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REAL-TIME DYNAMIC GLOBAL ILLUMINATION 



Indirect Illumination 

• Dynamic GI: Changes and adapts to follow: 
– the direct illumination in the scene  
– Optionally, changes to geometry and other dynamic aspects of the 

environment (particles, participating media, etc.) 

• We typically treat the different BRDF response to incident 
illumination with different tools and methods in real time 
graphics: 
– Wide scattering – rough surfaces 
– Focused scattering – glossy and mirror-like surfaces  



Instant Radiosity 

• Covers a wide range of methods, both interactive and off-line 
• The concept is to replace indirect light bounces with direct 

illumination produced by virtual point lights (VPLs) 
• VPLs (complete with visibility information) are placed at the 

intersection of photons from the light source with the 
geometry 

• VPLs model the radiosity emitted from those intersection 
points 

• VPLs are not limited to the first bounce only 



Instant Radiosity 

VPL placement ”Indirect” illumination from VPLs 



Instant Radiosity – Dynamic VPL Update 

• Original CPU technique supported VPL updates 
• When the scene changes, VPLs are updated: 

– Test VPL against shadow map 
– If invisible (beyond SM), discard VPL and add a new one 



Reflective Shadow Maps 



Reflective Shadow Maps 

• Is a fast indirect lighting technique using: 
• Shadow maps (depth maps) extended to also store VPL data: 

– Normals at visible points 
– Illumination (VPL power) at visible points 
– Optionally, location of VPLs and other data 



Reflective Shadow Maps 

• Essentially, an RSM replaces the tracing of VPLs in the scene: 
• Each SM texel is considered a VPL  
• The shadow map contains the nearest scene points to the 

light source 
• The extra data completely describe the power distribution of 

each VPL (shadow map texel)   
• The extended SM storage is used by other GI techniques  

RSM now also refers to the multi-channel shadow map 
storage. 



Reflective Shadow Maps 

• What the RSM does NOT provide is visibility 
information for each VPL 

• Therefore, the light from each VPL is considered 
unoccluded  no secondary bounce occlusion 

• Also, RSM provides first-bounce (near field) GI only 



Using the RSM for Global Illumination 

• RSM texels are sampled in the same manner as VPLs 
• Light transfer can be estimated between each RSM virtual 

area light (or point light, depending on model) and the 
illuminated point 

• Caution: Light transfer does not evaluate visibility between 
RSM samples and the receiving point 
 



Using the RSM for Global Illumination 

• Practical RSM sampling: 
– Project receiving point on RSM 
– Determine an area around projected point in RSM 

parametric space to sample 
– Accumulate RSM sample contribution 

 



Precomputed Radiance Transfer 

• It is the pre-calculation of the light transport operator on or 
near surfaces 

• It is typically compressed and stored as a (hemi)spherical 
function (dependence on input or output, not both) 

• During runtime, the PRT function is multiplied with a similarly 
coded illumination field to yield the resulting bounced energy 
 



Frequency Analysis of Radiance Field 

• Similar to radiance, we can encode visibility as a 5D field: 
– What is the visibility (how open is the environment) at a point (x,y,z) in 

space in a direction (θ,φ)? 
– Encodes the ability of the specific point to receive light from an 

incident direction (θ,φ) 

 
 
 
 

 
• What are the spectral characteristics of these fields? 
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Frequency Analysis of Illumination (1) 

• Global illumination effects have distinctively different spectral 
characteristics 

• As a principle: 
– Diffuse inter-reflections produce low frequency directional radiance 
– The same holds for most cases involving occlusion in diffuse light 

bounces 
– Direct illumination with occlusion (shadows) contains high frequencies 

in general (discontinuities) 
– Specular transmission usually contains high frequencies  



Frequency Analysis of Illumination (2) 



Encoding the Radiance/Visibility Field (1) 

• Why? 
– Direct illumination is cheap to calculate at every point on the 

geometry 
– Indirect illumination is not  

• Solution: 
– Precalculate on surfaces/cache points OR 
– Calculate at sparse locations at run time 

• What: 
– Visibility AND/OR 
– Radiance field of indirect lighting 



Encoding the Radiance/Visibility Field (2) 

For real-time graphics: 
• Calculating and storing the radiance/visibility field once or per 

frame: 
– Disassociates its utilization from the geometry  
– Enables the easy evaluation of GI in real-time graphics 

(direct rendering techniques) 
 



Orthonormal Basis Functions 

• A basis function bn is an element of a particular basis for a 
function space 

• Every continuous function in the function space can be 
represented as a linear combination of basis functions: 

 
 

• Check similarity with vector spaces (the Fourier series is also a 
periodic function basis) 

• An orthonormal basis additionally satisfies the property: 
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Signal Projection on Orthonormal Bases 

• The projection of an arbitrary continuous function on a set of 
basis functions results in the definition of the blending 
coefficients an 

• It can be proven that for orthonormal function bases, the best 
least squares fitting of a function f over a predefined set of 
basis functions bn results in: 
 
 
 

• (Again, relate this with the dot product projection in 
orthonormal bases for vector spaces) 
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Signal Reconstruction 

• The number of basis (blending) functions may be infinite or 
too large and therefore we must choose a finite subset of 
them that converges “reasonably” to the desired result 
 

• The reconstructed function (signal) is derived from the linear 
combination of the (truncated series) of basis functions: 
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Spherical Harmonics (1) 

• Spherical Harmonics define an orthonormal basis over the 
sphere S.  

• A point s on the sphere is parameterized as: 
 

• They are harmonic functions and more specifically they 
constitute the angular part of the solution of the Laplace’s 
equation on the unit sphere: 
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Spherical Harmonics (2) 

• The (complex) basis functions are defined as: 
 
 

    where Pl
m are the associated Legendre polynomials and Kl

m 
are the following normalization factors: 

 



Spherical Harmonics (3) 

• Real versions of the SH basis functions can be obtained from 
the transformation: 
 
 
 
 

• l represents the band of the SH functions 
• Each band has 2l+1 SH basis functions 
• Each band corresponds to an increasing angular frequency  



Spherical Harmonics (4) 



Spherical Harmonics (5) 



• Being an orthonormal set of basis functions: 
 
 

• The reconstruction of the signal can use up to any order of SH 
bands, truncating the infinite series of coefficients and 
respective basis functions 

• Similarly, the encoded (projected) signal has to be band 
limited and encoded in a finite set of SH coefficients 

• How many bands should we use? 

Spherical Harmonics (6) 



Encoding Visibility (Distant Illumination) (1) 

• From the rendering equation: 
 
 

• If we assume only a “distant” environment emitting the 
radiance (e.g. sky, sun, distant light sources etc), then: 
 
 

                                radiance        transfer function 
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Encoding Visibility (Distant Illumination) (2) 

• For diffuse surfaces this is simplified to: 
 
 
 

• The hemisphere is aligned with the surface normal at every 
point 

• The transfer function characterizes the specific point but for 
diffuse inter-reflection can be considered a slowly varying 
quantity (thus sparsely evaluated). 
 
 
 
 
 

( , ) ( , ) ( , ) cos
i

r r r i i i i i iL L V dρφ θ φ θ φ θ θ ω
π Ω

= ∫
),( iiT θφ



Encoding Visibility (Distant Illumination) (3) 

• We can encode both the transfer function and the incident 
radiance using a set of basis functions 

• Orthonormal bases (such as SH) are ideal as they provide the 
useful property: 
 
 
 

• i.e.: The integral of two band limited functions equals the dot 
product of their coefficients when projected to the 
orthonormal basis 
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Precomputed Radiance Transfer (1) 

• The transfer (visibility over the hemisphere) function T can be 
precomputed and encoded in compact form 

• When using Spherical Harmonics, 9 or 16 coefficients can 
effectively encode both T and Li for diffuse light transfer 

• The coefficients for T can be sparsely (pre-) evaluated, stored 
to and evaluated from: 
– A sparse lattice  
– A texture atlas 



Precomputed Radiance Transfer (2) 
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PRT in Games 

• PRT can be computed and stored in lightmap format 
– Each texel has all the coefficients for a hemispherical PRT 

basis OR 

• PRT can be volumetric 
– Expresses the visibility or outgoing energy ratio around a 

point in space 
– This spherical “probe” represents the PRT in the volume 

near it 



PRT Case Study: Far Cry 3 

• Uses spherical probes 
arranged in space 

• Precomputed visibility for sky 
lighting 

• PRT (outgoing) for direct light 
bounce 
 

• Deferred updates  

Source: file:///D:/Presentations/Graphics/NewSlides/resources/Stefanov_Nikolay_DeferredRadianceTransfer.pdf 



PRT Case Study: Far Cry 3 

Probes: Reflected radiosity from sun on diffuse surfaces encoded in SH 
Reconstructed on hemisphere over each point 

Probes: Skylight visibility,  
post-multiplied with skylight radiance field (also encoded in SH) 



PRT Case Study: Far Cry 3 

Indirect lighting from 
sources is 
dynamically updated 
to match conditions 
(see next) 



PRT Case Study: Far Cry 3 

• Probes are semi-automatically distributed in the environment 
at sparse locations 

• A volumetric grid is overlaid on the environment 
– Each cell indexes the closest probe 
– At run time, shaded points falling within each cell, access the mapped 

probe for indirect lighting 



PRT Case Study: Far Cry 3 

• For light bounce, estimate the average directional output 
radiance “as if” a unit source was placed directly on the probe 

• At run time, for each light source distribute its energy to 
nearest probes and compute the bounce energy. 

• Compute irradiance integral on surfaces using post-multiplied 
SH coefs (PRT * surface oriented hemisphere) 



Radiance Field Caching 



Radiance Field Caching 

• Estimates the incident radiance field at the vertices of a 
uniform grid 

• Radiance is captured by rendering the scene on a cubical 
environment map  

• Compresses the radiance field using SH 
• Evaluates the reflected radiance on surfaces by direct 

integration of the radiance field with the BRDF at each point 
in SH space 

• SHs for points in between lattice vertices are interpolated 



Radiance Field Caching 

• For each node, the SH coefs are the 
superposition of the individual 
cubemap texel radiance projection: 



Radiance Field Caching 

• For Lambertian surfaces (diffuse reflection): 
 
 
 
 
 

• Diffuse GI is well approximated with 2-3 order SH 
• The transfer function can be generalized to Phong-like models 

(symmetric lobes) but require a significantly larger SH order 
(6+) impractical storage 
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Radiance Field Caching 

• Practical issues: 
– For truly dynamic scenes, cubemaps must be completely 

re-evaluated often 
– Secondary bounces may be handled by exchanging light 

among lattice points 
– The sparseness of the grid necessitates additional 

occlusion criteria when evaluating the radiance field: 
• Depth maps are also acquired per node 
• Instead of simply trilinearly interpolating the node radiance, a 

visibility check is performed against the node’s range in the 
direction of the sample 

 



Volume-based Global Illumination 



Volume-based GI (1) 

• Uses an intermediate regular approximation of the 
geometry (voxel grid) to store lighting and geometry 
data  

• Rough discretization of the shaded environment 
• Why volume-based GI? 

– Decouples local pixel calculations (GPU pipeline) from full-
scene data 

– Provides access to full-scene data in the local-only context 
of a shaded pixel 

– GI calculations independent of scene complexity 



Volume-based GI (2) 

• The “lit” voxels represent virtual point lights 
• Occupied voxels effectively block light transport 
• What do we need to store for one-bounce GI (per 

voxel): 
– Direct lighting (VPLs) directionally encoded using the 

normal at the shaded fragments 
– Voxel coverage as occupancy (same storage – black voxels) 

• What do we need for extra bounces? 
– Averaged (per voxel) surface normals 
– Average (per voxel) albedo 



Volume-based GI (3) 

• All methods have two phases: 
– Volume data generation 
– GI estimation 

• Volume generation: 
– Point injection 

• Geometry-based 
• Image-based 

– Multi-channel full-scene voxelization 

• GI estimation: 
– Iterative radiance diffusion (light propagation volumes) 
– Ray marching 

 



VBGI – Image-based Point Injection (1) 

• Samples from the available frame buffers are injected into the 
volume using the technique discussed in part A 

• Shadow maps (RSMs) hold a sampling of the surfaces lit by 
the particular light source  VPLs 

• The camera buffer (MRT G-buffer) contributes additional 
occupancy-only points 
 



VBGI – Image-based Point Injection (2) 

• How are the points injected? 
– Reflective shadow map acquisition: 

 
 
 
 
 
 
 

Light setup                Shadow map points (WCS) 

 



VBGI – Image-based Point Injection (3) 

• How are the points injected (cont)? 
– Camera g-buffer acquisition (deferred rendering): 

 
 
 
 
 
 
 

Camera setup                camera depth points (WCS) 

 



• How are the points injected (cont)? 
– Geometry (points) generation: 

 
 
 
 
 
 
 

VBGI – Image-based Point Injection (4) 

• Render a planar grid of 
points. 

 For simplicity, arrange 
points in ([0,1],[0,1],0) 
interval 

In a geometry shader: 
• Lookup the (x,y) depth from the SM 
• Transform (x,y,depth) to vol. coords 
• Inject the transformed point in volume 



• How are the points injected (cont)? 
– Do the same for the camera buffer points: 

 
 
 
 
 
 
 

VBGI – Image-based Point Injection (5) 

• Additional camera points are unlit points 
• We repeat the process for all available buffers (lights, reflection 

buffers, env. maps etc) 



• The corresponding voxels now store the encoded 
lighting, occupancy and other data: 

VBGI – Image-based Point Injection (6) 

• The injected point contribution is not the same for all points! More 
on this later  



VBGI – Full Scene Voxelization (1) 

• Rasterizes the geometry into the volume buffer directly from 
the geometric data 

• Imprints a complete occlusion information, regardless of 
visibility to buffers 

• Voxelization  3D Rasterization: 
– Voxel shaders compute and encode direct lighting, normals, albedo 

and occupancy 
– 2-5 volume textures required  

• Many ways to perform it 
• All methods slice the geometry into volume layers 

 



VBGI – Full Scene Voxelization (2) 

Luminance 
only 
 
 
 
Full color GI 
 
 
 
 
+ color 
bleeding 



VBGI – Full Scene Voxelization (3) 
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VBGI – Full Scene Voxelization (4) 

                         Binary data: OR op.     Scalar data: MAX op. 

• Polygons are rasterized to 
the volume sweep of 
maximum projection 

• This ensures dense, 
coherent sampling 

Volume sweep plane 



Blocking – Geometry Orientation/Coverage 

• As volume textures are quite crude (e.g. 323), voxels 
should not be either on or off 

• Regardless of volume generation method, volumes 
should store: 
– Occupancy proportional to voxel coverage and alpha  

This is easier in full voxelization 
– Directional data (SHs) for each injected fragment  

• Multiple surfaces with different orientations cross the voxel  



Light Propagation Volumes 

Source: http://advances.realtimerendering.com/s2009/Light_Propagation_Volumes.pdf 

http://advances.realtimerendering.com/s2009/Light_Propagation_Volumes.pdf


Light Propagation Volumes (1) 

• Iteratively propagates flux from each cell to the next 
• Blocks (attenuates) light according to occupancy data 

 
 

Occlusion 



Light Propagation Volumes (2) 

• The flux incident to each one of the faces of the neighboring 
cell is difficult to approximate as an integral using low-order 
SHs 

• A rough empirical approximation is suggested: 
– Estimate the intensity in direction ωc to the cone V(ω) center 
– Scale by the ratio of the solid angle subtended by the face against 4π 

(spherical solid angle) 

cω



Light Propagation Volumes (3) 

• Then a new VPL is generated at the neighboring cell with 
intensity matching the total flux of the face 

• The VPL is encoded as SH and added to the cells intensity 
distribution 



Light Propagation Volumes (4) 

• Not a physically correct solution: 
• Although flux balance is maintained, 
• Flux is assumed to get diffused on “translucent walls” due to 

the change in propagation direction 
 
 



• Some leaking still occurs due to low SH order (series truncation) and 
approximate blocking  

Light Propagation Volumes - Bounces 
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iterations 

Spherical harmonic buffer (pair – swapped for reading/writing) 

GI accumulation buffer (flux sampled from decoded SH) 



Cascaded LPVs 

• Why? 
– Scenes are large to be covered by a single low-res volume 

(large volumes are slow and costly) 
– We need many iterations to transport flux across the scene 

• Solution: Cascades 
– Overlapped volumes of same resolution but different size 
– Denser sampling near camera 
  



VBGI - Ray Marching  



VBGI - Ray Marching (1) 

• We can approximate a gathering operation (Monte 
Carlo integration) by marching rays in the volume 
instead of intersecting them with the scene 

• We can march rays either from the shaded fragments 
or from the GI volume voxels (faster but cruder) 
 



VBGI - Ray Marching (2) 

• Ray marching: 
– Iteratively sample the volume along a line until a fully 

blocked voxel is reached 
– Gather light along the line from occupied voxels, according 

to orientation stored in them 
– Perform integration with the BRDF at the shaded point  

Simple SH dot product for diffuse reflection 

 



VBGI - Ray Marching (3) 

Generate N random rays 
L_gi = 0; 
for each ray dir: 
    s = ds; 
    while s < r_max 
        v = p + s*dir; 
        if Occ(v)>0.5 
            break; 
        s += ds; 
    F = clamp(dot(-Normal(v),dir),0,1); 
    F *= clamp(dot(Normal(p),dir),0,1); 
    L_gi += F*L(v)/((v-p)*(v-p)); 
L(p) += Color(p)*L_gi/N; 



Cone Tracing 

• Extending the idea of ray marching, instead of tracing a 
number of rays over the hemisphere to compute irradiance, 
we can trace bunches of rays grouped in cones  fewer 
queries 

• The cone radius increases with distance to shaded point 
• The conical section at a given distance should be used as a 

filter kernel to gather outgoing radiance from all touched 
surfaces 

• Outgoing radiance can be pre-filtered and hierarchically 
stored 
 



Voxel Cone Tracing 

• Record and pre-filter direct illumination on a hierarchical voxel grid 
• Advance a ray at each cone axis in the hierarchical occupancy grid 
• Choose appropriate voxel LOD according to current step cone radius 
• Gather averaged radiance for each traced cone 

Source: https://research.nvidia.com/sites/default/files/pubs/2011-09_Interactive-Indirect-Illumination/GIVoxels-pg2011-authors.pdf 

https://research.nvidia.com/sites/default/files/pubs/2011-09_Interactive-Indirect-Illumination/GIVoxels-pg2011-authors.pdf
https://research.nvidia.com/sites/default/files/pubs/2011-09_Interactive-Indirect-Illumination/GIVoxels-pg2011-authors.pdf
https://research.nvidia.com/sites/default/files/pubs/2011-09_Interactive-Indirect-Illumination/GIVoxels-pg2011-authors.pdf
https://research.nvidia.com/sites/default/files/pubs/2011-09_Interactive-Indirect-Illumination/GIVoxels-pg2011-authors.pdf
https://research.nvidia.com/sites/default/files/pubs/2011-09_Interactive-Indirect-Illumination/GIVoxels-pg2011-authors.pdf
https://research.nvidia.com/sites/default/files/pubs/2011-09_Interactive-Indirect-Illumination/GIVoxels-pg2011-authors.pdf
https://research.nvidia.com/sites/default/files/pubs/2011-09_Interactive-Indirect-Illumination/GIVoxels-pg2011-authors.pdf
https://research.nvidia.com/sites/default/files/pubs/2011-09_Interactive-Indirect-Illumination/GIVoxels-pg2011-authors.pdf
https://research.nvidia.com/sites/default/files/pubs/2011-09_Interactive-Indirect-Illumination/GIVoxels-pg2011-authors.pdf
https://research.nvidia.com/sites/default/files/pubs/2011-09_Interactive-Indirect-Illumination/GIVoxels-pg2011-authors.pdf
https://research.nvidia.com/sites/default/files/pubs/2011-09_Interactive-Indirect-Illumination/GIVoxels-pg2011-authors.pdf


Voxel Cone Tracing 



Screen-space Reflections (SSR) 

• Idea: Reuse already rendered content as shaded hit locations 
for reflected rays 

• Perform screen-space ray marching using the depth buffer to 
locate hit points 

Image source: http://www.cse.chalmers.se/edu/year/2018/course/TDA361/Advanced%20Computer%20Graphics/Screen-space%20reflections.pdf 

http://www.cse.chalmers.se/edu/year/2018/course/TDA361/Advanced%20Computer%20Graphics/Screen-space%20reflections.pdf


Screen-space Reflections (SSR) 

Linear search: 
• March along reflected ray in constant strides 
• In each step, check depth of ray sample against the depth 

buffer 
• Stop at transition behind visible depth range 
• Optionally, refine solution (e.g. bisection) 
• Obtain hit point color and normal 
• Calculate radiance to shaded point 



Screen-space Reflections (SSR) 

• Linear search requires many 
samples (expensive) 

• With few samples, there is 
high probability of missing 
the correct hit point 

10 samples 

200 samples 



Screen-space Reflections (SSR) 

Hierarchical search: 
• Build depth mip-maps ( cluster depth values using MIN 

operation) 
 

Image source: http://www.cse.chalmers.se/edu/year/2018/course/TDA361/Advanced%20Computer%20Graphics/Screen-space%20reflections.pdf 

http://www.cse.chalmers.se/edu/year/2018/course/TDA361/Advanced%20Computer%20Graphics/Screen-space%20reflections.pdf
http://www.cse.chalmers.se/edu/year/2018/course/TDA361/Advanced%20Computer%20Graphics/Screen-space%20reflections.pdf
http://www.cse.chalmers.se/edu/year/2018/course/TDA361/Advanced%20Computer%20Graphics/Screen-space%20reflections.pdf


Screen-space Reflections (SSR) 

• Traverse the depth buffer with adaptive strides, moving 
up/down the depth LODs 
 

Image source: http://www.cse.chalmers.se/edu/year/2018/course/TDA361/Advanced%20Computer%20Graphics/Screen-space%20reflections.pdf 

http://www.cse.chalmers.se/edu/year/2018/course/TDA361/Advanced%20Computer%20Graphics/Screen-space%20reflections.pdf
http://www.cse.chalmers.se/edu/year/2018/course/TDA361/Advanced%20Computer%20Graphics/Screen-space%20reflections.pdf
http://www.cse.chalmers.se/edu/year/2018/course/TDA361/Advanced%20Computer%20Graphics/Screen-space%20reflections.pdf


SSR – Quality vs Performance 

• SSR has plenty of room for performance optimization 
– Switch between sparse linear and expensive accurate 

hierarchical marching according to BRDF 
– Trace reflections at different resolution and upscale 
– Mix with environment maps 
– Mipmap screen-space MRTs to simulate cone tracing for 

glossy BRDFs 
– … 



Problems of SSR 

• SSR cannot capture geometry 
that is not present in the view 
– Hidden depth layers not 

captured by the Z buffer (left) 
– Off-screen information (right) 

Image source: http://www.cse.chalmers.se/edu/year/2018/course/TDA361/Advanced%20Computer%20Graphics/Screen-space%20reflections.pdf 

http://www.cse.chalmers.se/edu/year/2018/course/TDA361/Advanced%20Computer%20Graphics/Screen-space%20reflections.pdf
http://www.cse.chalmers.se/edu/year/2018/course/TDA361/Advanced%20Computer%20Graphics/Screen-space%20reflections.pdf
http://www.cse.chalmers.se/edu/year/2018/course/TDA361/Advanced%20Computer%20Graphics/Screen-space%20reflections.pdf


Ray-traced Directional GI 

• Ray marching can nowadays be replaced by true ray tracing 
• Still expensive, we use it sparsely  
• Mainly solves the problem of absence of geometric 

information in the buffers 
• Can be used as evaluation method for all the GI techniques 

discussed above (baked and real-time) 
•  Cons:  

– Requires high-end hardware 
– Consumes more memory 

Image source: https://www.nvidia.com/en-us/geforce/community/demos/ 

https://www.nvidia.com/en-us/geforce/community/demos/
https://www.nvidia.com/en-us/geforce/community/demos/
https://www.nvidia.com/en-us/geforce/community/demos/


Volumetric Rendering 

• 4 phenomena affect light traveling through a 
medium: 
– Absorption 
– Out-scattering 
– Emission 
– In-scattering  

Absorption Out-scattering 

In-scattering 
dt 

Attenuation 



Attenuation 
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Transmittance: 
Fraction of light transmitted from 
p to p΄ 



Beer’s Law 

• For constant σ (homogeneous medium), 
transmittance becomes: 
 
 

• If absorption is constant along small ray segments: 
,from Beer’s law and the definition of transmittance 
we get:  
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In-scattering – Phase Functions 

• The directional distribution of scattered light at a 
point is called a phase function.  

• It is similar to the BSDF but expresses the probability 
that light from ω is deflected towards ω΄ : 
 

( ) : ( ) 1
S

p p dω ω ω ω ω′ ′ ′→ → =∫

ω 



In-scattering – Phase Functions (2) 

• Popular phase functions: 
– Isotropic 

 
 

– Henyey-Greenstein 
 
 
 

– Mie (atmosphere) 
 

– Rayleigh (droplets, steam etc) 

 

1( )
4isotropicp ω ω
π
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Combining Out/In-scattering 

𝐿𝐿𝑖𝑖 𝐱𝐱,𝜔𝜔𝑖𝑖 = 𝑇𝑇 𝐱𝐱𝑠𝑠 → 𝐱𝐱 𝐿𝐿𝑒𝑒 𝐱𝐱𝑠𝑠,𝜔𝜔𝑖𝑖 +  � 𝑇𝑇 𝐱𝐱𝑡𝑡 → 𝐱𝐱 𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐱𝐱𝑡𝑡,𝜔𝜔𝑖𝑖 𝑑𝑑𝑑𝑑
𝑠𝑠

0
 

 

𝑇𝑇 𝐱𝐱𝑠𝑠 → 𝐱𝐱 = 𝒆𝒆−  ∫ 𝝈𝝈𝒕𝒕 𝒙𝒙 𝒅𝒅𝒅𝒅𝒔𝒔
𝟎𝟎  

𝐿𝐿𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝐱𝐱,𝜔𝜔𝑖𝑖 = � 𝑝𝑝 𝜔𝜔𝑖𝑖 , 𝐱𝐱 → 𝐥𝐥  𝑉𝑉 𝐱𝐱, 𝐥𝐥  𝐿𝐿𝑖𝑖(𝐱𝐱, 𝐥𝐥 → 𝐱𝐱)
𝐥𝐥 lights 

 

Recursive form 

Extinction/absorption In-scattering 

𝐱𝐱 

𝐱𝐱𝑠𝑠 

𝜔𝜔𝑖𝑖 

𝑠𝑠 



In-scattering Equation 

• In-scattering equation is actually computed 
recursively, although usually 1-2 levels are used: 

Zero contribution 

1st order                              2nd order 



Volumetric Shadows 

• In-scattering can create very interesting “godray” effects and 
realistic fog 

• The most common approach to achieve volumetric shadows is 
via ray marching on the shadow map 

Images: AUEB Graphics Group XEngine 



Volumetric Shadows: Ray Marching 

• Keep samples within the shadow volume extents 
– Otherwise, they will be thinly spread along large distances  very 

poor sampling  aliasing 
• Jitter samples per ray and over time to avoid banding artefacts 

𝐱𝐱 

𝐱𝐱𝑠𝑠 

𝜔𝜔𝑖𝑖 

𝑠𝑠 

Evaluate in-scattering 

In shadow: Do not evaluate in-scattering 



Volumetric Shadows: Volume Caching 

• Used by the Frostbite engine 
• Idea: Generate a view-aligned (clip-

space) low-res volumetric grid 
– Sample materials (+emissive particles 

and surfaces), particles and 
participating media and store 
scattering coefficients in volume cells 

– Sample sources and store directional 
distribution of out-scattered light in 
each cell (due to phase function) in SH 

– Reconstruct volume rendering integral 
per pixel, exploiting interpolation 

Screen X 

Sc
re

en
 Y

 

Source: https://www.ea.com/frostbite/news/physically-based-unified-volumetric-rendering-in-frostbite 
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Volumetric Shadows: Volume Caching 

Source: https://www.ea.com/frostbite/news/physically-based-unified-volumetric-rendering-in-frostbite 
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STYLIZED RENDERING 



Stylized Rendering 

• Games often dispense with realistic models to simulate a 
comic book look and feel 

• Many effects discussed so far still apply, but surface shading is 
altered to combine irradiance in a different, non-physically-
based manner 



Cell Shading 

• Cell shading has two main characteristics: 
– Simplified BRDF response, with pen-and-ink separated 

highlights, base color and shadowed regions 
– Strong sketch-like silhouettes  

• Additionally: 
– Artificial color bleeding from extra lights and effects 
– Intentional rim lighting 
– Post-processing effects for masking, stippling, color 

grading and saturation, etc. 
 



Cell Shading Dependencies 

• To compute borders and extra highlights, we need to generate 
and access extra information, such as: 
– Depth discontinuities (depth buffer derivatives) 
– Screen-space (or object-/texture-space static) curvature 
– Normal gradients 

• Deferred pipelines can easily provide the above 

Source: https://hal.inria.fr/hal-01919501/document 

https://hal.inria.fr/hal-01919501/document
https://hal.inria.fr/hal-01919501/document
https://hal.inria.fr/hal-01919501/document


NPR - Silhouettes 

• Derive surface saliency (edge) from: 
 

– Pixel depth gradients:  
 

– Normal buffer gradients: 
 

– Object ID bundaries 
 

– Other (e.g. curvature peaks from screen-space AO) 

𝑒𝑒1 = 𝑚𝑚𝑚𝑚𝑚𝑚
𝜕𝜕𝑧𝑧
𝜕𝜕𝜕𝜕 ,

𝜕𝜕𝑧𝑧
𝜕𝜕𝑦𝑦  

𝑒𝑒2 = 𝐿𝐿∞(∇𝐧𝐧) 



NPR - Silhouettes 



NPR – Highlight Response Curves 

• Given a default cosine-weighted (diffuse) surface shading, we 
can use custom response curves to create artificial highlights 



Additional Reading 

• Moving Frostbite to Physically Based Rendering 3.0 
https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v3
2.pdf 

• Real Shading in Unreal Engine 4 https://blog.selfshadow.com/publications/s2013-shading-
course/karis/s2013_pbs_epic_notes_v2.pdf 
 

https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
https://seblagarde.files.wordpress.com/2015/07/course_notes_moving_frostbite_to_pbr_v32.pdf
https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf
https://blog.selfshadow.com/publications/s2013-shading-course/karis/s2013_pbs_epic_notes_v2.pdf
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