COMPUTER GRAPHICS COURSE

Rasterization Architectures

 primitives

A High Level Rasterization Pipeline

- Transformation
- Culling
- Primitive assembly
- Clipping

- Primitive sampling
- Attribute interpolation
- Pixel coverage estimation
samples

- Pixel color determination
- Transparency
- ...

.

- Visibility determination
- Blending
- Reconstruction pixels filtering

Geometry Setup

- Geometry must be transformed in order to:
- Be expressed in the proper coordinate system for each operation to take place
- Get modified according to the desired arrangement of primitives / objects to form a virtual world or scene

Various geometric transformations applied to original shape to build the desired outcome

Geometry Setup (2)

- The vertices of the resulting primitives are then assembled into a form that can be efficiently sampled by the rasterizer (e.g. triangles):

Geometry Setup (3)

- Redundant geometry (invisible, unimportant etc.) is culled (removed) to reduce overhead
- To further reduce/split load and avoid degenerate / problematic geometry, primitives are clipped to the boundaries of NDC regions

Culled

Clipping

Clipped primitives may require re-triangulation

3D Geometry Transformations

- All coordinates have to be:
- Transformed from their native, object space ones to a global, common reference system
- Then expressed relative to the camera and
- Projected on the image plane
- All of these transformations are concatenated into a single matrix, which is applied to the vertices of each triangle
- Different objects may have different transformations

Geometric Transformation Sequence

3D Geometry Setup (1)

- Initial primitives (as defined/loaded by the application)

Local object-space coordinates

3D Geometry Setup (2)

- Transform geometry (vertices) in world coordinates to compose a 3D scene

3D Geometry Setup (3)

- Transform geometry (vertices) relative to the "eye" (camera) system (ECS)

Camera
(center of projection)

3D Geometry Setup (4)

- Coordinates as "seen" from the camera reference frame

3D Geometry Setup (5)

- Coordinates after
perspective projection

3D Geometry Setup (6)

- Coordinates after perspective projection in normalized device coordinates

3D Geometry Setup (7)

- Primitives after clipping
(still in normalized device coordinates)

Clipped primitives

- Coordinates of assembled primitives after window transformation (image space - pixel units)

Clipping - General

- With clipping we limit the extents of primitives to the viewing region
- Avoid erroneous projection of geometry (see frustum clipping)
- Discard invisible geometry
- In general, we clip lines and polygons in both 2D and 3D

Half-spaces

- A hyperplane in 2D (a line) or in 3D (a plane) divides space in two halves
- The corresponding equation is positive on one side, negative on the other and zero exactly on the hyperplane:

Point Containment

- If a set of oriented hyperplanes f_{i} forms a convex region, then determining if a point \mathbf{p} lies inside this region resolves to testing if:

$$
\operatorname{sign}\left(f_{i}(\mathbf{p})\right)=\operatorname{sign}\left(f_{j}(\mathbf{p})\right), \forall i, j
$$

Point in Triangle Test

$\operatorname{sign}(y-s \cdot x-b)$
$s=\frac{y_{n}-y_{1}}{x_{n}-x_{1}}=\frac{\Delta y}{\Delta x}$
$b=\frac{y_{1} x_{n}-y_{n} x_{1}}{x_{n}-x_{1}}$

- Alternatively, we can check the barycentric coordinates of the the point w.r.t. the 3 vertices \rightarrow
- Inside: $u, v, w \geq 0$

Line Clipping on Rectangular Bounds

- 3 cases:
- Line segment entirely outside region
- Line segment entirely inside region
- Line segment intersects 1 or 2 boundary segments

A Simple Line Clipping Algorithm

- Cohen-Sutherland algorithm
- Fast segment in/out detection via binary tests
- Recursive splitting of intersecting segments

$y_{\text {max }}$	$x_{\text {min }}$	$x_{\text {max }}$		Encode the 9 tiles according to
	1001	1000	1010	
$y_{\text {min }}$	0001	0000	0010	- First bit. Set to 1 for $y>y_{\max }$, else set to 0 ;
				- Second bit. Set to 1 for $y<y_{\min }$, else set to 0;
	0101	0100	0110	- Third bit. Set to 1 for $x>x_{\max }$, else set to 0 ;
				- Fourth bit. Set to 1 for $x<x_{\min }$, else set to 0 .
Clipping window				

CS Line Clipping Algorithm

```
void CS( vec3 * P1, vec3 * P2,
    float x_min, float x_max, float y_min, float y_max )
{
    unsigned char c1, c2;
    vec3 I;
    c1=Code(*P1);
    c2=Code(*P2);
    if ( ( c1|c2 == 0 ) || // both inside or
        ( c1&c2 !=0 ) ) // outside but on the same side of a
        // clipping line (see figure)
                        // do nothing
    else
        {
            Intersect (P1,P2,&I,xmin,xmax,ymin,ymax);
            if (*IsOuside(*P1) )
            *P1 = I;
            else
            *P2 = I;
            CS(P1,P2,xmin,xmax, ymin,ymax);
        }

\section*{Polygon Clipping}

- Polygon clipping cannot be regarded as multiple line clipping!
- Requires mutual edge + point containment and intersection testing

Incorrect new polygon

\section*{Sutherland-Hodgman Clipping Algorithm (1)}
- Clips an arbitrary polygon against a convex clipping polygonal region
- Iteratively clips the input polygon against each one of the segments of the clipping region


\section*{Sutherland-Hodgman Clipping Algorithm (2)}
- For each clipping line:
- For each vertex transition of the input polygon:
- Determine what points to generate according to the following configurations
- Join all sequentially generated vertices to form a polygon
- Use this polygon as input to the next iteration


Case 1: 1 output


Case 2: 1 output


Case 3: 0 outputs


Case 4: 2 outputs

\section*{Convex Shape Re-triangulation}
- Clipped triangles against the viewing window may require re-triangulation

- Triangulation of convex shapes is trivial:


\section*{Frustum Clipping (1)}
- Before rasterizing the polygons, they must be clipped against the view frustum (see projections)
- Why?
- Coordinates behind near plane get inverted and wrap beyond the far plane \(\rightarrow\) degenerate, impossible "triangles"
- Coordinates on \(\mathrm{z}=0 \rightarrow\) singularity in perspective division

\section*{Frustum Clipping (2)}
- Frustum clipping can be done with a Sutherland-Hodgman-style method for triangles/planes
- For a 6-plane frustum (i.e. the camera frustum), this is a 6 -stage triangle/plane clipping pipeline
- Clipping is performed in the post-projective space, before the perspective division. Why?
- In all projections (perspective, too), the frustum planes are axis aligned \(\rightarrow\) simplified comparisons and equations (see Chapter 5.3 in [G\&V]

\section*{Frustum Clipping (3)}
- Triangle/plane clipping:
- Perform 2 line-plane clipping steps
- Join the open edges (if any)
- Re-triangulate if necessary


\section*{Pixel-level Clipping}
- It is possible to perform clipping at a pixel level (or pixel block level, for hierarchical implementations)
- Pixel-level clipping boils down to discarding values outside the usable range (i.e. within the 2D/3D clipping region)
- Saves on H/W and power consumption (less circuitry)
- Naïve implementation: Not very fast - many samples to discard
- Hierarchical / block-based implementation: efficient

\section*{Optimizations - Back-face Culling (1)}


Without back-face culling


With back-face culling ( \(\sim 50 \%\) fewer triangles)
- Back-face culling can dramatically reduce the rasterization load by effectively discarding all polygons facing off the eye direction
- Transparent shapes should not be BF culled

\section*{Optimizations - Back-face Culling (2)}

- Back-face culling rejects polygons whose normal deviates more than 90 degrees from the viewing direction

\section*{Optimizations - Frustum Culling}
- Conservatively discards entire objects early on, before clipping by:
- Checking the extents (bounding box) of an object against the bounds of the frustum
- This test is very simple in post-projective space:
- if all projected bounding box corners are outside the frustum \(\rightarrow\) cull the object
- Can be extended to non-camera frusta to cull hidden objects


\section*{Rasterization}
- Rasterization is the process that generates the pixelbased samples on the stream of primitives
- Before rasterization occurs, it is convenient to transform the primitives in screen coordinates (i.e. pixel units) - see rasterization slides
- Each primitive is processed independently!


Fragments from different primitives may overlap \(\rightarrow\) Ordering must be resolved (see next slides)

\section*{Line Rasterization}
- Must:
- Approximate the mathematical line as close as possible (min. error)
- Not leave any gaps
- Maintain a constant width
- Be efficient


\section*{Approximating the Line Equation (1)}
- Given a line segment in the first octant \(\left(x_{1}, y_{1}\right) \rightarrow\left(x_{2}, y_{2}\right)\), the line passing through the endpoints is defined as:
\[
\begin{gathered}
y=s \cdot x+b \\
s=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\Delta y}{\Delta x} \\
b=\frac{y_{1} x_{2}-y_{2} x_{1}}{x_{2}-x_{1}}
\end{gathered}
\]

\section*{Approximating the Line Equation (2)}
void Line1( float x1, float y1, float x2, float y2 ) \{
float s, b, y;
float x;
\(\mathrm{s}=(\mathrm{y} 2-\mathrm{y} 1) /(x 2-\mathrm{x} 1) ;\)
b = (y1*x2 - y2*x1) / (x2-x1);
for ( x = x1; \(x\) <= x2; x+=1.0f )
\{
y = s*x + b;
SetPixel( floor(x+0.5f), floor(y+0.5f) );
\}
\}

\section*{Result of the Line1 Algorithm}
- Y values are eventually rounded to the nearest integer cell


\section*{Incremental Line Algorithm (1)}
- \(Y\) values are computed for fixed and positive \(X\) increments
- The described algorithm (Line1) is valid only for octant 1 :



\section*{Incremental Line Algorithm (2)}
- The multiplication inside the loop can be simplified, since:
\[
\begin{gathered}
x_{i+1}=x_{i}+1 \\
y_{i+1}=s x_{i+1}+b=s x_{i}+b+s=y_{i}+s
\end{gathered}
\]

\section*{Incremental Line Algorithm (3)}
void Line2( float x1, float y1, float x2, float y2 ) \{
float s, y;
float x;
s = (y2-y1) / (x2-x1);
y = y1;
for ( x = x1; x <= x2; x+=1.0f )
\{
SetPixel( floor(x+0.5f), floor(y+0.5f) );
\(\longrightarrow y=y+s ;\)
\}

\section*{Integer Variants of Line Drawing}
- If all coordinates are integer values, there are several improvements to be made to save calculations:
- Drop the rounding, by stepping to the next \(Y\) value if the increment becomes larger than 1/2 pixel
- Scaling all comparisons by \(\Delta x\) to dispense with the division


\section*{Rasterization - Triangle Traversal (1)}
- Sampling the triangles involves traversing their interior and edges and generating a set of fragments per pixel (typically one)


Triangle stream


\section*{Triangle Rasterization Issues (1)}
- Similar to lines, triangle rasterization must not leave gaps, for thin triangles:


\section*{Triangle Rasterization Issues (2)}
- Appearance must be as consistent as possible under slight sampling offsets (motion) - see antialiasing


\section*{Triangle Rasterization Issues (3)}
- What is the priority of shared edges?


\section*{Triangle Traversal Algorithms}
- Two dominant methods:
- Edge Walking: Vertically follows edges and draws the corresponding scan line spans
- Edge Equation: Tests the pixels for containment inside the triangle boundaries. Can be efficiently implemented in a divide and conquer manner

\section*{Edge Walking - Basic Idea}
(AKA: Triangle Digital Differential Analyzer)
- Follow edges vertically
- Interpolate attributes down edges
- Fill in horizontal spans for each scanline
- For each pixel of a scanline, interpolate edge attributes across span


\section*{Edge Walking - Procedure}

Sort Vertices by Y value
Scan Convert 2 sub-triangles:
- For \(\mathrm{y}_{1} \leq y<y_{2}\) :
- Interpolate \(x\left(x_{a}, x_{b}\right)\) and other values along edges
- For \(x_{a} \leq x<x_{b}\) : interpolate values along spans
- For \(\mathrm{y}_{2} \leq y<y_{3}\) :
- Interpolate \(x\left(x_{a}, x_{b}\right)\) and other values along edges
- For \(x_{a} \leq x<x_{b}\) : interpolate values along spans


\section*{Edge Walking - Attribute Interpolation}


\section*{Ok, We Have a Traversal, Why Go for Another One?}
- Scanline-style edge walking is reasonably good provided that you don't care about:
- Aligned (coherent) memory access
- Parallelism: multiple rows at a time
- Variable sample positions
- Ability to harness wide SIMD or build efficient hardware for it
- The above become really problematic especially in the case of thin, elongated triangles

\section*{Edge Equation Traversal - Basic Idea}
- Triangle setup:
- Find the bounding box of the triangle
- Find the edge (line) equations of the oriented edges
- Find triangle differentials
- For all pixels in the grid:
- Find edge equation values \(\varepsilon_{1}, \varepsilon_{2}, \varepsilon_{3}\)
- If \(\left(\varepsilon_{1}>0\right) \wedge\left(\varepsilon_{2}>0\right) \wedge\left(\varepsilon_{3}>0\right)\)
- Interpolate attributes
- Issue Fragment

\section*{Edge Equation Values}
\[
\begin{gathered}
y=s \cdot x+b \Longrightarrow e=s x-y+b \\
s=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{\Delta y}{\Delta x} \\
b=\frac{y_{1} x_{2}-y_{2} x_{1}}{x_{2}-x_{1}}
\end{gathered}
\]


\section*{Value Interpolation}
- Use barycentric coordinates!
- Can I incrementally construct the barycentric coordinates per pixel?
- YES!
- We can also incrementally update the edge equations per pixel

\section*{Edge Equation Traversal - Revisited (1)}
- Given two vectors \(\mathbf{v}_{1}\) and \(\mathbf{v}_{2}\), the following determinant calculates the signed area of the formed parallelogram:
\[
\mathrm{A}_{p}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)=\left|\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right|
\]
- Or the signed area of the triangle formed by \(\mathbf{v}_{1}\) and \(\mathbf{v}_{2}\) :
\[
\mathrm{A}_{t}\left(\mathbf{v}_{1}, \mathbf{v}_{2}\right)=\frac{1}{2}\left|\begin{array}{ll}
x_{1} & x_{2} \\
y_{1} & y_{2}
\end{array}\right|
\]
- Remember, these quantities are signed
- The sign is determined by the order of the two vectors

\section*{Edge Equation Traversal - Revisited (2)}
- Now consider an edge \(\mathbf{p}_{0} \mathbf{p}_{1}\) of a triangle and an arbitrary point \(\mathbf{q}\)
- Using as vectors \(\mathbf{v}_{1}=\mathbf{p}_{0} \mathbf{p}_{1}\) and \(\mathbf{v}_{2}=\mathbf{p}_{0} \mathbf{q}\) the determinant defines an edge function of \(\mathbf{q}\) w.r.t. edge \(\mathbf{p}_{0} \mathbf{p}_{1}\) :


\section*{Edge Equation Traversal - Revisited (3)}
- Expanding and rearranging \(F_{01}(\mathbf{q})\) we get:
\[
\begin{gathered}
F_{01}(\mathbf{q})=\left|\begin{array}{ll}
x_{1}-x_{0} & x_{q}-x_{0} \\
y_{1}-y_{0} & y_{q}-y_{0}
\end{array}\right| \Leftrightarrow \\
F_{01}(\mathbf{q})=\left(y_{0}-y_{1}\right) x_{q}+\left(x_{1}-x_{0}\right) y_{q}+\left(x_{0} y_{1}-y_{0} x_{1}\right)
\end{gathered}
\]
- Equivalently, for the other triangle edges:
\[
\begin{aligned}
& F_{12}(\mathbf{q})=\left(y_{1}-y_{2}\right) x_{q}+\left(x_{2}-x_{1}\right) y_{q}+\left(x_{1} y_{2}-y_{1} x_{2}\right) \\
& F_{20}(\mathbf{q})=\left(y_{2}-y_{0}\right) x_{q}+\left(x_{0}-x_{2}\right) y_{q}+\left(x_{2} y_{0}-y_{2} x_{0}\right)
\end{aligned}
\]

\section*{Edge Equation Traversal - Revisited (4)}
- Remember that \(F_{01}(\mathbf{q})\) is related to the area of the triangle \(\mathbf{p}_{0} \mathbf{p}_{1} \mathbf{q}\)
- But so is the barycentric coordinate of \(\mathbf{q}\) from \(\mathbf{p}_{2}\) !
- It is easy to see that if \(w_{0}, w_{1}, w_{2}\) are the 3 barycentric coordinates, then:
\[
\begin{gathered}
w_{0}=F_{12}(\mathbf{q}) / w \\
w_{1}=F_{20}(\mathbf{q}) / w \\
w_{2}=F_{01}(\mathbf{q}) / w \\
w=F_{01}(\mathbf{q})+F_{12}(\mathbf{q})+F_{20}(\mathbf{q})
\end{gathered}
\]


\section*{Incremental Traversal (1)}
- Lets take the edge function and simplify it:
\[
\begin{aligned}
F_{01}(\mathbf{q})= & \left(y_{0}-y_{1}\right) x_{q}+\left(x_{1}-x_{0}\right) y_{q}+\left(x_{0} y_{1}-y_{0} x_{1}\right)= \\
& A_{01} x_{q}+B_{01} y_{q}+C_{01}
\end{aligned}
\]
- The terms \(A_{01}, B_{01}, C_{01}\) as well as the respective terms of the other edge functions are constant per triangle
- Can be computed once in the triangle setup phase

\section*{Incremental Traversal (2)}
- Let's look now what happens for adjacent pixel coordinates:
\[
\begin{aligned}
& F_{01}\left(x_{q}+1, y_{q}\right)=A_{01}\left(x_{q}+1\right)+B_{01} y_{q}+C_{01}=F_{01}\left(x_{q}, y_{q}\right)+A_{01} \\
& F_{01}\left(x_{q}, y_{q}+1\right)=A_{01} x_{q}+B_{01}\left(y_{q}+1\right)+C_{01}=F_{01}\left(x_{q}, y_{q}\right)+B_{01}
\end{aligned}
\]
- So, shifting the calculation to 1 pixel ahead in either direction only involves the addition of a constant term!

\section*{Parallel Traversal}
- More importantly, for parallel (vectorized) computations:
\[
F_{i j}\left(x_{U L}+n, y_{U L}+m\right)=F_{i j}\left(x_{U L}, y_{U L}\right)+n A_{i j}+m B_{i j}
\]
- where \(\left(x_{U L}, y_{U L}\right)\) is the upper-left corner of the bounding box
- The barycentric coordinates (interpolation variables) are computed from \(F_{i j} \rightarrow\) These are independently and cheaply computed, too!

\section*{Edge Equation Traversal - Optimization (1)}
- We can effectively reduce further the computations if we process the bounding box in blocks and discard entire blocks
- Block discard: all block corners outside the triangle
- Can be done hierarchically


\section*{Perspective and Interpolation (1)}
- Is there a problem with interpolating in perspective?
- Screen-space interpolation does not correctly interpolate perspectively projected values:


\section*{Perspective and Interpolation (2)}
- Linear in screen space \(\rightarrow\) Non-linear in eye space!


\section*{Perspective and Interpolation (3)}
- Fortunately, we can derive functions that correctly perform this interpolation
- For the perspectively correct z :
\[
z_{S}=\frac{1}{\frac{1}{z_{1}}+s\left(\frac{1}{z_{2}}-\frac{1}{z_{1}}\right)}
\]
- i.e., interpolate \(1 / z\) values and invert the result
- For the derivation procedure see: Kok-Lim Low, Perspective-Correct Interpolation, Tech. Rep. 2002

\section*{Perspective and Interpolation (3)}
- For the perspectively correct fragment attributes:
\[
a_{s}=z_{s}\left(\frac{a_{1}}{z_{1}}+s\left(\frac{a_{2}}{z_{2}}-\frac{a_{1}}{z_{1}}\right)\right)
\]
- i.e., divide vertex attributes by the corresponding \(z\) and multiple interpolated result by interpolated z
- For the derivation procedure see: Kok-Lim Low, Perspective-Correct Interpolation, Tech. Rep. 2002

\section*{Geometry Antialiasing}
- Aliasing in geometry boundaries due to fixed-rate sampling is a common artifact manifested as "pixelization"
- Blocky appearance
- Improper representation of thin structures
- Temporal artifacts

1 sample


\section*{Super-sampling the Geometry}
- The problem is alleviated by mitigating the sampling issues to a higher sampling frequency by supersampling each pixel


\section*{Practical Antialiasing - MSAA}
- Supersampling the pixel normally implies evaluating the shading at all samples taken \(\rightarrow\)
- Cost: \(\times\) number of samples!
- Solution: Evaluate the shading at a single location and take multiple coverage samples independently
\(\rightarrow\) MSAA (Multi-Sampled Anti-Aliasing)


Fragment shader is invoked once per pixel
Primitive coverage is evaluated independently at multiple locations

\section*{MSAA - Example}


1X (no MSAA), 2X, 4X and 8X coverage samples on an NVIDIA 780Ti graphics card

Fragment shader evaluation location
Coverage sample

\section*{MSAA - Deficiencies}

- Shader computations may be performed for locations outside the geometry!
- Can be fixed by moving the shading to the covered sample closest to the center

- Attributes evaluated at the pixel center my not be representative of the covered area

\section*{Triangle Rasterization - Overdraw}
- Rasterized fragments overlap with previously drawn fragments from other triangles - not yet sorted

\section*{Sorting (1)}
- The fragments of a primitive typically overlap fragments from other primitives

- There are many strategies to resolve the ordering of the rasterized primitives as they appear on screen
- Simplest:
- Explicit order (FIFO)
- 3D: More elaborate schemes required (see 3D rasterization)

\section*{Sorting (2)}
- Sorting can occur in various stages of the pipeline, depending on the type of primitives:
- E.g., flat 2D polygons and lines can be trivially pre-sorted according to "z order" and then rasterized back to front
- Conversely, intersecting or self-overlapping shapes may require a (post-) sorting strategy, at a fragment level (see 3D)

Can be resolved by primitive sorting


Cannot be resolved by primitive sorting - requires sorting at fragment level

\section*{Rasterization and HSE in 3D}
- After projecting the primitives in NDC, we must retain only surfaces visible to the camera (HSE) \(\rightarrow\)
- Surface parts must be sorted according to depth
- And not according to order of appearance (it is arbitrary)


\section*{HSE - Per Pixel}
- Even if polygons were depth-sorted according to some reference point on them (e.g. centroid), there is no guarantee that they do not overlap \(\rightarrow\)
- Sorting must be performed per pixel


\section*{The Depth Buffer}
- Separate buffer, same resolution as frame buffer
- Stores the nearest normalized depth values


\section*{The Z-Buffer Algorithm}
- The Z-Buffer algorithm uses the depth buffer to compare each generated fragment at location (i,j) with the previous "visible" (nearest) fragment
- If the new fragment is closest to the view plane:
- Replace the \(z\) in the depth buffer
- Forward the fragment to the merging stage
- Else (if fragment fails the depth test)
- Discard the fragment
- Remarks:
- The depth test may be \(<, \leq\) or other comparison operand
- Depth buffer is usually initialized to the "far" value

\section*{The Z-Buffer: A Simple Example}
- Initialize the buffers

- Rasterize the \(1^{\text {st }}\) triangle: All z values are in front of the "far" depth

- Rasterize the \(2^{\text {nd }}\) triangle: not all \(z\) values pass the depth test


\section*{Z-Buffer - Optimization: Z Cull}
- Split buffer into blocks (can use rasterization tiling)
- For each block maintain: \(z_{\text {min }}, z_{\text {max }}\)
- Compare the \(\min / \max z\) of an incoming triangle to the block's range:

Tile fragments are immediately discarded

Tile fragments are individually z-tested


Tile fragments immediately pass the \(z\) test

Tile min/max \(z\) is updated

\section*{Shading}
- In general, the fragment (pixel) shading process defines a color and transparency value for each generated geometry fragment
- In the simplest case of a flat-colored primitive, e.g. a 2D polygon fill, a predetermined color is assigned to the fragments
- More elaborate shading algorithms are required for lit and textured 3D surfaces (see texturing and shading chapters)

\section*{Triangle Rasterization - HSE}
- Triangle Fragments with correct order after z-buffer testing


\section*{Shaded Fragments}
- Triangle fragments after shading and merging


\section*{Merging Stage}
- Shaded fragments that successfully passed the depth test must contribute to the image in the frame buffer
- In general:
- Each fragment contributes to the image pixel according to coverage
- The color is blended with any existing one in the same pixel coordinates. This is especially true for transparent pixels
- All typical rasterization pipelines allow for a number of blending functions to be applied to the incoming fragments

\section*{Fragment Merging and Transparency (1)}
- When transparency values are generated, these can control the mixing of fragments
- The value controlling this blending is the alpha value, i.e. the "opacity" (or 1-transparency)


\section*{Fragment Merging and Transparency (2)}
- Extreme values \((1,0)\), can make fragments "pass through" or opaque, to display elaborate "perforated patterns" (see texturing)


Completely transparent

\section*{Compositing: Simple Examples}


\section*{Z-Buffer and Transparency (1)}
- Transparency is not handled well by the Z-Buffer algorithm:
- Result depends on the order of occurrence of the fragments: Depth test discards fragments behind transparent surfaces if the latter are already rendered


\section*{Z-Buffer and Transparency (2)}
- Solution 1:
- Render all opaque geometry first
- Render transparent geometry next
- Still:
- Blending of transparent surfaces is still order (and view) dependent


\section*{The A-Buffer (1)}
- Is a generic antialiased fragment resolve technique, with full support for order-independent transparency
- Instead of a single (nearest) depth value, it maintains a sorted list of all fragments intersecting the pixel
- Stores per fragment transparency and coverage
- Merging:
- Fragments are resolved front to back according to coverage (via a binary coverage mask) and their transparency

\section*{The A-Buffer (2)}
- Expensive technique:
- Must maintain a dynamic list per pixel (fragment bin)
- Must contain additional data per fragment
- Must sort contents in each fragment bin
- Uses indirection (pointers) to access next datum
- H/W implementations?
- Various optimized variants (or cut-down versions) implemented as shaders
- Most popular variation: the k-Buffer
- Fixed-size fragment buckets (arrays)
- Sorting is still required

\section*{Contributors}
- Georgios Papaioannou
- Sources:
- [RTR] T. Akenine-Möller, E. Haines, N. Hoffman, Read-time Rendering (3 \({ }^{\text {rd }}\) Ed.), AK Peters, 2008
- [G\&V] T. Theoharis, G. Papaioannou, N. Platis, N. M. Patrikalakis, Graphics \& Visualization: Principles and Algorithms, CRC Press
- [OBR] http://fgiesen.wordpress.com/2013/02/10/optimizing-the-basic-rasterizer/```

