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A High Level Rasterization Pipeline 
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• Geometry must be transformed in order to: 
– Be expressed in the proper coordinate system for each 

operation to take place 
– Get modified according to the desired arrangement of 

primitives / objects to form a virtual world or scene 

 
 
 

Geometry Setup  

Various geometric transformations 
applied to original shape to build the 

desired outcome 

LCS WCS 

A “scene” 
NDC WCSECSNDC 

transformation 

To change 
coordinate system 
to “observer” space 

window 



Geometry Setup (2) 

• The vertices of the resulting primitives are then 
assembled into a form that can be efficiently 
sampled by the rasterizer (e.g. triangles):  



• Redundant geometry (invisible, unimportant etc.) is 
culled (removed) to reduce overhead 

• To further reduce/split load and avoid degenerate / 
problematic geometry, primitives are clipped to the 
boundaries of NDC regions 
 
 
 

Geometry Setup (3) 

NDC 

window 

Culled 

NDC 

window 

NDC 

Clipping 
Clipped primitives may 
require re-triangulation 



3D Geometry Transformations 

• All coordinates have to be:  
– Transformed from their native, object space ones to a 

global, common reference system 
– Then expressed relative to the camera and 
– Projected on the image plane 

• All of these transformations are concatenated into a 
single matrix, which is applied to the vertices of each 
triangle 

• Different objects may have different transformations 



Geometric Transformation Sequence 
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3D Geometry Setup (1) 

• Initial primitives (as defined/loaded by the application) 

Y Y Y 

Y 

X X 

X 
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Local object-space coordinates 



3D Geometry Setup (2) 

• Transform geometry (vertices) in world 
coordinates to compose a 3D scene  

Y 

X 

Z 

WCS 



3D Geometry Setup (3) 

• Transform geometry (vertices) relative 
to the “eye” (camera) system (ECS) 

Y 

X 

Z 

ECS 

Camera 
(center of  
projection) 



3D Geometry Setup (4) 

• Coordinates as “seen” from the camera reference 
frame Y 

X 

ECS 



3D Geometry Setup (5) 

• Coordinates 
after 
perspective 
projection 

Y 

X 



3D Geometry Setup (6) 

• Coordinates after 
perspective projection 
in normalized device 
coordinates 

Y 

X 

-1 1 

-1 

1 
Clipping planes 



3D Geometry Setup (7) 

• Primitives after clipping 
(still in normalized 
device coordinates) 

Y 

X 

Clipped primitives 



3D Geometry Setup (8) 

• Coordinates of assembled primitives after window 
transformation (image space – pixel units)  



Clipping - General 

• With clipping we limit the extents of primitives to the 
viewing region 
– Avoid erroneous projection of geometry (see frustum 

clipping) 
– Discard invisible geometry 

• In general, we clip lines and polygons in both 2D and 
3D 



Half-spaces  

• A hyperplane in 2D (a line) or in 3D (a plane) divides 
space in two halves 

• The corresponding equation is positive on one side, 
negative on the other and zero exactly on the 
hyperplane:  

+ 

- 
𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 + 𝑑𝑑 = 0 

2D 3D 

+ 

- 



Point Containment 

• If a set of oriented hyperplanes 𝑓𝑓𝑖𝑖 forms a convex 
region, then determining if a point 𝐩𝐩 lies inside this 
region resolves to testing if:  
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑖𝑖(𝐩𝐩) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑗𝑗(𝐩𝐩) ,∀𝑠𝑠, 𝑗𝑗  

- 
- - 

- + + 

+ + 

- 

- 
- 

- + + 
+ + 



Point in Triangle Test 

• Alternatively, we can check 
the barycentric coordinates of 
the the point w.r.t. the 3 
vertices  
– Inside: 𝑢𝑢, 𝑣𝑣,𝑤𝑤 ≥ 0 
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Line Clipping on Rectangular Bounds 

• 3 cases: 
– Line segment entirely 

outside region 
– Line segment entirely 

inside region 
– Line segment intersects 1 

or 2 boundary segments 



A Simple Line Clipping Algorithm 

• Cohen-Sutherland algorithm 
– Fast segment in/out detection via binary tests 
– Recursive splitting of intersecting segments 

Clipping window 

1001 1000 1010 

0001 0000 0010 

0101 0100 0110 

𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚 

𝑏𝑏𝑚𝑚𝑖𝑖𝑚𝑚 

𝑎𝑎𝑚𝑚𝑖𝑖𝑚𝑚 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚 
Encode the 9 tiles according to 
the sign of the 4 line equations 



CS Line Clipping Algorithm 

void CS( vec3 * P1, vec3 * P2,  
        float x_min, float x_max, float y_min, float y_max ) 
{ 
 unsigned char c1, c2;  
 vec3 I; 

 c1=Code(*P1);   //Εύρεση κώδικα P1 
 c2=Code(*P2);   //Εύρεση κώδικα P2 
 if ( ( c1|c2 == 0 ) || // both inside or 
P1P2 ε      ( c1&c2 !=0 ) )   // outside but on the same side of a  
                             // clipping line (see figure) 
                             // do nothing  
      else  
     { 
     Intersect (P1,P2,&I,xmin,xmax,ymin,ymax); 
     if ( IsOuside(*P1) )      
         *P1 = I;  
     else          
      *P2 = I; 
              CS(P1,P2,xmin,xmax,ymin,ymax); 
  } 
} 



Polygon Clipping 

• Polygon clipping cannot be 
regarded as multiple line 
clipping! 

• Requires mutual edge + 
point containment and 
intersection testing 

Incorrect new polygon 

Missed space 



Sutherland-Hodgman Clipping Algorithm (1) 

• Clips an arbitrary polygon against a convex clipping 
polygonal region 

• Iteratively clips the input polygon against each one of 
the segments of the clipping region 

 



Sutherland-Hodgman Clipping Algorithm (2) 

• For each clipping line: 
– For each vertex transition of the input polygon: 

• Determine what points to generate according to the following 
configurations 

– Join all sequentially generated vertices to form a polygon 
– Use this polygon as input to the next iteration 

 



• Clipped triangles against the viewing window may 
require re-triangulation 
 
 
 

• Triangulation of convex shapes is trivial: 

Convex Shape Re-triangulation 



Frustum Clipping (1) 

• Before rasterizing the polygons, they must be clipped 
against the view frustum (see projections)  

• Why? 
– Coordinates behind near plane get inverted and wrap 

beyond the far plane  degenerate, impossible “triangles” 
– Coordinates on z=0  singularity in perspective division 

 



Frustum Clipping (2) 

• Frustum clipping can be done with a Sutherland-
Hodgman-style method for triangles/planes 

• For a 6-plane frustum (i.e. the camera frustum), this 
is a 6-stage triangle/plane clipping pipeline 
 

• Clipping is performed in the post-projective space, 
before the perspective division. Why? 
– In all projections (perspective, too), the frustum planes are 

axis aligned  simplified comparisons and equations (see 
Chapter 5.3 in [G&V] 



Frustum Clipping (3) 

• Triangle/plane clipping: 
– Perform 2 line-plane clipping steps 
– Join the open edges (if any) 
– Re-triangulate if necessary    



Pixel-level Clipping 

• It is possible to perform clipping at a pixel level (or 
pixel block level, for hierarchical implementations) 

• Pixel-level clipping boils down to discarding values 
outside the usable range (i.e. within the 2D/3D 
clipping region) 
– Saves on H/W and power consumption (less circuitry) 
– Naïve implementation: Not very fast – many samples to 

discard 
– Hierarchical / block-based implementation: efficient 

NVIDIA patent EP1756769 B1 



Optimizations – Back-face Culling (1) 

• Back-face culling can dramatically reduce the 
rasterization load by effectively discarding all polygons 
facing off the eye direction 

• Transparent shapes should not be BF culled 
 

Without back-face culling  With back-face culling 
(~50% fewer triangles) 



Optimizations – Back-face Culling (2) 

• Back-face culling rejects polygons whose normal 
deviates more than 90 degrees from the viewing 
direction 
 



Optimizations - Frustum Culling 

• Conservatively discards entire objects early on, 
before clipping by: 
– Checking the extents (bounding box) of an object against 

the bounds of the frustum 

• This test is very simple in post-projective space:  
– if all projected bounding box corners are outside the 

frustum  cull the object  
– Can be extended to non-camera frusta to cull hidden 

objects 

http://akhanubis-eng.tumblr.com/post/24375086110/slimdx-directx-11-frustum-culling 



Rasterization 

• Rasterization is the process that generates the pixel-
based samples on the stream of primitives  

• Before rasterization occurs, it is convenient to 
transform the primitives in screen coordinates (i.e. 
pixel units) – see rasterization slides 

• Each primitive is processed independently! 

NDC 
Fragments from 
different primitives may 
overlap  Ordering 
must be resolved (see 
next slides) 



Line Rasterization 

• Must: 
– Approximate the mathematical 

line as close as possible (min. 
error) 

– Not leave any gaps 
– Maintain a constant width 
– Be efficient 

 



Approximating the Line Equation (1) 

• Given a line segment in the first octant  
    𝑎𝑎1,𝑏𝑏1 → 𝑎𝑎2,𝑏𝑏2 , the line passing through the 
    endpoints is defined as: 

Y 

X b 

𝑏𝑏 = 𝑠𝑠 ∙ 𝑎𝑎 + 𝑏𝑏 
 

𝑠𝑠 =
𝑏𝑏2 − 𝑏𝑏1
𝑎𝑎2 − 𝑎𝑎1

=
Δ𝑏𝑏
Δ𝑎𝑎

 

 
𝑏𝑏 =

𝑏𝑏1𝑎𝑎2 − 𝑏𝑏2𝑎𝑎1
𝑎𝑎2 − 𝑎𝑎1

 

 

𝑎𝑎1,𝑏𝑏1  

𝑎𝑎2,𝑏𝑏2  

Δ𝑏𝑏 

Δ𝑎𝑎 



Approximating the Line Equation (2) 

void Line1( float x1, float y1, float x2, float y2 ) 
{ 
 float s, b, y;  
 float x; 
  s = (y2-y1) / (x2-x1); 
  b = (y1*x2 – y2*x1) / (x2-x1); 
  for ( x = x1; x <= x2; x+=1.0f ) 
 { 
  y = s*x + b; 
   SetPixel( floor(x+0.5f), floor(y+0.5f) ); 
 } 
} 



Result of the Line1 Algorithm 

• Y values are eventually rounded to the nearest 
integer cell  
 



Incremental Line Algorithm (1) 

• Y values are computed for fixed and positive X increments  
• The described algorithm (Line1) is valid only for octant 1: 

 



Incremental Line Algorithm (2) 

• The multiplication inside the loop can be simplified, since: 
 

 𝑎𝑎𝑖𝑖+1 = 𝑎𝑎𝑖𝑖 + 1 
 
𝑏𝑏𝑖𝑖+1 = 𝑠𝑠𝑎𝑎𝑖𝑖+1 + 𝑏𝑏 = 𝑠𝑠𝑎𝑎𝑖𝑖 + 𝑏𝑏 + 𝑠𝑠 = 𝑏𝑏𝑖𝑖 + 𝑠𝑠 



Incremental Line Algorithm (3) 

void Line2( float x1, float y1, float x2, float y2 ) 
{ 
 float s, y;  
 float x; 
  s = (y2-y1) / (x2-x1); 
  y = y1; 
    for ( x = x1; x <= x2; x+=1.0f ) 
 { 
  SetPixel( floor(x+0.5f), floor(y+0.5f) ); 
  y = y+s; 
 } 
} 



Integer Variants of Line Drawing 

• If all coordinates are integer values, there are several 
improvements to be made to save calculations: 
– Drop the rounding, by stepping to the next Y value if the 

increment becomes larger than 1/2 pixel 
– Scaling all comparisons by Δx to dispense with the division   

𝑏𝑏𝑖𝑖 

𝑎𝑎𝑖𝑖 𝑎𝑎𝑖𝑖+1 



Rasterization – Triangle Traversal (1) 

• Sampling the triangles involves traversing their 
interior and edges and generating a set of fragments 
per pixel (typically one) 

Rasterizer 

… 

Triangle stream 
Vertex Data 
Position 

Color 

Normal vector 

Texture coordinates 

Tangent vector 

… 

Fragment generation – 
interpolated attributes 

Custom attributes 



Triangle Rasterization Issues (1) 

• Similar to lines, triangle rasterization must not leave 
gaps, for thin triangles:  

Adapted from CG lecture notes from the Virginia University  



Triangle Rasterization Issues (2) 

• Appearance must be as consistent as possible under 
slight sampling offsets (motion) – see antialiasing   

Adapted from CG lecture notes from the Virginia University  



Triangle Rasterization Issues (3) 

• What is the priority of shared edges? 

Adapted from CG lecture notes from the Virginia University  



Triangle Traversal Algorithms 

• Two dominant methods: 
– Edge Walking: Vertically follows edges and draws the 

corresponding scan line spans 
– Edge Equation: Tests the pixels for containment inside the 

triangle boundaries. Can be efficiently implemented in a 
divide and conquer manner 

 



Edge Walking – Basic Idea 

• Follow edges vertically 
• Interpolate attributes down edges 
• Fill in horizontal spans for each  

scanline 
– For each pixel of a scanline, 

interpolate edge attributes across 
span 

 
𝑏𝑏1 

𝑏𝑏2 

𝑏𝑏3 

(AKA: Triangle Digital Differential Analyzer) 



Edge Walking – Procedure 

Sort Vertices by Y value 
Scan Convert 2 sub-triangles: 
• For y1 ≤ 𝑏𝑏 < 𝑏𝑏2 :  

– Interpolate 𝑎𝑎 (𝑎𝑎𝑚𝑚 , 𝑎𝑎𝑏𝑏) and other values along edges  
– For 𝑎𝑎𝑚𝑚 ≤ 𝑎𝑎 < 𝑎𝑎𝑏𝑏  : interpolate values along spans 

• For y2 ≤ 𝑏𝑏 < 𝑏𝑏3 :  
– Interpolate 𝑎𝑎 (𝑎𝑎𝑚𝑚 , 𝑎𝑎𝑏𝑏) and other values along edges  
– For 𝑎𝑎𝑚𝑚 ≤ 𝑎𝑎 < 𝑎𝑎𝑏𝑏  : interpolate values along spans 

 
 

𝑏𝑏1 

𝑏𝑏2 

𝑏𝑏3 
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𝑏𝑏1 

𝑏𝑏2 

𝑏𝑏3 

𝑏𝑏1 

𝑏𝑏2 

𝑏𝑏3 

𝑎𝑎𝑚𝑚 𝑎𝑎𝑏𝑏 

𝑎𝑎𝑚𝑚 𝑎𝑎𝑏𝑏 



Edge Walking – Attribute Interpolation 

𝑏𝑏1 

𝑏𝑏2 

𝑏𝑏3 

𝑏𝑏1 

𝑏𝑏2 

𝑏𝑏3 

𝑎𝑎𝑚𝑚 
𝑎𝑎𝑏𝑏 

𝑎𝑎𝑚𝑚 = 𝑎𝑎1 + 𝑎𝑎 𝑎𝑎2 − 𝑎𝑎1  

𝑎𝑎 =
𝑏𝑏 − 𝑏𝑏1
𝑏𝑏2 − 𝑏𝑏1

 

𝑏𝑏 =
𝑏𝑏 − 𝑏𝑏1
𝑏𝑏3 − 𝑏𝑏1

 

𝑏𝑏  𝑎𝑎 𝑏𝑏 

𝑎𝑎𝑏𝑏 = 𝑎𝑎1 + 𝑏𝑏 𝑎𝑎3 − 𝑎𝑎1  

𝑠𝑠 =
𝑎𝑎 − 𝑎𝑎𝑚𝑚
𝑎𝑎𝑏𝑏 − 𝑎𝑎𝑚𝑚

 

𝑐𝑐 = 𝑐𝑐𝑚𝑚 + 𝑠𝑠(𝑐𝑐𝑏𝑏 − 𝑐𝑐𝑚𝑚) 

𝑎𝑎 𝑏𝑏 𝑏𝑏  

𝑎𝑎𝑚𝑚 = 𝑎𝑎2 + 𝑎𝑎 𝑎𝑎3 − 𝑎𝑎2  

𝑎𝑎 =
𝑏𝑏 − 𝑏𝑏2
𝑏𝑏3 − 𝑏𝑏2

 

𝑏𝑏 =
𝑏𝑏 − 𝑏𝑏1
𝑏𝑏3 − 𝑏𝑏1

 

𝑎𝑎𝑏𝑏 = 𝑎𝑎1 + 𝑏𝑏 𝑎𝑎3 − 𝑎𝑎1  

𝜉𝜉1 = 𝜉𝜉1𝑚𝑚 + 𝑠𝑠(𝜉𝜉1𝑏𝑏 − 𝜉𝜉1𝑚𝑚) 

Any attribute  𝜉𝜉𝑘𝑘 is 
similarly interpolated 

𝜉𝜉2 = 𝜉𝜉2𝑚𝑚 + 𝑠𝑠 𝜉𝜉2𝑏𝑏 − 𝜉𝜉2𝑚𝑚  

⋮ 

𝜉𝜉𝑚𝑚 = 𝜉𝜉𝑚𝑚𝑚𝑚 + 𝑠𝑠 𝜉𝜉𝑚𝑚𝑏𝑏 − 𝜉𝜉𝑚𝑚𝑚𝑚  

Inner loop (x) 



Ok, We Have a Traversal, Why Go for Another One? 

• Scanline-style edge walking is reasonably good 
provided that you don’t care about: 
– Aligned (coherent) memory access 
– Parallelism: multiple rows at a time  
– Variable sample positions  
– Ability to harness wide SIMD or build efficient hardware 

for it 

• The above become really problematic especially in 
the case of thin, elongated triangles 



• Triangle setup: 
– Find the bounding box of the 

triangle 
– Find the edge (line) equations of the 

oriented edges 
– Find triangle differentials  

• For all pixels in the grid: 
– Find edge equation values 𝜀𝜀1, 𝜀𝜀2, 𝜀𝜀3 
– If (𝜀𝜀1> 0) ∧ (𝜀𝜀2> 0) ∧ (𝜀𝜀3> 0) 

• Interpolate attributes 
• Issue Fragment 

Edge Equation Traversal – Basic Idea 

(𝑎𝑎𝑚𝑚𝑖𝑖𝑚𝑚,𝑏𝑏𝑚𝑚𝑖𝑖𝑚𝑚) 

(𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚,𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚) 

Embarrassingly parallel! 



Edge Equation Values 

𝑏𝑏 = 𝑠𝑠 ∙ 𝑎𝑎 + 𝑏𝑏 ⟹ 𝑒𝑒 = 𝑠𝑠𝑎𝑎 − 𝑏𝑏 + 𝑏𝑏 
 

𝑠𝑠 =
𝑏𝑏2 − 𝑏𝑏1
𝑎𝑎2 − 𝑎𝑎1

=
Δ𝑏𝑏
Δ𝑎𝑎

 

 
𝑏𝑏 =

𝑏𝑏1𝑎𝑎2 − 𝑏𝑏2𝑎𝑎1
𝑎𝑎2 − 𝑎𝑎1

 

 

- 

- 
- + + 

+ 



Value Interpolation 

• Use barycentric coordinates! 
• Can I incrementally construct the barycentric 

coordinates per pixel? 
– YES! 
– We can also incrementally update the edge equations per 

pixel 

 



Edge Equation Traversal – Revisited (1)  

• Given two vectors 𝐯𝐯1 and 𝐯𝐯2, the following 
determinant calculates the signed area of the 
formed parallelogram: 
 

• Or the signed area of the triangle formed by 𝐯𝐯1 
and 𝐯𝐯2: 
 

• Remember, these quantities are signed 
• The sign is determined by the order of the two 

vectors 

Source: http://fgiesen.wordpress.com/2013/02/06/the-barycentric-conspirac/ 

A𝑝𝑝 𝐯𝐯1, 𝐯𝐯2 =
𝑎𝑎1 𝑎𝑎2
𝑏𝑏1 𝑏𝑏2  

A𝑡𝑡 𝐯𝐯1, 𝐯𝐯2 =
1
2
𝑎𝑎1 𝑎𝑎2
𝑏𝑏1 𝑏𝑏2  



• Now consider an edge 𝐩𝐩0𝐩𝐩1 of a triangle and an 
arbitrary point 𝐪𝐪 

• Using as vectors 𝐯𝐯1 = 𝐩𝐩0𝐩𝐩1 and 𝐯𝐯2 = 𝐩𝐩0𝐪𝐪 the 
determinant defines an edge function of 𝐪𝐪 w.r.t. 
edge 𝐩𝐩0𝐩𝐩1:  
 

Edge Equation Traversal – Revisited (2)  

Source: http://fgiesen.wordpress.com/2013/02/06/the-barycentric-conspirac/ 

𝐹𝐹01 𝐪𝐪 =
𝑎𝑎1 − 𝑎𝑎0 𝑎𝑎𝑞𝑞 − 𝑎𝑎0
𝑏𝑏1 − 𝑏𝑏0 𝑏𝑏𝑞𝑞 − 𝑏𝑏0  

𝐩𝐩0 𝐩𝐩0 

𝐩𝐩1 𝐩𝐩2 
𝐪𝐪 

𝐪𝐪 

𝐪𝐪 on the positive 
side of 𝐩𝐩0𝐩𝐩1 

𝐪𝐪 on the negative 
side of 𝐩𝐩0𝐩𝐩1 

𝐹𝐹01 𝐪𝐪  
𝐹𝐹01 𝐪𝐪  



• Expanding and rearranging 𝐹𝐹01 𝐪𝐪  we get: 
 
 
 
 

• Equivalently, for the other triangle edges:  
 

Edge Equation Traversal – Revisited (3)  

Source: http://fgiesen.wordpress.com/2013/02/06/the-barycentric-conspirac/ 

𝐹𝐹01 𝐪𝐪 =
𝑎𝑎1 − 𝑎𝑎0 𝑎𝑎𝑞𝑞 − 𝑎𝑎0
𝑏𝑏1 − 𝑏𝑏0 𝑏𝑏𝑞𝑞 − 𝑏𝑏0 ⟺ 

 
𝐹𝐹01 𝐪𝐪 = 𝑏𝑏0 − 𝑏𝑏1 𝑎𝑎𝑞𝑞 + 𝑎𝑎1 − 𝑎𝑎0 𝑏𝑏𝑞𝑞 + (𝑎𝑎0𝑏𝑏1 − 𝑏𝑏0𝑎𝑎1) 

 

𝐹𝐹12 𝐪𝐪 = 𝑏𝑏1 − 𝑏𝑏2 𝑎𝑎𝑞𝑞 + 𝑎𝑎2 − 𝑎𝑎1 𝑏𝑏𝑞𝑞 + (𝑎𝑎1𝑏𝑏2 − 𝑏𝑏1𝑎𝑎2) 
𝐹𝐹20 𝐪𝐪 = 𝑏𝑏2 − 𝑏𝑏0 𝑎𝑎𝑞𝑞 + 𝑎𝑎0 − 𝑎𝑎2 𝑏𝑏𝑞𝑞 + (𝑎𝑎2𝑏𝑏0 − 𝑏𝑏2𝑎𝑎0) 



• Remember that 𝐹𝐹01 𝐪𝐪  is related to the area of 
the triangle 𝐩𝐩0𝐩𝐩1𝐪𝐪 

• But so is the barycentric coordinate of 𝐪𝐪 from 𝐩𝐩2! 
• It is easy to see that if 𝑤𝑤0,𝑤𝑤1,𝑤𝑤2 are the 3 

barycentric coordinates, then: 
 

 

Edge Equation Traversal – Revisited (4)  

Source: http://fgiesen.wordpress.com/2013/02/06/the-barycentric-conspirac/ 

𝑤𝑤0 = 𝐹𝐹12 𝐪𝐪 /𝑤𝑤 
𝑤𝑤1 = 𝐹𝐹20 𝐪𝐪 /𝑤𝑤 
𝑤𝑤2 = 𝐹𝐹01 𝐪𝐪 /𝑤𝑤 

𝑤𝑤 = 𝐹𝐹01 𝐪𝐪 + 𝐹𝐹12 𝐪𝐪 + 𝐹𝐹20(𝐪𝐪) 

q 

𝐩𝐩0 𝐩𝐩1 

𝐩𝐩2 

𝑤𝑤0 𝑤𝑤1 

𝑤𝑤2 



Incremental Traversal (1) 

• Lets take the edge function and simplify it: 
 
 

• The terms 𝐴𝐴01,𝐵𝐵01,𝐶𝐶01 as well as the respective 
terms of the other edge functions are constant per 
triangle 
– Can be computed once in the triangle setup phase  

𝐹𝐹01 𝐪𝐪 = 𝑏𝑏0 − 𝑏𝑏1 𝑎𝑎𝑞𝑞 + 𝑎𝑎1 − 𝑎𝑎0 𝑏𝑏𝑞𝑞 + 𝑎𝑎0𝑏𝑏1 − 𝑏𝑏0𝑎𝑎1 = 
                   𝐴𝐴01𝑎𝑎𝑞𝑞 + 𝐵𝐵01𝑏𝑏𝑞𝑞 + 𝐶𝐶01   



Incremental Traversal (2) 

• Let’s look now what happens for adjacent pixel 
coordinates: 
 
 

• So, shifting the calculation to 1 pixel ahead in either 
direction only involves the addition of a constant 
term! 
 

𝐹𝐹01 𝑎𝑎𝑞𝑞 + 1,𝑏𝑏𝑞𝑞 = 𝐴𝐴01(𝑎𝑎𝑞𝑞+1) + 𝐵𝐵01𝑏𝑏𝑞𝑞 + 𝐶𝐶01 = 𝐹𝐹01 𝑎𝑎𝑞𝑞 ,𝑏𝑏𝑞𝑞 + 𝐴𝐴01 
𝐹𝐹01 𝑎𝑎𝑞𝑞 ,𝑏𝑏𝑞𝑞 + 1 = 𝐴𝐴01𝑎𝑎𝑞𝑞 + 𝐵𝐵01(𝑏𝑏𝑞𝑞 + 1) + 𝐶𝐶01 = 𝐹𝐹01 𝑎𝑎𝑞𝑞 ,𝑏𝑏𝑞𝑞 + 𝐵𝐵01 

Source: http://fgiesen.wordpress.com/2013/02/10/optimizing-the-basic-rasterizer/ 



Parallel Traversal  

• More importantly, for parallel (vectorized) 
computations: 
 
 

• where (𝑎𝑎𝑈𝑈𝑈𝑈 ,𝑏𝑏𝑈𝑈𝑈𝑈) is the upper-left corner of the 
bounding box 

• The barycentric coordinates (interpolation variables) 
are computed from 𝐹𝐹𝑖𝑖𝑗𝑗  These are independently 
and cheaply computed, too!  

𝐹𝐹𝑖𝑖𝑗𝑗 𝑎𝑎𝑈𝑈𝑈𝑈 + 𝑠𝑠,𝑏𝑏𝑈𝑈𝑈𝑈 + 𝑚𝑚 = 𝐹𝐹𝑖𝑖𝑗𝑗 𝑎𝑎𝑈𝑈𝑈𝑈,𝑏𝑏𝑈𝑈𝑈𝑈 + 𝑠𝑠𝐴𝐴𝑖𝑖𝑗𝑗 + 𝑚𝑚𝐵𝐵𝑖𝑖𝑗𝑗  



• We can effectively reduce further the computations 
if we process the bounding box in blocks and discard 
entire blocks 
– Block discard: all block corners outside the triangle 
– Can be done hierarchically 

Edge Equation Traversal – Optimization (1) 



Perspective and Interpolation (1) 

• Is there a problem with interpolating in perspective? 
– Screen-space interpolation does not correctly interpolate 

perspectively projected values: 

Source: Kok-Lim Low, Perspective-Correct Interpolation, Tech. Rep. 2002 



Perspective and Interpolation (2) 

• Linear in screen space  Non-linear in eye space! 

Linear y 

Image  
plane 

Linearly interpolated z 

Non-linearly 
interpolated points! 



Perspective and Interpolation (3) 

• Fortunately, we can derive functions that correctly 
perform this interpolation 

• For the perspectively correct z: 
 
 
 

• i.e., interpolate 1/z values and invert the result 
 

• For the derivation procedure see: Kok-Lim Low, 
Perspective-Correct Interpolation, Tech. Rep. 2002 

𝑐𝑐𝑠𝑠 =
1

1
𝑐𝑐1

+ 𝑠𝑠 1
𝑐𝑐2
− 1
𝑐𝑐1

 



Perspective and Interpolation (3) 

• For the perspectively correct fragment attributes: 
 
 
 

• i.e., divide vertex attributes by the corresponding z 
and multiple interpolated result by interpolated z 
 

• For the derivation procedure see: Kok-Lim Low, 
Perspective-Correct Interpolation, Tech. Rep. 2002 

𝑎𝑎𝑠𝑠 = 𝑐𝑐𝑠𝑠
𝑎𝑎1
𝑐𝑐1

+ 𝑠𝑠
𝑎𝑎2
𝑐𝑐2
−
𝑎𝑎1
𝑐𝑐1

 



Geometry Antialiasing 

• Aliasing in geometry boundaries due to fixed-rate 
sampling is a common artifact manifested as 
“pixelization” 
– Blocky appearance 
– Improper representation of thin structures 
– Temporal artifacts 



Super-sampling the Geometry 

• The problem is alleviated by mitigating the sampling 
issues to a higher sampling frequency by super-
sampling each pixel  
 

Adapted from “Real-Time Rendering, 3rd Ed. ” 



Practical Antialiasing - MSAA 

• Supersampling the pixel normally implies evaluating 
the shading at all samples taken   
– Cost: × number of samples!  

• Solution: Evaluate the shading at a single location 
and take multiple coverage samples independently 
 MSAA (Multi-Sampled Anti-Aliasing) 

Fragment shader is invoked once per pixel 

Primitive coverage is evaluated 
independently at multiple locations 



MSAA - Example 

1X (no MSAA),  2Χ, 4Χ and 8Χ coverage samples on an NVIDIA 780Ti graphics card  

Fragment shader evaluation location 

Coverage sample 



MSAA - Deficiencies 

• Shader computations may be performed 
for locations outside the geometry! 
– Can be fixed by moving the shading to the 

covered sample closest to the center   
 

 
 

• Attributes evaluated at the pixel center 
my not be representative of the covered 
area 



Triangle Rasterization - Overdraw 

• Rasterized fragments overlap with previously drawn 
fragments from other triangles – not yet sorted 

0 

8 

N
um

ber of overlapping fragm
ents 



Sorting (1) 

• The fragments of a primitive typically overlap 
fragments from other primitives 

• There are many strategies to 
resolve the ordering of the 
rasterized primitives as they 
appear on screen 

• Simplest: 
– Explicit order (FIFO) 

• 3D: More elaborate schemes 
required (see 3D rasterization) 



Sorting (2) 

• Sorting can occur in various stages of the pipeline, 
depending on the type of primitives: 
– E.g., flat 2D polygons and lines can be trivially pre-sorted 

according to “z order” and then rasterized back to front 
– Conversely, intersecting or self-overlapping shapes may 

require a (post-) sorting strategy, at a fragment level (see 
3D) 
 

Can be resolved 
by primitive 
sorting 

Cannot be resolved 
by primitive sorting 

– requires sorting 
at fragment level 



Rasterization and HSE in 3D  

• After projecting the primitives in NDC, we must retain only surfaces visible 
to the camera (HSE)   

– Surface parts must be sorted according to depth 
– And not according to order of appearance (it is arbitrary)  

1 2 3 



HSE – Per Pixel 

• Even if polygons were depth-sorted according to 
some reference point on them (e.g. centroid), there 
is no guarantee that they do not overlap   

• Sorting must be performed per pixel 
 

 

 



The Depth Buffer 

• Separate buffer, same resolution as frame buffer 
• Stores the nearest normalized depth values 



The Z-Buffer Algorithm 

• The Z-Buffer algorithm uses the depth buffer to 
compare each generated fragment at location (i,j) 
with the previous “visible” (nearest) fragment 

• If the new fragment is closest to the view plane: 
– Replace the z in the depth buffer 
– Forward the fragment to the merging stage 

• Else ( if fragment fails the depth test) 
– Discard the fragment 

• Remarks: 
– The depth test may be <, ≤ or other comparison operand 
– Depth buffer is usually initialized to the “far” value 



0                          1  

The Z-Buffer: A Simple Example 

• Initialize the buffers 
 
 

• Rasterize the 1st 
triangle: All z values are 
in front of the “far” 
depth  
 

• Rasterize the 2nd 
triangle: not all z values 
pass the depth test  

Normalized depth Depth 
buffer 

Color 
buffer 

C
lip space Vi

ew
 p

la
ne

 

tr1 tr2 “far” Back 
color 



Z-Buffer – Optimization: Z Cull 

• Split buffer into blocks (can use rasterization tiling) 
• For each block maintain: 𝑐𝑐min , 𝑐𝑐max  
• Compare the min/max z of an incoming triangle to 

the block’s range: 

z 

Tile fragments are 
individually z-tested 

Tile fragments 
are immediately 
discarded 

Tile fragments 
immediately pass 
the z test 
 
Tile min/max z is 
updated 

𝑐𝑐min  
𝑐𝑐max  



Shading 

• In general, the fragment (pixel) shading process 
defines a color and transparency value for each 
generated geometry fragment 
– In the simplest case of a flat-colored primitive, e.g. a 2D 

polygon fill, a predetermined color is assigned to the 
fragments 

– More elaborate shading algorithms are required for lit and 
textured 3D surfaces (see texturing and shading chapters)  



Triangle Rasterization – HSE 

• Triangle Fragments with correct order after z-buffer 
testing 



Shaded Fragments 

• Triangle fragments after shading and merging  



Merging Stage 

• Shaded fragments that successfully passed the depth 
test must contribute to the image in the frame buffer 

• In general: 
– Each fragment contributes to the image pixel according to 

coverage 
– The color is blended with any existing one in the same 

pixel coordinates. This is especially true for transparent 
pixels 

• All typical rasterization pipelines allow for a number 
of blending functions to be applied to the incoming 
fragments 



Fragment Merging and Transparency (1)  

• When transparency 
values are generated, 
these can control the 
mixing of fragments 

• The value controlling this 
blending is the alpha 
value, i.e. the “opacity” 
(or 1-transparency) 

Image source: http://developer.amd.com 



Fragment Merging and Transparency (2) 

• Extreme values (1,0), can make fragments “pass 
through” or opaque, to display elaborate “perforated 
patterns” (see texturing)  

Completely transparent 



Compositing: Simple Examples 

Dst (already in FB) 

Src (Incoming frags.) 
 1 ∙ 𝑆𝑆𝑆𝑆𝑐𝑐 + 0 ∙ 𝐷𝐷𝑠𝑠𝐷𝐷 

(replace) 
𝑎𝑎 ∙ 𝑆𝑆𝑆𝑆𝑐𝑐 + (1 − 𝑎𝑎) ∙ 𝐷𝐷𝑠𝑠𝐷𝐷 

(linear mix) 
𝑎𝑎 ∙ 𝐷𝐷𝑠𝑠𝐷𝐷 ∙ 𝑆𝑆𝑆𝑆𝑐𝑐 + 1 − 𝑎𝑎 ∙ 𝐷𝐷𝑠𝑠𝐷𝐷 

(multiply) 

𝐷𝐷𝑠𝑠𝐷𝐷 + 𝑎𝑎 ∙ 𝑆𝑆𝑆𝑆𝑐𝑐 
additive blend 

𝐷𝐷𝑠𝑠𝐷𝐷 + 𝑆𝑆𝑆𝑆𝑐𝑐 
color add 

max{0,𝐷𝐷𝑠𝑠𝐷𝐷 − 𝑆𝑆𝑆𝑆𝑐𝑐} 
color subtract 



Z-Buffer and Transparency (1) 

• Transparency is not handled well by the Z-Buffer 
algorithm: 
– Result depends on the order of occurrence of the 

fragments: Depth test discards fragments behind 
transparent surfaces if the latter are already rendered  
 

z z 
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1 
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2 1 
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Z-Buffer and Transparency (2) 

• Solution 1:  
– Render all opaque geometry first 
– Render transparent geometry next 

• Still: 
– Blending of transparent surfaces is still order (and view) 

dependent 
 

Image source: AMD Mecha Demo 



The A-Buffer (1) 

• Is a generic antialiased fragment resolve technique, 
with full support for order-independent transparency 

• Instead of a single (nearest) depth value, it maintains 
a sorted list of all fragments intersecting the pixel 

• Stores per fragment transparency and coverage 
• Merging: 

– Fragments are resolved front to back according to 
coverage (via a binary coverage mask) and their 
transparency 



The A-Buffer (2) 

• Expensive technique:    
– Must maintain a dynamic list per pixel (fragment bin) 
– Must contain additional data per fragment 
– Must sort contents in each fragment bin 
– Uses indirection (pointers) to access next datum 

• H/W implementations? 
– Various optimized variants (or cut-down versions) 

implemented as shaders 
– Most popular variation: the k-Buffer 

• Fixed-size fragment buckets (arrays) 
• Sorting is still required   
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