
COMPUTER GRAPHICS COURSE

Georgios Papaioannou - 2014

Rasterization Architectures

A High Level Rasterization Pipeline

Geometry
Setup

Fragment
Generation

Fragment
Shading

Fragment
Merging

Primitives Updated
pixels

Transformed/clipped
primitives

Fragments Shaded pixel
samples

• Transformation
• Culling
• Primitive
 assembly
• Clipping

• Primitive
 sampling
• Attribute
 interpolation
• Pixel coverage
 estimation

• Pixel color
determination

• Transparency
• …

• Visibility
determination

• Blending
• Reconstruction

filtering

• Geometry must be transformed in order to:
– Be expressed in the proper coordinate system for each

operation to take place
– Get modified according to the desired arrangement of

primitives / objects to form a virtual world or scene

Geometry Setup

Various geometric transformations
applied to original shape to build the

desired outcome

LCS WCS

A “scene”
NDC WCSECSNDC

transformation

To change
coordinate system
to “observer” space

window

Geometry Setup (2)

• The vertices of the resulting primitives are then
assembled into a form that can be efficiently
sampled by the rasterizer (e.g. triangles):

• Redundant geometry (invisible, unimportant etc.) is
culled (removed) to reduce overhead

• To further reduce/split load and avoid degenerate /
problematic geometry, primitives are clipped to the
boundaries of NDC regions

Geometry Setup (3)

NDC

window

Culled

NDC

window

NDC

Clipping
Clipped primitives may
require re-triangulation

3D Geometry Transformations

• All coordinates have to be:
– Transformed from their native, object space ones to a

global, common reference system
– Then expressed relative to the camera and
– Projected on the image plane

• All of these transformations are concatenated into a
single matrix, which is applied to the vertices of each
triangle

• Different objects may have different transformations

Geometric Transformation Sequence

ECS NDC

ICS

WCS

LCS

eye

Object

Global reference system

Y

Z

X
Y

Z

X

Y

Y

Y

Z

X

X

X
Z

3D Geometry Setup (1)

• Initial primitives (as defined/loaded by the application)

Y Y Y

Y

X X

X

X

Z
Z Z

Z

Local object-space coordinates

3D Geometry Setup (2)

• Transform geometry (vertices) in world
coordinates to compose a 3D scene

Y

X

Z

WCS

3D Geometry Setup (3)

• Transform geometry (vertices) relative
to the “eye” (camera) system (ECS)

Y

X

Z

ECS

Camera
(center of
projection)

3D Geometry Setup (4)

• Coordinates as “seen” from the camera reference
frame Y

X

ECS

3D Geometry Setup (5)

• Coordinates
after
perspective
projection

Y

X

3D Geometry Setup (6)

• Coordinates after
perspective projection
in normalized device
coordinates

Y

X

-1 1

-1

1
Clipping planes

3D Geometry Setup (7)

• Primitives after clipping
(still in normalized
device coordinates)

Y

X

Clipped primitives

3D Geometry Setup (8)

• Coordinates of assembled primitives after window
transformation (image space – pixel units)

Clipping - General

• With clipping we limit the extents of primitives to the
viewing region
– Avoid erroneous projection of geometry (see frustum

clipping)
– Discard invisible geometry

• In general, we clip lines and polygons in both 2D and
3D

Half-spaces

• A hyperplane in 2D (a line) or in 3D (a plane) divides
space in two halves

• The corresponding equation is positive on one side,
negative on the other and zero exactly on the
hyperplane:

+

-
𝑎𝑎𝑎𝑎 + 𝑏𝑏𝑏𝑏 + 𝑐𝑐𝑐𝑐 + 𝑑𝑑 = 0

2D 3D

+

-

Point Containment

• If a set of oriented hyperplanes 𝑓𝑓𝑖𝑖 forms a convex
region, then determining if a point 𝐩𝐩 lies inside this
region resolves to testing if:
𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑖𝑖(𝐩𝐩) = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑗𝑗(𝐩𝐩) ,∀𝑠𝑠, 𝑗𝑗

-
- -

- + +

+ +

-

-
-

- + +
+ +

Point in Triangle Test

• Alternatively, we can check
the barycentric coordinates of
the the point w.r.t. the 3
vertices
– Inside: 𝑢𝑢, 𝑣𝑣,𝑤𝑤 ≥ 0

1

1

1 1

1

()

 n

n

n n

n

sign y s x b
y y Δys
x x Δx
y x y xb

x x

− ⋅ −
−

= =
−

−
=

−

Line Clipping on Rectangular Bounds

• 3 cases:
– Line segment entirely

outside region
– Line segment entirely

inside region
– Line segment intersects 1

or 2 boundary segments

A Simple Line Clipping Algorithm

• Cohen-Sutherland algorithm
– Fast segment in/out detection via binary tests
– Recursive splitting of intersecting segments

Clipping window

1001 1000 1010

0001 0000 0010

0101 0100 0110

𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚

𝑏𝑏𝑚𝑚𝑖𝑖𝑚𝑚

𝑎𝑎𝑚𝑚𝑖𝑖𝑚𝑚 𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚
Encode the 9 tiles according to
the sign of the 4 line equations

CS Line Clipping Algorithm

void CS(vec3 * P1, vec3 * P2,
 float x_min, float x_max, float y_min, float y_max)
{
 unsigned char c1, c2;
 vec3 I;

 c1=Code(*P1); //Εύρεση κώδικα P1
 c2=Code(*P2); //Εύρεση κώδικα P2
 if ((c1|c2 == 0) || // both inside or
P1P2 ε (c1&c2 !=0)) // outside but on the same side of a
 // clipping line (see figure)
 // do nothing
 else
 {
 Intersect (P1,P2,&I,xmin,xmax,ymin,ymax);
 if (IsOuside(*P1))
 *P1 = I;
 else
 *P2 = I;
 CS(P1,P2,xmin,xmax,ymin,ymax);
 }
}

Polygon Clipping

• Polygon clipping cannot be
regarded as multiple line
clipping!

• Requires mutual edge +
point containment and
intersection testing

Incorrect new polygon

Missed space

Sutherland-Hodgman Clipping Algorithm (1)

• Clips an arbitrary polygon against a convex clipping
polygonal region

• Iteratively clips the input polygon against each one of
the segments of the clipping region

Sutherland-Hodgman Clipping Algorithm (2)

• For each clipping line:
– For each vertex transition of the input polygon:

• Determine what points to generate according to the following
configurations

– Join all sequentially generated vertices to form a polygon
– Use this polygon as input to the next iteration

• Clipped triangles against the viewing window may
require re-triangulation

• Triangulation of convex shapes is trivial:

Convex Shape Re-triangulation

Frustum Clipping (1)

• Before rasterizing the polygons, they must be clipped
against the view frustum (see projections)

• Why?
– Coordinates behind near plane get inverted and wrap

beyond the far plane degenerate, impossible “triangles”
– Coordinates on z=0 singularity in perspective division

Frustum Clipping (2)

• Frustum clipping can be done with a Sutherland-
Hodgman-style method for triangles/planes

• For a 6-plane frustum (i.e. the camera frustum), this
is a 6-stage triangle/plane clipping pipeline

• Clipping is performed in the post-projective space,
before the perspective division. Why?
– In all projections (perspective, too), the frustum planes are

axis aligned simplified comparisons and equations (see
Chapter 5.3 in [G&V]

Frustum Clipping (3)

• Triangle/plane clipping:
– Perform 2 line-plane clipping steps
– Join the open edges (if any)
– Re-triangulate if necessary

Pixel-level Clipping

• It is possible to perform clipping at a pixel level (or
pixel block level, for hierarchical implementations)

• Pixel-level clipping boils down to discarding values
outside the usable range (i.e. within the 2D/3D
clipping region)
– Saves on H/W and power consumption (less circuitry)
– Naïve implementation: Not very fast – many samples to

discard
– Hierarchical / block-based implementation: efficient

NVIDIA patent EP1756769 B1

Optimizations – Back-face Culling (1)

• Back-face culling can dramatically reduce the
rasterization load by effectively discarding all polygons
facing off the eye direction

• Transparent shapes should not be BF culled

Without back-face culling With back-face culling
(~50% fewer triangles)

Optimizations – Back-face Culling (2)

• Back-face culling rejects polygons whose normal
deviates more than 90 degrees from the viewing
direction

Optimizations - Frustum Culling

• Conservatively discards entire objects early on,
before clipping by:
– Checking the extents (bounding box) of an object against

the bounds of the frustum

• This test is very simple in post-projective space:
– if all projected bounding box corners are outside the

frustum cull the object
– Can be extended to non-camera frusta to cull hidden

objects

http://akhanubis-eng.tumblr.com/post/24375086110/slimdx-directx-11-frustum-culling

Rasterization

• Rasterization is the process that generates the pixel-
based samples on the stream of primitives

• Before rasterization occurs, it is convenient to
transform the primitives in screen coordinates (i.e.
pixel units) – see rasterization slides

• Each primitive is processed independently!

NDC
Fragments from
different primitives may
overlap Ordering
must be resolved (see
next slides)

Line Rasterization

• Must:
– Approximate the mathematical

line as close as possible (min.
error)

– Not leave any gaps
– Maintain a constant width
– Be efficient

Approximating the Line Equation (1)

• Given a line segment in the first octant
 𝑎𝑎1,𝑏𝑏1 → 𝑎𝑎2,𝑏𝑏2 , the line passing through the
 endpoints is defined as:

Y

X b

𝑏𝑏 = 𝑠𝑠 ∙ 𝑎𝑎 + 𝑏𝑏

𝑠𝑠 =
𝑏𝑏2 − 𝑏𝑏1
𝑎𝑎2 − 𝑎𝑎1

=
Δ𝑏𝑏
Δ𝑎𝑎

𝑏𝑏 =

𝑏𝑏1𝑎𝑎2 − 𝑏𝑏2𝑎𝑎1
𝑎𝑎2 − 𝑎𝑎1

𝑎𝑎1,𝑏𝑏1

𝑎𝑎2,𝑏𝑏2

Δ𝑏𝑏

Δ𝑎𝑎

Approximating the Line Equation (2)

void Line1(float x1, float y1, float x2, float y2)
{
 float s, b, y;
 float x;
 s = (y2-y1) / (x2-x1);
 b = (y1*x2 – y2*x1) / (x2-x1);
 for (x = x1; x <= x2; x+=1.0f)
 {
 y = s*x + b;
 SetPixel(floor(x+0.5f), floor(y+0.5f));
 }
}

Result of the Line1 Algorithm

• Y values are eventually rounded to the nearest
integer cell

Incremental Line Algorithm (1)

• Y values are computed for fixed and positive X increments
• The described algorithm (Line1) is valid only for octant 1:

Incremental Line Algorithm (2)

• The multiplication inside the loop can be simplified, since:

 𝑎𝑎𝑖𝑖+1 = 𝑎𝑎𝑖𝑖 + 1

𝑏𝑏𝑖𝑖+1 = 𝑠𝑠𝑎𝑎𝑖𝑖+1 + 𝑏𝑏 = 𝑠𝑠𝑎𝑎𝑖𝑖 + 𝑏𝑏 + 𝑠𝑠 = 𝑏𝑏𝑖𝑖 + 𝑠𝑠

Incremental Line Algorithm (3)

void Line2(float x1, float y1, float x2, float y2)
{
 float s, y;
 float x;
 s = (y2-y1) / (x2-x1);
 y = y1;
 for (x = x1; x <= x2; x+=1.0f)
 {
 SetPixel(floor(x+0.5f), floor(y+0.5f));
 y = y+s;
 }
}

Integer Variants of Line Drawing

• If all coordinates are integer values, there are several
improvements to be made to save calculations:
– Drop the rounding, by stepping to the next Y value if the

increment becomes larger than 1/2 pixel
– Scaling all comparisons by Δx to dispense with the division

𝑏𝑏𝑖𝑖

𝑎𝑎𝑖𝑖 𝑎𝑎𝑖𝑖+1

Rasterization – Triangle Traversal (1)

• Sampling the triangles involves traversing their
interior and edges and generating a set of fragments
per pixel (typically one)

Rasterizer

…

Triangle stream
Vertex Data
Position

Color

Normal vector

Texture coordinates

Tangent vector

…

Fragment generation –
interpolated attributes

Custom attributes

Triangle Rasterization Issues (1)

• Similar to lines, triangle rasterization must not leave
gaps, for thin triangles:

Adapted from CG lecture notes from the Virginia University

Triangle Rasterization Issues (2)

• Appearance must be as consistent as possible under
slight sampling offsets (motion) – see antialiasing

Adapted from CG lecture notes from the Virginia University

Triangle Rasterization Issues (3)

• What is the priority of shared edges?

Adapted from CG lecture notes from the Virginia University

Triangle Traversal Algorithms

• Two dominant methods:
– Edge Walking: Vertically follows edges and draws the

corresponding scan line spans
– Edge Equation: Tests the pixels for containment inside the

triangle boundaries. Can be efficiently implemented in a
divide and conquer manner

Edge Walking – Basic Idea

• Follow edges vertically
• Interpolate attributes down edges
• Fill in horizontal spans for each

scanline
– For each pixel of a scanline,

interpolate edge attributes across
span

𝑏𝑏1

𝑏𝑏2

𝑏𝑏3

(AKA: Triangle Digital Differential Analyzer)

Edge Walking – Procedure

Sort Vertices by Y value
Scan Convert 2 sub-triangles:
• For y1 ≤ 𝑏𝑏 < 𝑏𝑏2 :

– Interpolate 𝑎𝑎 (𝑎𝑎𝑚𝑚 , 𝑎𝑎𝑏𝑏) and other values along edges
– For 𝑎𝑎𝑚𝑚 ≤ 𝑎𝑎 < 𝑎𝑎𝑏𝑏 : interpolate values along spans

• For y2 ≤ 𝑏𝑏 < 𝑏𝑏3 :
– Interpolate 𝑎𝑎 (𝑎𝑎𝑚𝑚 , 𝑎𝑎𝑏𝑏) and other values along edges
– For 𝑎𝑎𝑚𝑚 ≤ 𝑎𝑎 < 𝑎𝑎𝑏𝑏 : interpolate values along spans

𝑏𝑏1

𝑏𝑏2

𝑏𝑏3

In
cr

ea
si

ng
 Y

𝑏𝑏1

𝑏𝑏2

𝑏𝑏3

𝑏𝑏1

𝑏𝑏2

𝑏𝑏3

𝑎𝑎𝑚𝑚 𝑎𝑎𝑏𝑏

𝑎𝑎𝑚𝑚 𝑎𝑎𝑏𝑏

Edge Walking – Attribute Interpolation

𝑏𝑏1

𝑏𝑏2

𝑏𝑏3

𝑏𝑏1

𝑏𝑏2

𝑏𝑏3

𝑎𝑎𝑚𝑚
𝑎𝑎𝑏𝑏

𝑎𝑎𝑚𝑚 = 𝑎𝑎1 + 𝑎𝑎 𝑎𝑎2 − 𝑎𝑎1

𝑎𝑎 =
𝑏𝑏 − 𝑏𝑏1
𝑏𝑏2 − 𝑏𝑏1

𝑏𝑏 =
𝑏𝑏 − 𝑏𝑏1
𝑏𝑏3 − 𝑏𝑏1

𝑏𝑏 𝑎𝑎 𝑏𝑏

𝑎𝑎𝑏𝑏 = 𝑎𝑎1 + 𝑏𝑏 𝑎𝑎3 − 𝑎𝑎1

𝑠𝑠 =
𝑎𝑎 − 𝑎𝑎𝑚𝑚
𝑎𝑎𝑏𝑏 − 𝑎𝑎𝑚𝑚

𝑐𝑐 = 𝑐𝑐𝑚𝑚 + 𝑠𝑠(𝑐𝑐𝑏𝑏 − 𝑐𝑐𝑚𝑚)

𝑎𝑎 𝑏𝑏 𝑏𝑏

𝑎𝑎𝑚𝑚 = 𝑎𝑎2 + 𝑎𝑎 𝑎𝑎3 − 𝑎𝑎2

𝑎𝑎 =
𝑏𝑏 − 𝑏𝑏2
𝑏𝑏3 − 𝑏𝑏2

𝑏𝑏 =
𝑏𝑏 − 𝑏𝑏1
𝑏𝑏3 − 𝑏𝑏1

𝑎𝑎𝑏𝑏 = 𝑎𝑎1 + 𝑏𝑏 𝑎𝑎3 − 𝑎𝑎1

𝜉𝜉1 = 𝜉𝜉1𝑚𝑚 + 𝑠𝑠(𝜉𝜉1𝑏𝑏 − 𝜉𝜉1𝑚𝑚)

Any attribute 𝜉𝜉𝑘𝑘 is
similarly interpolated

𝜉𝜉2 = 𝜉𝜉2𝑚𝑚 + 𝑠𝑠 𝜉𝜉2𝑏𝑏 − 𝜉𝜉2𝑚𝑚

⋮

𝜉𝜉𝑚𝑚 = 𝜉𝜉𝑚𝑚𝑚𝑚 + 𝑠𝑠 𝜉𝜉𝑚𝑚𝑏𝑏 − 𝜉𝜉𝑚𝑚𝑚𝑚

Inner loop (x)

Ok, We Have a Traversal, Why Go for Another One?

• Scanline-style edge walking is reasonably good
provided that you don’t care about:
– Aligned (coherent) memory access
– Parallelism: multiple rows at a time
– Variable sample positions
– Ability to harness wide SIMD or build efficient hardware

for it

• The above become really problematic especially in
the case of thin, elongated triangles

• Triangle setup:
– Find the bounding box of the

triangle
– Find the edge (line) equations of the

oriented edges
– Find triangle differentials

• For all pixels in the grid:
– Find edge equation values 𝜀𝜀1, 𝜀𝜀2, 𝜀𝜀3
– If (𝜀𝜀1> 0) ∧ (𝜀𝜀2> 0) ∧ (𝜀𝜀3> 0)

• Interpolate attributes
• Issue Fragment

Edge Equation Traversal – Basic Idea

(𝑎𝑎𝑚𝑚𝑖𝑖𝑚𝑚,𝑏𝑏𝑚𝑚𝑖𝑖𝑚𝑚)

(𝑎𝑎𝑚𝑚𝑚𝑚𝑚𝑚,𝑏𝑏𝑚𝑚𝑚𝑚𝑚𝑚)

Embarrassingly parallel!

Edge Equation Values

𝑏𝑏 = 𝑠𝑠 ∙ 𝑎𝑎 + 𝑏𝑏 ⟹ 𝑒𝑒 = 𝑠𝑠𝑎𝑎 − 𝑏𝑏 + 𝑏𝑏

𝑠𝑠 =
𝑏𝑏2 − 𝑏𝑏1
𝑎𝑎2 − 𝑎𝑎1

=
Δ𝑏𝑏
Δ𝑎𝑎

𝑏𝑏 =

𝑏𝑏1𝑎𝑎2 − 𝑏𝑏2𝑎𝑎1
𝑎𝑎2 − 𝑎𝑎1

-

-
- + +

+

Value Interpolation

• Use barycentric coordinates!
• Can I incrementally construct the barycentric

coordinates per pixel?
– YES!
– We can also incrementally update the edge equations per

pixel

Edge Equation Traversal – Revisited (1)

• Given two vectors 𝐯𝐯1 and 𝐯𝐯2, the following
determinant calculates the signed area of the
formed parallelogram:

• Or the signed area of the triangle formed by 𝐯𝐯1
and 𝐯𝐯2:

• Remember, these quantities are signed
• The sign is determined by the order of the two

vectors

Source: http://fgiesen.wordpress.com/2013/02/06/the-barycentric-conspirac/

A𝑝𝑝 𝐯𝐯1, 𝐯𝐯2 =
𝑎𝑎1 𝑎𝑎2
𝑏𝑏1 𝑏𝑏2

A𝑡𝑡 𝐯𝐯1, 𝐯𝐯2 =
1
2
𝑎𝑎1 𝑎𝑎2
𝑏𝑏1 𝑏𝑏2

• Now consider an edge 𝐩𝐩0𝐩𝐩1 of a triangle and an
arbitrary point 𝐪𝐪

• Using as vectors 𝐯𝐯1 = 𝐩𝐩0𝐩𝐩1 and 𝐯𝐯2 = 𝐩𝐩0𝐪𝐪 the
determinant defines an edge function of 𝐪𝐪 w.r.t.
edge 𝐩𝐩0𝐩𝐩1:

Edge Equation Traversal – Revisited (2)

Source: http://fgiesen.wordpress.com/2013/02/06/the-barycentric-conspirac/

𝐹𝐹01 𝐪𝐪 =
𝑎𝑎1 − 𝑎𝑎0 𝑎𝑎𝑞𝑞 − 𝑎𝑎0
𝑏𝑏1 − 𝑏𝑏0 𝑏𝑏𝑞𝑞 − 𝑏𝑏0

𝐩𝐩0 𝐩𝐩0

𝐩𝐩1 𝐩𝐩2
𝐪𝐪

𝐪𝐪

𝐪𝐪 on the positive
side of 𝐩𝐩0𝐩𝐩1

𝐪𝐪 on the negative
side of 𝐩𝐩0𝐩𝐩1

𝐹𝐹01 𝐪𝐪
𝐹𝐹01 𝐪𝐪

• Expanding and rearranging 𝐹𝐹01 𝐪𝐪 we get:

• Equivalently, for the other triangle edges:

Edge Equation Traversal – Revisited (3)

Source: http://fgiesen.wordpress.com/2013/02/06/the-barycentric-conspirac/

𝐹𝐹01 𝐪𝐪 =
𝑎𝑎1 − 𝑎𝑎0 𝑎𝑎𝑞𝑞 − 𝑎𝑎0
𝑏𝑏1 − 𝑏𝑏0 𝑏𝑏𝑞𝑞 − 𝑏𝑏0 ⟺

𝐹𝐹01 𝐪𝐪 = 𝑏𝑏0 − 𝑏𝑏1 𝑎𝑎𝑞𝑞 + 𝑎𝑎1 − 𝑎𝑎0 𝑏𝑏𝑞𝑞 + (𝑎𝑎0𝑏𝑏1 − 𝑏𝑏0𝑎𝑎1)

𝐹𝐹12 𝐪𝐪 = 𝑏𝑏1 − 𝑏𝑏2 𝑎𝑎𝑞𝑞 + 𝑎𝑎2 − 𝑎𝑎1 𝑏𝑏𝑞𝑞 + (𝑎𝑎1𝑏𝑏2 − 𝑏𝑏1𝑎𝑎2)
𝐹𝐹20 𝐪𝐪 = 𝑏𝑏2 − 𝑏𝑏0 𝑎𝑎𝑞𝑞 + 𝑎𝑎0 − 𝑎𝑎2 𝑏𝑏𝑞𝑞 + (𝑎𝑎2𝑏𝑏0 − 𝑏𝑏2𝑎𝑎0)

• Remember that 𝐹𝐹01 𝐪𝐪 is related to the area of
the triangle 𝐩𝐩0𝐩𝐩1𝐪𝐪

• But so is the barycentric coordinate of 𝐪𝐪 from 𝐩𝐩2!
• It is easy to see that if 𝑤𝑤0,𝑤𝑤1,𝑤𝑤2 are the 3

barycentric coordinates, then:

Edge Equation Traversal – Revisited (4)

Source: http://fgiesen.wordpress.com/2013/02/06/the-barycentric-conspirac/

𝑤𝑤0 = 𝐹𝐹12 𝐪𝐪 /𝑤𝑤
𝑤𝑤1 = 𝐹𝐹20 𝐪𝐪 /𝑤𝑤
𝑤𝑤2 = 𝐹𝐹01 𝐪𝐪 /𝑤𝑤

𝑤𝑤 = 𝐹𝐹01 𝐪𝐪 + 𝐹𝐹12 𝐪𝐪 + 𝐹𝐹20(𝐪𝐪)

q

𝐩𝐩0 𝐩𝐩1

𝐩𝐩2

𝑤𝑤0 𝑤𝑤1

𝑤𝑤2

Incremental Traversal (1)

• Lets take the edge function and simplify it:

• The terms 𝐴𝐴01,𝐵𝐵01,𝐶𝐶01 as well as the respective
terms of the other edge functions are constant per
triangle
– Can be computed once in the triangle setup phase

𝐹𝐹01 𝐪𝐪 = 𝑏𝑏0 − 𝑏𝑏1 𝑎𝑎𝑞𝑞 + 𝑎𝑎1 − 𝑎𝑎0 𝑏𝑏𝑞𝑞 + 𝑎𝑎0𝑏𝑏1 − 𝑏𝑏0𝑎𝑎1 =
 𝐴𝐴01𝑎𝑎𝑞𝑞 + 𝐵𝐵01𝑏𝑏𝑞𝑞 + 𝐶𝐶01

Incremental Traversal (2)

• Let’s look now what happens for adjacent pixel
coordinates:

• So, shifting the calculation to 1 pixel ahead in either
direction only involves the addition of a constant
term!

𝐹𝐹01 𝑎𝑎𝑞𝑞 + 1,𝑏𝑏𝑞𝑞 = 𝐴𝐴01(𝑎𝑎𝑞𝑞+1) + 𝐵𝐵01𝑏𝑏𝑞𝑞 + 𝐶𝐶01 = 𝐹𝐹01 𝑎𝑎𝑞𝑞 ,𝑏𝑏𝑞𝑞 + 𝐴𝐴01
𝐹𝐹01 𝑎𝑎𝑞𝑞 ,𝑏𝑏𝑞𝑞 + 1 = 𝐴𝐴01𝑎𝑎𝑞𝑞 + 𝐵𝐵01(𝑏𝑏𝑞𝑞 + 1) + 𝐶𝐶01 = 𝐹𝐹01 𝑎𝑎𝑞𝑞 ,𝑏𝑏𝑞𝑞 + 𝐵𝐵01

Source: http://fgiesen.wordpress.com/2013/02/10/optimizing-the-basic-rasterizer/

Parallel Traversal

• More importantly, for parallel (vectorized)
computations:

• where (𝑎𝑎𝑈𝑈𝑈𝑈 ,𝑏𝑏𝑈𝑈𝑈𝑈) is the upper-left corner of the
bounding box

• The barycentric coordinates (interpolation variables)
are computed from 𝐹𝐹𝑖𝑖𝑗𝑗 These are independently
and cheaply computed, too!

𝐹𝐹𝑖𝑖𝑗𝑗 𝑎𝑎𝑈𝑈𝑈𝑈 + 𝑠𝑠,𝑏𝑏𝑈𝑈𝑈𝑈 + 𝑚𝑚 = 𝐹𝐹𝑖𝑖𝑗𝑗 𝑎𝑎𝑈𝑈𝑈𝑈,𝑏𝑏𝑈𝑈𝑈𝑈 + 𝑠𝑠𝐴𝐴𝑖𝑖𝑗𝑗 + 𝑚𝑚𝐵𝐵𝑖𝑖𝑗𝑗

• We can effectively reduce further the computations
if we process the bounding box in blocks and discard
entire blocks
– Block discard: all block corners outside the triangle
– Can be done hierarchically

Edge Equation Traversal – Optimization (1)

Perspective and Interpolation (1)

• Is there a problem with interpolating in perspective?
– Screen-space interpolation does not correctly interpolate

perspectively projected values:

Source: Kok-Lim Low, Perspective-Correct Interpolation, Tech. Rep. 2002

Perspective and Interpolation (2)

• Linear in screen space Non-linear in eye space!

Linear y

Image
plane

Linearly interpolated z

Non-linearly
interpolated points!

Perspective and Interpolation (3)

• Fortunately, we can derive functions that correctly
perform this interpolation

• For the perspectively correct z:

• i.e., interpolate 1/z values and invert the result

• For the derivation procedure see: Kok-Lim Low,
Perspective-Correct Interpolation, Tech. Rep. 2002

𝑐𝑐𝑠𝑠 =
1

1
𝑐𝑐1

+ 𝑠𝑠 1
𝑐𝑐2
− 1
𝑐𝑐1

Perspective and Interpolation (3)

• For the perspectively correct fragment attributes:

• i.e., divide vertex attributes by the corresponding z
and multiple interpolated result by interpolated z

• For the derivation procedure see: Kok-Lim Low,
Perspective-Correct Interpolation, Tech. Rep. 2002

𝑎𝑎𝑠𝑠 = 𝑐𝑐𝑠𝑠
𝑎𝑎1
𝑐𝑐1

+ 𝑠𝑠
𝑎𝑎2
𝑐𝑐2
−
𝑎𝑎1
𝑐𝑐1

Geometry Antialiasing

• Aliasing in geometry boundaries due to fixed-rate
sampling is a common artifact manifested as
“pixelization”
– Blocky appearance
– Improper representation of thin structures
– Temporal artifacts

Super-sampling the Geometry

• The problem is alleviated by mitigating the sampling
issues to a higher sampling frequency by super-
sampling each pixel

Adapted from “Real-Time Rendering, 3rd Ed. ”

Practical Antialiasing - MSAA

• Supersampling the pixel normally implies evaluating
the shading at all samples taken
– Cost: × number of samples!

• Solution: Evaluate the shading at a single location
and take multiple coverage samples independently
 MSAA (Multi-Sampled Anti-Aliasing)

Fragment shader is invoked once per pixel

Primitive coverage is evaluated
independently at multiple locations

MSAA - Example

1X (no MSAA), 2Χ, 4Χ and 8Χ coverage samples on an NVIDIA 780Ti graphics card

Fragment shader evaluation location

Coverage sample

MSAA - Deficiencies

• Shader computations may be performed
for locations outside the geometry!
– Can be fixed by moving the shading to the

covered sample closest to the center

• Attributes evaluated at the pixel center
my not be representative of the covered
area

Triangle Rasterization - Overdraw

• Rasterized fragments overlap with previously drawn
fragments from other triangles – not yet sorted

0

8

N
um

ber of overlapping fragm
ents

Sorting (1)

• The fragments of a primitive typically overlap
fragments from other primitives

• There are many strategies to
resolve the ordering of the
rasterized primitives as they
appear on screen

• Simplest:
– Explicit order (FIFO)

• 3D: More elaborate schemes
required (see 3D rasterization)

Sorting (2)

• Sorting can occur in various stages of the pipeline,
depending on the type of primitives:
– E.g., flat 2D polygons and lines can be trivially pre-sorted

according to “z order” and then rasterized back to front
– Conversely, intersecting or self-overlapping shapes may

require a (post-) sorting strategy, at a fragment level (see
3D)

Can be resolved
by primitive
sorting

Cannot be resolved
by primitive sorting

– requires sorting
at fragment level

Rasterization and HSE in 3D

• After projecting the primitives in NDC, we must retain only surfaces visible
to the camera (HSE)

– Surface parts must be sorted according to depth
– And not according to order of appearance (it is arbitrary)

1 2 3

HSE – Per Pixel

• Even if polygons were depth-sorted according to
some reference point on them (e.g. centroid), there
is no guarantee that they do not overlap

• Sorting must be performed per pixel

The Depth Buffer

• Separate buffer, same resolution as frame buffer
• Stores the nearest normalized depth values

The Z-Buffer Algorithm

• The Z-Buffer algorithm uses the depth buffer to
compare each generated fragment at location (i,j)
with the previous “visible” (nearest) fragment

• If the new fragment is closest to the view plane:
– Replace the z in the depth buffer
– Forward the fragment to the merging stage

• Else (if fragment fails the depth test)
– Discard the fragment

• Remarks:
– The depth test may be <, ≤ or other comparison operand
– Depth buffer is usually initialized to the “far” value

0 1

The Z-Buffer: A Simple Example

• Initialize the buffers

• Rasterize the 1st
triangle: All z values are
in front of the “far”
depth

• Rasterize the 2nd
triangle: not all z values
pass the depth test

Normalized depth Depth
buffer

Color
buffer

C
lip space Vi

ew
 p

la
ne

tr1 tr2 “far” Back
color

Z-Buffer – Optimization: Z Cull

• Split buffer into blocks (can use rasterization tiling)
• For each block maintain: 𝑐𝑐min , 𝑐𝑐max
• Compare the min/max z of an incoming triangle to

the block’s range:

z

Tile fragments are
individually z-tested

Tile fragments
are immediately
discarded

Tile fragments
immediately pass
the z test

Tile min/max z is
updated

𝑐𝑐min
𝑐𝑐max

Shading

• In general, the fragment (pixel) shading process
defines a color and transparency value for each
generated geometry fragment
– In the simplest case of a flat-colored primitive, e.g. a 2D

polygon fill, a predetermined color is assigned to the
fragments

– More elaborate shading algorithms are required for lit and
textured 3D surfaces (see texturing and shading chapters)

Triangle Rasterization – HSE

• Triangle Fragments with correct order after z-buffer
testing

Shaded Fragments

• Triangle fragments after shading and merging

Merging Stage

• Shaded fragments that successfully passed the depth
test must contribute to the image in the frame buffer

• In general:
– Each fragment contributes to the image pixel according to

coverage
– The color is blended with any existing one in the same

pixel coordinates. This is especially true for transparent
pixels

• All typical rasterization pipelines allow for a number
of blending functions to be applied to the incoming
fragments

Fragment Merging and Transparency (1)

• When transparency
values are generated,
these can control the
mixing of fragments

• The value controlling this
blending is the alpha
value, i.e. the “opacity”
(or 1-transparency)

Image source: http://developer.amd.com

Fragment Merging and Transparency (2)

• Extreme values (1,0), can make fragments “pass
through” or opaque, to display elaborate “perforated
patterns” (see texturing)

Completely transparent

Compositing: Simple Examples

Dst (already in FB)

Src (Incoming frags.)
 1 ∙ 𝑆𝑆𝑆𝑆𝑐𝑐 + 0 ∙ 𝐷𝐷𝑠𝑠𝐷𝐷

(replace)
𝑎𝑎 ∙ 𝑆𝑆𝑆𝑆𝑐𝑐 + (1 − 𝑎𝑎) ∙ 𝐷𝐷𝑠𝑠𝐷𝐷

(linear mix)
𝑎𝑎 ∙ 𝐷𝐷𝑠𝑠𝐷𝐷 ∙ 𝑆𝑆𝑆𝑆𝑐𝑐 + 1 − 𝑎𝑎 ∙ 𝐷𝐷𝑠𝑠𝐷𝐷

(multiply)

𝐷𝐷𝑠𝑠𝐷𝐷 + 𝑎𝑎 ∙ 𝑆𝑆𝑆𝑆𝑐𝑐
additive blend

𝐷𝐷𝑠𝑠𝐷𝐷 + 𝑆𝑆𝑆𝑆𝑐𝑐
color add

max{0,𝐷𝐷𝑠𝑠𝐷𝐷 − 𝑆𝑆𝑆𝑆𝑐𝑐}
color subtract

Z-Buffer and Transparency (1)

• Transparency is not handled well by the Z-Buffer
algorithm:
– Result depends on the order of occurrence of the

fragments: Depth test discards fragments behind
transparent surfaces if the latter are already rendered

z z

0

1

2
0

1

2

2

2 1

1

Z-Buffer and Transparency (2)

• Solution 1:
– Render all opaque geometry first
– Render transparent geometry next

• Still:
– Blending of transparent surfaces is still order (and view)

dependent

Image source: AMD Mecha Demo

The A-Buffer (1)

• Is a generic antialiased fragment resolve technique,
with full support for order-independent transparency

• Instead of a single (nearest) depth value, it maintains
a sorted list of all fragments intersecting the pixel

• Stores per fragment transparency and coverage
• Merging:

– Fragments are resolved front to back according to
coverage (via a binary coverage mask) and their
transparency

The A-Buffer (2)

• Expensive technique:
– Must maintain a dynamic list per pixel (fragment bin)
– Must contain additional data per fragment
– Must sort contents in each fragment bin
– Uses indirection (pointers) to access next datum

• H/W implementations?
– Various optimized variants (or cut-down versions)

implemented as shaders
– Most popular variation: the k-Buffer

• Fixed-size fragment buckets (arrays)
• Sorting is still required

Contributors

• Georgios Papaioannou

• Sources:
– [RTR] T. Akenine-Möller, E. Haines, N. Hoffman, Read-time

Rendering (3rd Ed.), AK Peters, 2008
– [G&V] T. Theoharis, G. Papaioannou, N. Platis, N. M.

Patrikalakis, Graphics & Visualization: Principles and
Algorithms, CRC Press

– [OBR] http://fgiesen.wordpress.com/2013/02/10/optimizing-
the-basic-rasterizer/

http://fgiesen.wordpress.com/2013/02/10/optimizing-the-basic-rasterizer/
http://fgiesen.wordpress.com/2013/02/10/optimizing-the-basic-rasterizer/

	Slide Number 1
	A High Level Rasterization Pipeline
	Geometry Setup
	Geometry Setup (2)
	Geometry Setup (3)
	3D Geometry Transformations
	Geometric Transformation Sequence
	3D Geometry Setup (1)
	3D Geometry Setup (2)
	3D Geometry Setup (3)
	3D Geometry Setup (4)
	3D Geometry Setup (5)
	3D Geometry Setup (6)
	3D Geometry Setup (7)
	3D Geometry Setup (8)
	Clipping - General
	Half-spaces
	Point Containment
	Point in Triangle Test
	Line Clipping on Rectangular Bounds
	A Simple Line Clipping Algorithm
	CS Line Clipping Algorithm
	Polygon Clipping
	Sutherland-Hodgman Clipping Algorithm (1)
	Sutherland-Hodgman Clipping Algorithm (2)
	Convex Shape Re-triangulation
	Frustum Clipping (1)
	Frustum Clipping (2)
	Frustum Clipping (3)
	Pixel-level Clipping
	Optimizations – Back-face Culling (1)
	Optimizations – Back-face Culling (2)
	Optimizations - Frustum Culling
	Rasterization
	Line Rasterization
	Approximating the Line Equation (1)
	Approximating the Line Equation (2)
	Result of the Line1 Algorithm
	Incremental Line Algorithm (1)
	Incremental Line Algorithm (2)
	Incremental Line Algorithm (3)
	Integer Variants of Line Drawing
	Rasterization – Triangle Traversal (1)
	Triangle Rasterization Issues (1)
	Triangle Rasterization Issues (2)
	Triangle Rasterization Issues (3)
	Triangle Traversal Algorithms
	Edge Walking – Basic Idea
	Edge Walking – Procedure
	Edge Walking – Attribute Interpolation
	Ok, We Have a Traversal, Why Go for Another One?
	Edge Equation Traversal – Basic Idea
	Edge Equation Values
	Value Interpolation
	Edge Equation Traversal – Revisited (1)
	Edge Equation Traversal – Revisited (2)
	Edge Equation Traversal – Revisited (3)
	Edge Equation Traversal – Revisited (4)
	Incremental Traversal (1)
	Incremental Traversal (2)
	Parallel Traversal
	Edge Equation Traversal – Optimization (1)
	Perspective and Interpolation (1)
	Perspective and Interpolation (2)
	Perspective and Interpolation (3)
	Perspective and Interpolation (3)
	Geometry Antialiasing
	Super-sampling the Geometry
	Practical Antialiasing - MSAA
	MSAA - Example
	MSAA - Deficiencies
	Triangle Rasterization - Overdraw
	Sorting (1)
	Sorting (2)
	Rasterization and HSE in 3D
	HSE – Per Pixel
	The Depth Buffer
	The Z-Buffer Algorithm
	The Z-Buffer: A Simple Example
	Z-Buffer – Optimization: Z Cull
	Shading
	Triangle Rasterization – HSE
	Shaded Fragments
	Merging Stage
	Fragment Merging and Transparency (1)
	Fragment Merging and Transparency (2)
	Compositing: Simple Examples
	Z-Buffer and Transparency (1)
	Z-Buffer and Transparency (2)
	The A-Buffer (1)
	The A-Buffer (2)
	Contributors

