e.g. PS4) 
– Truly unified architecture design (e.g. mem. addresses) 
– Less flexible scaling (or none at all) 

 



Utilization and Latency (1) 

• Global memory access can 
seriously stall the SMs  
– up to 800 cycles is typical 

 
• Solution: Many interleaved 

thread groups (“warps”) 
live on the same SM  
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Utilization and Latency (2) 

• Divergent code paths (branching) pile up! 
• Unrollable loops cost = max iterations 

Content adapted from [GPU] 
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