
COMPUTER GRAPHICS COURSE 

Georgios Papaioannou - 2020 

Game Graphics  
Techniques 

 
PART II 



REAL-TIME DYNAMIC GLOBAL ILLUMINATION 



Indirect Illumination 

• Dynamic GI: Changes and adapts to follow: 
– the direct illumination in the scene  
– Optionally, changes to geometry and other dynamic aspects of the 

environment (particles, participating media, etc.) 

• We typically treat the different BRDF response to incident 
illumination with different tools and methods in real time 
graphics: 
– Wide scattering – rough surfaces 
– Focused scattering – glossy and mirror-like surfaces  



Instant Radiosity 

• Covers a wide range of methods, both interactive and off-line 
• The concept is to replace indirect light bounces with direct 

illumination produced by virtual point lights (VPLs) 
• VPLs (complete with visibility information) are placed at the 

intersection of photons from the light source with the 
geometry 

• VPLs model the radiosity emitted from those intersection 
points 

• VPLs are not limited to the first bounce only 



Instant Radiosity 

VPL placement ”Indirect” illumination from VPLs 



Instant Radiosity – Dynamic VPL Update 

• Original CPU technique supported VPL updates 
• When the scene changes, VPLs are updated: 

– Test VPL against shadow map 
– If invisible (beyond SM), discard VPL and add a new one 



Reflective Shadow Maps 



Reflective Shadow Maps 

• Is a fast indirect lighting technique using: 
• Shadow maps (depth maps) extended to also store VPL data: 

– Normals at visible points 
– Illumination (VPL power) at visible points 
– Optionally, location of VPLs and other data 



Reflective Shadow Maps 

• Essentially, an RSM replaces the tracing of VPLs in the scene: 
• Each SM texel is considered a VPL  
• The shadow map contains the nearest scene points to the 

light source 
• The extra data completely describe the power distribution of 

each VPL (shadow map texel)   
• The extended SM storage is used by other GI techniques  

RSM now also refers to the multi-channel shadow map 
storage. 



Reflective Shadow Maps 

• What the RSM does NOT provide is visibility 
information for each VPL 

• Therefore, the light from each VPL is considered 
unoccluded  no secondary bounce occlusion 

• Also, RSM provides first-bounce (near field) GI only 



Using the RSM for Global Illumination 

• RSM texels are sampled in the same manner as VPLs 
• Light transfer can be estimated between each RSM virtual 

area light (or point light, depending on model) and the 
illuminated point 

• Caution: Light transfer does not evaluate visibility between 
RSM samples and the receiving point 
 



Using the RSM for Global Illumination 

• Practical RSM sampling: 
– Project receiving point on RSM 
– Determine an area around projected point in RSM 

parametric space to sample 
– Accumulate RSM sample contribution 

 



Precomputed Radiance Transfer 

• It is the pre-calculation of the light transport operator on or 
near surfaces 

• It is typically compressed and stored as a (hemi)spherical 
function (dependence on input or output, not both) 

• During runtime, the PRT function is multiplied with a similarly 
coded illumination field to yield the resulting bounced energy 
 



Frequency Analysis of Radiance Field 

• Similar to radiance, we can encode visibility as a 5D field: 
– What is the visibility (how open is the environment) at a point (x,y,z) in 

space in a direction (θ,φ)? 
– Encodes the ability of the specific point to receive light from an 

incident direction (θ,φ) 

 
 
 
 

 
• What are the spectral characteristics of these fields? 

0ϕϕ =

θ

0 , [ / 2, / 2]ϕ ϕ θ π π= ∈ −



Frequency Analysis of Illumination (1) 

• Global illumination effects have distinctively different spectral 
characteristics 

• As a principle: 
– Diffuse inter-reflections produce low frequency directional radiance 
– The same holds for most cases involving occlusion in diffuse light 

bounces 
– Direct illumination with occlusion (shadows) contains high frequencies 

in general (discontinuities) 
– Specular transmission usually contains high frequencies  



Frequency Analysis of Illumination (2) 



Encoding the Radiance/Visibility Field (1) 

• Why? 
– Direct illumination is cheap to calculate at every point on the 

geometry 
– Indirect illumination is not  

• Solution: 
– Precalculate on surfaces/cache points OR 
– Calculate at sparse locations at run time 

• What: 
– Visibility AND/OR 
– Radiance field of indirect lighting 



Encoding the Radiance/Visibility Field (2) 

For real-time graphics: 
• Calculating and storing the radiance/visibility field once or per 

frame: 
– Disassociates its utilization from the geometry  
– Enables the easy evaluation of GI in real-time graphics 

(direct rendering techniques) 
 



Orthonormal Basis Functions 

• A basis function bn is an element of a particular basis for a 
function space 

• Every continuous function in the function space can be 
represented as a linear combination of basis functions: 

 
 

• Check similarity with vector spaces (the Fourier series is also a 
periodic function basis) 

• An orthonormal basis additionally satisfies the property: 

 
 

∑
∈

=
Nn

nn xbaxf )()(

∫ Ν∈∀−= jijibb ji ,)(δ



Signal Projection on Orthonormal Bases 

• The projection of an arbitrary continuous function on a set of 
basis functions results in the definition of the blending 
coefficients an 

• It can be proven that for orthonormal function bases, the best 
least squares fitting of a function f over a predefined set of 
basis functions bn results in: 
 
 
 

• (Again, relate this with the dot product projection in 
orthonormal bases for vector spaces) 

 

∫= xxbxfa nn d)()(



Signal Reconstruction 

• The number of basis (blending) functions may be infinite or 
too large and therefore we must choose a finite subset of 
them that converges “reasonably” to the desired result 
 

• The reconstructed function (signal) is derived from the linear 
combination of the (truncated series) of basis functions: 

  
  

∑
=

=
N

n
nn xbaxf

1
)()(~



Spherical Harmonics (1) 

• Spherical Harmonics define an orthonormal basis over the 
sphere S.  

• A point s on the sphere is parameterized as: 
 

• They are harmonic functions and more specifically they 
constitute the angular part of the solution of the Laplace’s 
equation on the unit sphere: 
 

)cos,cossin,cos(sin),,( θϕθϕθ== zyxs

02

2

2

2

2

2

=
∂
∂

+
∂
∂

+
∂
∂

z
f

y
f

x
f



Spherical Harmonics (2) 

• The (complex) basis functions are defined as: 
 
 

    where Pl
m are the associated Legendre polynomials and Kl

m 
are the following normalization factors: 

 



Spherical Harmonics (3) 

• Real versions of the SH basis functions can be obtained from 
the transformation: 
 
 
 
 

• l represents the band of the SH functions 
• Each band has 2l+1 SH basis functions 
• Each band corresponds to an increasing angular frequency  



Spherical Harmonics (4) 



Spherical Harmonics (5) 



• Being an orthonormal set of basis functions: 
 
 

• The reconstruction of the signal can use up to any order of SH 
bands, truncating the infinite series of coefficients and 
respective basis functions 

• Similarly, the encoded (projected) signal has to be band 
limited and encoded in a finite set of SH coefficients 

• How many bands should we use? 

Spherical Harmonics (6) 



Encoding Visibility (Distant Illumination) (1) 

• From the rendering equation: 
 
 

• If we assume only a “distant” environment emitting the 
radiance (e.g. sky, sun, distant light sources etc), then: 
 
 

                                radiance        transfer function 
 
 

 
 
 

∫
Ω

=
i

iiiirrriiiirrr dfVLL ωθθφθφθφθφθφ cos),,,(),(),(),(



Encoding Visibility (Distant Illumination) (2) 

• For diffuse surfaces this is simplified to: 
 
 
 

• The hemisphere is aligned with the surface normal at every 
point 

• The transfer function characterizes the specific point but for 
diffuse inter-reflection can be considered a slowly varying 
quantity (thus sparsely evaluated). 
 
 
 
 
 

( , ) ( , ) ( , ) cos
i

r r r i i i i i iL L V dρφ θ φ θ φ θ θ ω
π Ω

= ∫
),( iiT θφ



Encoding Visibility (Distant Illumination) (3) 

• We can encode both the transfer function and the incident 
radiance using a set of basis functions 

• Orthonormal bases (such as SH) are ideal as they provide the 
useful property: 
 
 
 

• i.e.: The integral of two band limited functions equals the dot 
product of their coefficients when projected to the 
orthonormal basis 

∑∫
=

=
k

i
kk gfdssgsf

1
)(~)(~



Precomputed Radiance Transfer (1) 

• The transfer (visibility over the hemisphere) function T can be 
precomputed and encoded in compact form 

• When using Spherical Harmonics, 9 or 16 coefficients can 
effectively encode both T and Li for diffuse light transfer 

• The coefficients for T can be sparsely (pre-) evaluated, stored 
to and evaluated from: 
– A sparse lattice  
– A texture atlas 



Precomputed Radiance Transfer (2) 

( , ) ( , ) ( , ) cos
i

r r r i i i i i iL L V dρφ θ φ θ φ θ θ ω
π Ω

= ∫

( , ) ( , ) cos
i

r r r i i i iL L dρφ θ φ θ θ ω
π Ω

= ∫



PRT in Games 

• PRT can be computed and stored in lightmap format 
– Each texel has all the coefficients for a hemispherical PRT 

basis OR 

• PRT can be volumetric 
– Expresses the visibility or outgoing energy ratio around a 

point in space 
– This spherical “probe” represents the PRT in the volume 

near it 



PRT Case Study: Far Cry 3 

• Uses spherical probes 
arranged in space 

• Precomputed visibility for sky 
lighting 

• PRT (outgoing) for direct light 
bounce 
 

• Deferred updates  

Source: file:///D:/Presentations/Graphics/NewSlides/resources/Stefanov_Nikolay_DeferredRadianceTransfer.pdf 



PRT Case Study: Far Cry 3 

Probes: Reflected radiosity from sun on diffuse surfaces encoded in SH 
Reconstructed on hemisphere over each point 

Probes: Skylight visibility,  
post-multiplied with skylight radiance field (also encoded in SH) 



PRT Case Study: Far Cry 3 

Indirect lighting from 
sources is 
dynamically updated 
to match conditions 
(see next) 



PRT Case Study: Far Cry 3 

• Probes are semi-automatically distributed in the environment 
at sparse locations 

• A volumetric grid is overlaid on the environment 
– Each cell indexes the closest probe 
– At run time, shaded points falling within each cell, access the mapped 

probe for indirect lighting 



PRT Case Study: Far Cry 3 

• For light bounce, estimate the average directional output 
radiance “as if” a unit source was placed directly on the probe 

• At run time, for each light source distribute its energy to 
nearest probes and compute the bounce energy. 

• Compute irradiance integral on surfaces using post-multiplied 
SH coefs (PRT * surface oriented hemisphere) 



Radiance Field Caching 



Radiance Field Caching 

• Estimates the incident radiance field at the vertices of a 
uniform grid 

• Radiance is captured by rendering the scene on a cubical 
environment map  

• Compresses the radiance field using SH 
• Evaluates the reflected radiance on surfaces by direct 

integration of the radiance field with the BRDF at each point 
in SH space 

• SHs for points in between lattice vertices are interpolated 



Radiance Field Caching 

• For each node, the SH coefs are the 
superposition of the individual 
cubemap texel radiance projection: 



Radiance Field Caching 

• For Lambertian surfaces (diffuse reflection): 
 
 
 
 
 

• Diffuse GI is well approximated with 2-3 order SH 
• The transfer function can be generalized to Phong-like models 

(symmetric lobes) but require a significantly larger SH order 
(6+) impractical storage 

( )( ) ( ) ( )
l

m m
indirect l l

l m l
L L Hρ

π =−

= ∑ ∑pp p n

Radiance field SH coefs  
interpolated from 8 nearest 
lattice points 

Normal-aligned projected  
cosine-weighted hemisphere  
on SH basis 



Radiance Field Caching 

• Practical issues: 
– For truly dynamic scenes, cubemaps must be completely 

re-evaluated often 
– Secondary bounces may be handled by exchanging light 

among lattice points 
– The sparseness of the grid necessitates additional 

occlusion criteria when evaluating the radiance field: 
• Depth maps are also acquired per node 
• Instead of simply trilinearly interpolating the node radiance, a 

visibility check is performed against the node’s range in the 
direction of the sample 

 



Volume-based Global Illumination 



Volume-based GI (1) 

• Uses an intermediate regular approximation of the 
geometry (voxel grid) to store lighting and geometry 
data  

• Rough discretization of the shaded environment 
• Why volume-based GI? 

– Decouples local pixel calculations (GPU pipeline) from full-
scene data 

– Provides access to full-scene data in the local-only context 
of a shaded pixel 

– GI calculations independent of scene complexity 



Volume-based GI (2) 

• The “lit” voxels represent virtual point lights 
• Occupied voxels effectively block light transport 
• What do we need to store for one-bounce GI (per 

voxel): 
– Direct lighting (VPLs) directionally encoded using the 

normal at the shaded fragments 
– Voxel coverage as occupancy (same storage – black voxels) 

• What do we need for extra bounces? 
– Averaged (per voxel) surface normals 
– Average (per voxel) albedo 



Volume-based GI (3) 

• All methods have two phases: 
– Volume data generation 
– GI estimation 

• Volume generation: 
– Point injection 

• Geometry-based 
• Image-based 

– Multi-channel full-scene voxelization 

• GI estimation: 
– Iterative radiance diffusion (light propagation volumes) 
– Ray marching 

 



VBGI – Image-based Point Injection (1) 

• Samples from the available frame buffers are injected into the 
volume using the technique discussed in part A 

• Shadow maps (RSMs) hold a sampling of the surfaces lit by 
the particular light source  VPLs 

• The camera buffer (MRT G-buffer) contributes additional 
occupancy-only points 
 



VBGI – Image-based Point Injection (2) 

• How are the points injected? 
– Reflective shadow map acquisition: 

 
 
 
 
 
 
 

Light setup                Shadow map points (WCS) 

 



VBGI – Image-based Point Injection (3) 

• How are the points injected (cont)? 
– Camera g-buffer acquisition (deferred rendering): 

 
 
 
 
 
 
 

Camera setup                camera depth points (WCS) 

 



• How are the points injected (cont)? 
– Geometry (points) generation: 

 
 
 
 
 
 
 

VBGI – Image-based Point Injection (4) 

• Render a planar grid of 
points. 

 For simplicity, arrange 
points in ([0,1],[0,1],0) 
interval 

In a geometry shader: 
• Lookup the (x,y) depth from the SM 
• Transform (x,y,depth) to vol. coords 
• Inject the transformed point in volume 



• How are the points injected (cont)? 
– Do the same for the camera buffer points: 

 
 
 
 
 
 
 

VBGI – Image-based Point Injection (5) 

• Additional camera points are unlit points 
• We repeat the process for all available buffers (lights, reflection 

buffers, env. maps etc) 



• The corresponding voxels now store the encoded 
lighting, occupancy and other data: 

VBGI – Image-based Point Injection (6) 

• The injected point contribution is not the same for all points! More 
on this later  



VBGI – Full Scene Voxelization (1) 

• Rasterizes the geometry into the volume buffer directly from 
the geometric data 

• Imprints a complete occlusion information, regardless of 
visibility to buffers 

• Voxelization  3D Rasterization: 
– Voxel shaders compute and encode direct lighting, normals, albedo 

and occupancy 
– 2-5 volume textures required  

• Many ways to perform it 
• All methods slice the geometry into volume layers 

 



VBGI – Full Scene Voxelization (2) 

Luminance 
only 
 
 
 
Full color GI 
 
 
 
 
+ color 
bleeding 



VBGI – Full Scene Voxelization (3) 

G
eo

m
et

ry
 sh

ad
er

 c
lip

pi
ng

 

Fr
ag

m
en

t s
ha

de
r c

lip
pi

ng
 



VBGI – Full Scene Voxelization (4) 

                         Binary data: OR op.     Scalar data: MAX op. 

• Polygons are rasterized to 
the volume sweep of 
maximum projection 

• This ensures dense, 
coherent sampling 

Volume sweep plane 



Blocking – Geometry Orientation/Coverage 

• As volume textures are quite crude (e.g. 323), voxels 
should not be either on or off 

• Regardless of volume generation method, volumes 
should store: 
– Occupancy proportional to voxel coverage and alpha  

This is easier in full voxelization 
– Directional data (SHs) for each injected fragment  

• Multiple surfaces with different orientations cross the voxel  



Light Propagation Volumes 

Source: http://advances.realtimerendering.com/s2009/Light_Propagation_Volumes.pdf 

http://advances.realtimerendering.com/s2009/Light_Propagation_Volumes.pdf


Light Propagation Volumes (1) 

• Iteratively propagates flux from each cell to the next 
• Blocks (attenuates) light according to occupancy data 

 
 

Occlusion 



Light Propagation Volumes (2) 

• The flux incident to each one of the faces of the neighboring 
cell is difficult to approximate as an integral using low-order 
SHs 

• A rough empirical approximation is suggested: 
– Estimate the intensity in direction ωc to the cone V(ω) center 
– Scale by the ratio of the solid angle subtended by the face against 4π 

(spherical solid angle) 

cω



Light Propagation Volumes (3) 

• Then a new VPL is generated at the neighboring cell with 
intensity matching the total flux of the face 

• The VPL is encoded as SH and added to the cells intensity 
distribution 



Light Propagation Volumes (4) 

• Not a physically correct solution: 
• Although flux balance is maintained, 
• Flux is assumed to get diffused on “translucent walls” due to 

the change in propagation direction 
 
 



• Some leaking still occurs due to low SH order (series truncation) and 
approximate blocking  

Light Propagation Volumes - Bounces 

O O 
O O 
O O 
O O 

O O 
O O 
O O 
O O 

O O 
O O 
O O 
O O 

O O 
O O 
O O 
O O 

O O 
O O 
O O 
O O 

O O 
O O 
O O 
O O 

O O 
O O 
O O 
O O 

iterations 

Spherical harmonic buffer (pair – swapped for reading/writing) 

GI accumulation buffer (flux sampled from decoded SH) 



Cascaded LPVs 

• Why? 
– Scenes are large to be covered by a single low-res volume 

(large volumes are slow and costly) 
– We need many iterations to transport flux across the scene 

• Solution: Cascades 
– Overlapped volumes of same resolution but different size 
– Denser sampling near camera 
  



VBGI - Ray Marching  



VBGI - Ray Marching (1) 

• We can approximate a gathering operation (Monte 
Carlo integration) by marching rays in the volume 
instead of intersecting them with the scene 

• We can march rays either from the shaded fragments 
or from the GI volume voxels (faster but cruder) 
 



VBGI - Ray Marching (2) 

• Ray marching: 
– Iteratively sample the volume along a line until a fully 

blocked voxel is reached 
– Gather light along the line from occupied voxels, according 

to orientation stored in them 
– Perform integration with the BRDF at the shaded point  

Simple SH dot product for diffuse reflection 

 



VBGI - Ray Marching (3) 

Generate N random rays 
L_gi = 0; 
for each ray dir: 
    s = ds; 
    while s < r_max 
        v = p + s*dir; 
        if Occ(v)>0.5 
            break; 
        s += ds; 
    F = clamp(dot(-Normal(v),dir),0,1); 
    F *= clamp(dot(Normal(p),dir),0,1); 
    L_gi += F*L(v)/((v-p)*(v-p)); 
L(p) += Color(p)*L_gi/N; 



Cone Tracing 

• Extending the idea of ray marching, instead of tracing a 
number of rays over the hemisphere to compute irradiance, 
we can trace bunches of rays grouped in cones  fewer 
queries 

• The cone radius increases with distance to shaded point 
• The conical section at a given distance should be used as a 

filter kernel to gather outgoing radiance from all touched 
surfaces 

• Outgoing radiance can be pre-filtered and hierarchically 
stored 
 



Voxel Cone Tracing 

• Record and pre-filter direct illumination on a hierarchical voxel grid 
• Advance a ray at each cone axis in the hierarchical occupancy grid 
• Choose appropriate voxel LOD according to current step cone radius 
• Gather averaged radiance for each traced cone 

Source: https://research.nvidia.com/sites/default/files/pubs/2011-09_Interactive-Indirect-Illumination/GIVoxels-pg2011-authors.pdf 

https://research.nvidia.com/sites/default/files/pubs/2011-09_Interactive-Indirect-Illumination/GIVoxels-pg2011-authors.pdf
https://research.nvidia.com/sites/default/files/pubs/2011-09_Interactive-Indirect-Illumination/GIVoxels-pg2011-authors.pdf
https://research.nvidia.com/sites/default/files/pubs/2011-09_Interactive-Indirect-Illumination/GIVoxels-pg2011-authors.pdf
https://research.nvidia.com/sites/default/files/pubs/2011-09_Interactive-Indirect-Illumination/GIVoxels-pg2011-authors.pdf
https://research.nvidia.com/sites/default/files/pubs/2011-09_Interactive-Indirect-Illumination/GIVoxels-pg2011-authors.pdf
https://research.nvidia.com/sites/default/files/pubs/2011-09_Interactive-Indirect-Illumination/GIVoxels-pg2011-authors.pdf
https://research.nvidia.com/sites/default/files/pubs/2011-09_Interactive-Indirect-Illumination/GIVoxels-pg2011-authors.pdf
https://research.nvidia.com/sites/default/files/pubs/2011-09_Interactive-Indirect-Illumination/GIVoxels-pg2011-authors.pdf
https://research.nvidia.com/sites/default/files/pubs/2011-09_Interactive-Indirect-Illumination/GIVoxels-pg2011-authors.pdf
https://research.nvidia.com/sites/default/files/pubs/2011-09_Interactive-Indirect-Illumination/GIVoxels-pg2011-authors.pdf
https://research.nvidia.com/sites/default/files/pubs/2011-09_Interactive-Indirect-Illumination/GIVoxels-pg2011-authors.pdf


Voxel Cone Tracing 



Screen-space Reflections (SSR) 

• Idea: Reuse already rendered content as shaded hit locations 
for reflected rays 

• Perform screen-space ray marching using the depth buffer to 
locate hit points 

Image source: http://www.cse.chalmers.se/edu/year/2018/course/TDA361/Advanced%20Computer%20Graphics/Screen-space%20reflections.pdf 

http://www.cse.chalmers.se/edu/year/2018/course/TDA361/Advanced%20Computer%20Graphics/Screen-space%20reflections.pdf


Screen-space Reflections (SSR) 

Linear search: 
• March along reflected ray in constant strides 
• In each step, check depth of ray sample against the depth 

buffer 
• Stop at transition behind visible depth range 
• Optionally, refine solution (e.g. bisection) 
• Obtain hit point color and normal 
• Calculate radiance to shaded point 



Screen-space Reflections (SSR) 

• Linear search requires many 
samples (expensive) 

• With few samples, there is 
high probability of missing 
the correct hit point 

10 samples 

200 samples 



Screen-space Reflections (SSR) 

Hierarchical search: 
• Build depth mip-maps ( cluster depth values using MIN 

operation) 
 

Image source: http://www.cse.chalmers.se/edu/year/2018/course/TDA361/Advanced%20Computer%20Graphics/Screen-space%20reflections.pdf 

http://www.cse.chalmers.se/edu/year/2018/course/TDA361/Advanced%20Computer%20Graphics/Screen-space%20reflections.pdf
http://www.cse.chalmers.se/edu/year/2018/course/TDA361/Advanced%20Computer%20Graphics/Screen-space%20reflections.pdf
http://www.cse.chalmers.se/edu/year/2018/course/TDA361/Advanced%20Computer%20Graphics/Screen-space%20reflections.pdf


Screen-space Reflections (SSR) 

• Traverse the depth buffer with adaptive strides, moving 
up/down the depth LODs 
 

Image source: http://www.cse.chalmers.se/edu/year/2018/course/TDA361/Advanced%20Computer%20Graphics/Screen-space%20reflections.pdf 

http://www.cse.chalmers.se/edu/year/2018/course/TDA361/Advanced%20Computer%20Graphics/Screen-space%20reflections.pdf
http://www.cse.chalmers.se/edu/year/2018/course/TDA361/Advanced%20Computer%20Graphics/Screen-space%20reflections.pdf
http://www.cse.chalmers.se/edu/year/2018/course/TDA361/Advanced%20Computer%20Graphics/Screen-space%20reflections.pdf


SSR – Quality vs Performance 

• SSR has plenty of room for performance optimization 
– Switch between sparse linear and expensive accurate 

hierarchical marching according to BRDF 
– Trace reflections at different resolution and upscale 
– Mix with environment maps 
– Mipmap screen-space MRTs to simulate cone tracing for 

glossy BRDFs 
– … 



Problems of SSR 

• SSR cannot capture geometry 
that is not present in the view 
– Hidden depth layers not 

captured by the Z buffer (left) 
– Off-screen information (right) 

Image source: http://www.cse.chalmers.se/edu/year/2018/course/TDA361/Advanced%20Computer%20Graphics/Screen-space%20reflections.pdf 

http://www.cse.chalmers.se/edu/year/2018/course/TDA361/Advanced%20Computer%20Graphics/Screen-space%20reflections.pdf
http://www.cse.chalmers.se/edu/year/2018/course/TDA361/Advanced%20Computer%20Graphics/Screen-space%20reflections.pdf
http://www.cse.chalmers.se/edu/year/2018/course/TDA361/Advanced%20Computer%20Graphics/Screen-space%20reflections.pdf


Ray-traced Directional GI 

• Ray marching can nowadays be replaced by true ray tracing 
• Still expensive, we use it sparsely  
• Mainly solves the problem of absence of geometric 

information in the buffers 
• Can be used as evaluation method for all the GI techniques 

discussed above (baked and real-time) 
•  Cons:  

– Requires high-end hardware 
– Consumes more memory 

Image source: https://www.nvidia.com/en-us/geforce/community/demos/ 

https://www.nvidia.com/en-us/geforce/community/demos/
https://www.nvidia.com/en-us/geforce/community/demos/
https://www.nvidia.com/en-us/geforce/community/demos/


Volumetric Rendering 

• 4 phenomena affect light traveling through a 
medium: 
– Absorption 
– Out-scattering 
– Emission 
– In-scattering  

Absorption Out-scattering 

In-scattering 
dt 

Attenuation 



Attenuation 

( , )( , ) ( , ) ( , ) ( , ) ( , )

( , ) ( , ) ( , )

o
o i o i

a s

dLL L dL L
dt

ωω ω ω σ ω ω

σ ω σ ω σ ω

− = ⇒ = − −

= +

pp p p p p

p p p

odL

dt

d p p΄ 
0

( , )

( )

d

t dt

rT e
σ ω ω− +∫

′→ =
p

p p

ω 

Transmittance: 
Fraction of light transmitted from 
p to p΄ 



Beer’s Law 

• For constant σ (homogeneous medium), 
transmittance becomes: 
 
 

• If absorption is constant along small ray segments: 
,from Beer’s law and the definition of transmittance 
we get:  
 

( ) d
rT e σ−′→ =p p

1 1 2 2 1 1( ... )
1

1

1 1
1

( )

( ) ( )

N Nd d d
r N

N

r N i i
i

T e

T T

σ σ σ − −− + + +

−

+
=

→ = ⇔

→ = →∏

p p

p p p p



In-scattering – Phase Functions 

• The directional distribution of scattered light at a 
point is called a phase function.  

• It is similar to the BSDF but expresses the probability 
that light from ω is deflected towards ω΄ : 
 

( ) : ( ) 1
S

p p dω ω ω ω ω′ ′ ′→ → =∫

ω 



In-scattering – Phase Functions (2) 

• Popular phase functions: 
– Isotropic 

 
 

– Henyey-Greenstein 
 
 
 

– Mie (atmosphere) 
 

– Rayleigh (droplets, steam etc) 

 

1( )
4isotropicp ω ω
π

′→ =

( )
2

3/ 22

1 1( )
4 1 2 cos

Henyey Greenstein
gp

g g
ω ω

π θ
−

−′→ =
+ −



Combining Out/In-scattering 

𝐿𝐿𝑖𝑖 𝐱𝐱,𝜔𝜔𝑖𝑖 = 𝑇𝑇 𝐱𝐱𝑠𝑠 → 𝐱𝐱 𝐿𝐿𝑒𝑒 𝐱𝐱𝑠𝑠,𝜔𝜔𝑖𝑖 +  � 𝑇𝑇 𝐱𝐱𝑡𝑡 → 𝐱𝐱 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐱𝐱𝑡𝑡,𝜔𝜔𝑖𝑖 𝑑𝑑𝑑𝑑
𝑠𝑠

0
 

 

𝑇𝑇 𝐱𝐱𝑠𝑠 → 𝐱𝐱 = 𝒆𝒆−  ∫ 𝝈𝝈𝒕𝒕 𝒙𝒙 𝒅𝒅𝒅𝒅𝒔𝒔
𝟎𝟎  

𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐱𝐱,𝜔𝜔𝑖𝑖 = � 𝑝𝑝 𝜔𝜔𝑖𝑖 , 𝐱𝐱 → 𝐥𝐥  𝑉𝑉 𝐱𝐱, 𝐥𝐥  𝐿𝐿𝑖𝑖(𝐱𝐱, 𝐥𝐥 → 𝐱𝐱)
𝐥𝐥 lights 

 

Recursive form 

Extinction/absorption In-scattering 

𝐱𝐱 

𝐱𝐱𝑠𝑠 

𝜔𝜔𝑖𝑖 

𝑠𝑠 



In-scattering Equation 

• In-scattering equation is actually computed 
recursively, although usually 1-2 levels are used: 

Zero contribution 

1st order                              2nd order 



Volumetric Shadows 

• In-scattering can create very interesting “godray” effects and 
realistic fog 

• The most common approach to achieve volumetric shadows is 
via ray marching on the shadow map 

Images: AUEB Graphics Group XEngine 



Volumetric Shadows: Ray Marching 

• Keep samples within the shadow volume extents 
– Otherwise, they will be thinly spread along large distances  very 

poor sampling  aliasing 
• Jitter samples per ray and over time to avoid banding artefacts 

𝐱𝐱 

𝐱𝐱𝑠𝑠 

𝜔𝜔𝑖𝑖 

𝑠𝑠 

Evaluate in-scattering 

In shadow: Do not evaluate in-scattering 



Volumetric Shadows: Volume Caching 

• Used by the Frostbite engine 
• Idea: Generate a view-aligned (clip-

space) low-res volumetric grid 
– Sample materials (+emissive particles 

and surfaces), particles and 
participating media and store 
scattering coefficients in volume cells 

– Sample sources and store directional 
distribution of out-scattered light in 
each cell (due to phase function) in SH 

– Reconstruct volume rendering integral 
per pixel, exploiting interpolation 

Screen X 

Sc
re

en
 Y

 

Source: https://www.ea.com/frostbite/news/physically-based-unified-volumetric-rendering-in-frostbite 

https://www.ea.com/frostbite/news/physically-based-unified-volumetric-rendering-in-frostbite
https://www.ea.com/frostbite/news/physically-based-unified-volumetric-rendering-in-frostbite
https://www.ea.com/frostbite/news/physically-based-unified-volumetric-rendering-in-frostbite
https://www.ea.com/frostbite/news/physically-based-unified-volumetric-rendering-in-frostbite
https://www.ea.com/frostbite/news/physically-based-unified-volumetric-rendering-in-frostbite
https://www.ea.com/frostbite/news/physically-based-unified-volumetric-rendering-in-frostbite
https://www.ea.com/frostbite/news/physically-based-unified-volumetric-rendering-in-frostbite
https://www.ea.com/frostbite/news/physically-based-unified-volumetric-rendering-in-frostbite
https://www.ea.com/frostbite/news/physically-based-unified-volumetric-rendering-in-frostbite
https://www.ea.com/frostbite/news/physically-based-unified-volumetric-rendering-in-frostbite
https://www.ea.com/frostbite/news/physically-based-unified-volumetric-rendering-in-frostbite
https://www.ea.com/frostbite/news/physically-based-unified-volumetric-rendering-in-frostbite
https://www.ea.com/frostbite/news/physically-based-unified-volumetric-rendering-in-frostbite


Volumetric Shadows: Volume Caching 

Source: https://www.ea.com/frostbite/news/physically-based-unified-volumetric-rendering-in-frostbite 

https://www.ea.com/frostbite/news/physically-based-unified-volumetric-rendering-in-frostbite
https://www.ea.com/frostbite/news/physically-based-unified-volumetric-rendering-in-frostbite
https://www.ea.com/frostbite/news/physically-based-unified-volumetric-rendering-in-frostbite
https://www.ea.com/frostbite/news/physically-based-unified-volumetric-rendering-in-frostbite
https://www.ea.com/frostbite/news/physically-based-unified-volumetric-rendering-in-frostbite
https://www.ea.com/frostbite/news/physically-based-unified-volumetric-rendering-in-frostbite
https://www.ea.com/frostbite/news/physically-based-unified-volumetric-rendering-in-frostbite
https://www.ea.com/frostbite/news/physically-based-unified-volumetric-rendering-in-frostbite
https://www.ea.com/frostbite/news/physically-based-unified-volumetric-rendering-in-frostbite
https://www.ea.com/frostbite/news/physically-based-unified-volumetric-rendering-in-frostbite
https://www.ea.com/frostbite/news/physically-based-unified-volumetric-rendering-in-frostbite
https://www.ea.com/frostbite/news/physically-based-unified-volumetric-rendering-in-frostbite
https://www.ea.com/frostbite/news/physically-based-unified-volumetric-rendering-in-frostbite


STYLIZED RENDERING 



Stylized Rendering 

• Games often dispense with realistic models to simulate a 
comic book look and feel 

• Many effects discussed so far still apply, but surface shading is 
altered to combine irradiance in a different, non-physically-
based manner 



Cell Shading 

• Cell shading has two main characteristics: 
– Simplified BRDF response, with pen-and-ink separated 

highlights, base color and shadowed regions 
– Strong sketch-like silhouettes  

• Additionally: 
– Artificial color bleeding from extra lights and effects 
– Intentional rim lighting 
– Post-processing effects for masking, stippling, color 

grading and saturation, etc. 
 



Cell Shading Dependencies 

• To compute borders and extra highlights, we need to generate 
and access extra information, such as: 
– Depth discontinuities (depth buffer derivatives) 
– Screen-space (or object-/texture-space static) curvature 
– Normal gradients 

• Deferred pipelines can easily provide the above 

Source: https://hal.inria.fr/hal-01919501/document 

https://hal.inria.fr/hal-01919501/document
https://hal.inria.fr/hal-01919501/document
https://hal.inria.fr/hal-01919501/document


NPR - Silhouettes 

• Derive surface saliency (edge) from: 
 

– Pixel depth gradients:  
 

– Normal buffer gradients: 
 

– Object ID bundaries 
 

– Other (e.g. curvature peaks from screen-space AO) 

𝑒𝑒1 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝜕𝜕𝑧𝑧
𝜕𝜕𝜕𝜕 ,

𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦  

𝑒𝑒2 = 𝐿𝐿∞(∇𝐧𝐧) 



NPR - Silhouettes 



NPR – Highlight Response Curves 

• Given a default cosine-weighted (diffuse) surface shading, we 
can use custom response curves to create artificial highlights 



Additional Reading 

• Moving Frostbite to Physically Based Rendering 3.0 
https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v3
2.pdf 

• Real Shading in Unreal Engine 4 https://blog.selfshadow.com/publications/s2013-shading-
course/karis/s2013_pbs_epic_notes_v2.pdf 
 

https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf
https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf


Contributors 

• Georgios Papaioannou 
 
 


	Slide Number 1
	Real-time Dynamic Global Illumination
	Indirect Illumination
	Instant Radiosity
	Instant Radiosity
	Instant Radiosity – Dynamic VPL Update
	Reflective Shadow Maps
	Reflective Shadow Maps
	Reflective Shadow Maps
	Reflective Shadow Maps
	Using the RSM for Global Illumination
	Using the RSM for Global Illumination
	Precomputed Radiance Transfer
	Frequency Analysis of Radiance Field
	Frequency Analysis of Illumination (1)
	Frequency Analysis of Illumination (2)
	Encoding the Radiance/Visibility Field (1)
	Encoding the Radiance/Visibility Field (2)
	Orthonormal Basis Functions
	Signal Projection on Orthonormal Bases
	Signal Reconstruction
	Spherical Harmonics (1)
	Spherical Harmonics (2)
	Spherical Harmonics (3)
	Spherical Harmonics (4)
	Spherical Harmonics (5)
	Spherical Harmonics (6)
	Encoding Visibility (Distant Illumination) (1)
	Encoding Visibility (Distant Illumination) (2)
	Encoding Visibility (Distant Illumination) (3)
	Precomputed Radiance Transfer (1)
	Precomputed Radiance Transfer (2)
	PRT in Games
	PRT Case Study: Far Cry 3
	PRT Case Study: Far Cry 3
	PRT Case Study: Far Cry 3
	PRT Case Study: Far Cry 3
	PRT Case Study: Far Cry 3
	Radiance Field Caching
	Radiance Field Caching
	Radiance Field Caching
	Radiance Field Caching
	Radiance Field Caching
	Volume-based Global Illumination
	Volume-based GI (1)
	Volume-based GI (2)
	Volume-based GI (3)
	VBGI – Image-based Point Injection (1)
	VBGI – Image-based Point Injection (2)
	VBGI – Image-based Point Injection (3)
	VBGI – Image-based Point Injection (4)
	VBGI – Image-based Point Injection (5)
	VBGI – Image-based Point Injection (6)
	VBGI – Full Scene Voxelization (1)
	VBGI – Full Scene Voxelization (2)
	VBGI – Full Scene Voxelization (3)
	VBGI – Full Scene Voxelization (4)
	Blocking – Geometry Orientation/Coverage
	Light Propagation Volumes
	Light Propagation Volumes (1)
	Light Propagation Volumes (2)
	Light Propagation Volumes (3)
	Light Propagation Volumes (4)
	Light Propagation Volumes - Bounces
	Cascaded LPVs
	VBGI - Ray Marching 
	VBGI - Ray Marching (1)
	VBGI - Ray Marching (2)
	VBGI - Ray Marching (3)
	Cone Tracing
	Voxel Cone Tracing
	Voxel Cone Tracing
	Screen-space Reflections (SSR)
	Screen-space Reflections (SSR)
	Screen-space Reflections (SSR)
	Screen-space Reflections (SSR)
	Screen-space Reflections (SSR)
	SSR – Quality vs Performance
	Problems of SSR
	Ray-traced Directional GI
	Volumetric Rendering
	Attenuation
	Beer’s Law
	In-scattering – Phase Functions
	In-scattering – Phase Functions (2)
	Combining Out/In-scattering
	In-scattering Equation
	Volumetric Shadows
	Volumetric Shadows: Ray Marching
	Volumetric Shadows: Volume Caching
	Volumetric Shadows: Volume Caching
	Stylized Rendering
	Stylized Rendering
	Cell Shading
	Cell Shading Dependencies
	NPR - Silhouettes
	NPR - Silhouettes
	NPR – Highlight Response Curves
	Additional Reading
	Contributors

