

Physically Based Shading Models for Film and Game Production

Yoshiharu Gotanda tri-Ace Naty Hoffman Activision Adam Martinez SPI

Ben Snow

ILM

Course website (shortened URL)

http://bit.ly/s10shaders

 Course materials will be available on this website shortly after the conference

Schedule (Note Recent Change)

- 2:00-2:30 Background: Physically Based Shading (Hoffman)
- 2:30-3:00 Practical Implementation of Physically Based Shading Models at tri-Ace (Gotanda)
- 3:00-3:00 Crafting Physically Motivated Shading Models for Game Development (Hoffman)
- 3:30-3:45 Break
- 3:45-4:30 Terminators and Iron Men: Image-Based Lighting and Physical Shading at ILM (Snow)
- 4:30-5:00 Faster Photorealism in Wonderland: Physically Based Shading and Lighting at Sony Pictures Imageworks (Martinez)
- 5:00-5:15 Conclusion, Q&A (All)

Background: Physically Based Shading

Naty Hoffman Activision

Background

- The Physics of Shading
- The Mathematics of Shading
- Implementing Shading

The Physics Behind Shading

The physical phenomena that occur when <u>light</u> interacts with <u>matter</u>

What is Light? EM Transverse Wave

What is Visible Light? ~400-700nm

Light Propagating Through Matter

- Light propagating through a <u>homogeneous</u> medium is affected by medium's *refractive index*
- In the general case, it's a complex number
 - The real part affects the speed of propagation
 - The imaginary part affects whether the light is absorbed as it propagates
- Refractive index may vary with wavelength

Transparent media

 E.g. water, glass – absorption in the visible spectrum is very low

Clear Absorbent Media

Significant absorption over all or part of the visible spectrum

Scale

Scale important – absorption negligible over inches...

Scale

...may be significant over yards

SIGGRAPH 2010 Course: Physically Based Shading Models in Film and Game Production

What if the medium isn't homogeneous?

- Index of refraction changes
 - If it changes slowly and continuously, light bends
 - If it changes abruptly, over a small distance (compared to the wavelength), then light <u>scatters</u>
- Direction of light changes abruptly; amount of light stays the same

Interactions of Light and Matter

 Absorption: intensity decrease / color change, direction unchanged

 Scattering: direction of light changes, intensity unchanged

 Emission (new light created; doesn't come up often in shading)

Cloudy Media

Scattering somewhat randomizes light propagation direction

Scattering and Scale

Scale matters here too

SIGGRAPH 2010 Course: Physically Based Shading Models in Film and Game Production

Opaque or Translucent Media

Scattering completely randomizes light propagation direction

Absorption and Scattering

Scattering (turbidity)

Scattering at a Planar Boundary

- Abrupt changes in refractive index cause light direction to change
- There is an important special case:
 - Infinite, perfectly flat planar boundary between two volumes with different refractive indices
 - Object surface; refractive index of air on one side of the boundary, refractive index of object on the other

Wait a Moment, "Infinite"?

- The relevant scale is the wavelength of visible light (400-700nm)
- At this scale surface effectively infinitely large

"Perfectly Flat"? What About Atoms?

- It is possible to be perfectly flat at this scale
 - Bumps much smaller than wavelength don't count

Planar Boundary: Reflection & Refraction

- Light splits into two directions: reflection and refraction
- Refracted light may be absorbed and/or scattered under the surface

Surfaces That Aren't Optically Flat

- Few surfaces (mostly high-quality optical mirrors and lenses) are optically flat (all irregularities are much smaller than visible light wavelengths)
- Most surfaces have irregularities which are larger than light wavelengths but smaller than the scale of observation (e.g. subpixel size)

Microgeometry

- At surface point, light reflected in one direction
- Surface appearance is aggregate result of many points with different surface orientations

Rougher = Blurrier Reflections

Macroscopic View

Metals

All refracted light is immediately absorbed

Non-Metals (Insulators, Dielectrics)

 Refracted light undergoes scattering and/or absorption, often re-emerging from the surface

Scale and Subsurface Scattering

 Distribution of entry-exit distances depends on density and properties of scattering particles

Scale and Subsurface Scattering

 If pixel is large (green circle) compared to entryexit distances, can assume distances are zero

Scale and Subsurface Scattering

 By ignoring entry-exit distance, all shading can be computed locally, at a single point

Shading Terms

 Surface reflection modeled as "specular" and refraction with subsurface scattering as "diffuse"

Scale and Subsurface Scattering

 If pixel is small (red circle) compared to entryexit distances, local shading does not suffice

$$L_o(\mathbf{v}) = \int_{\Omega} f(\mathbf{l}, \mathbf{v}) \otimes L_i(\mathbf{l}) (\mathbf{n} \cdot \mathbf{l}) d\omega_i$$

The Mathematics of Shading

$$L_o(\mathbf{v}) = \pi f(\mathbf{l_c}, \mathbf{v}) \otimes \mathbf{c}_{\text{light}}(\mathbf{n} \cdot \mathbf{l_c})$$

$$f(\mathbf{l}, \mathbf{v}) = \frac{F(\mathbf{l}, \mathbf{h})G(\mathbf{l}, \mathbf{v}, \mathbf{h})D(\mathbf{h})}{4(\mathbf{n} \cdot \mathbf{l})(\mathbf{n} \cdot \mathbf{v})}$$

Radiometry – The Measurement of Light

- There is a variety of radiometric quantities
- We will use radiance, which measures the intensity of light along a single ray
- Radiance varies with light wavelength
 - Technically requires a continuous spectral distribution
 - Production graphics use tristimulus values like RGB

Local Shading

 Given the assumption that shading can be handled locally, light response at a surface point only depends on the light and view directions

BRDF: Function of View & Light Direction

• Bidirectional Reflectance Distribution Function

Domain of the BRDF

 In principle, reflection is only defined for light and view directions above the surface

$$(\mathbf{n} \cdot \mathbf{l}) > 0, (\mathbf{n} \cdot \mathbf{v}) > 0$$

 In practice, sometimes other situations need to be handled (e.g., normal mapping) – this will be discussed in the course notes

BRDF: One Interpretation

 For a ray of incoming light from a given direction, the BRDF gives the distribution of outgoing light in all directions

BRDF: Another Interpretation

 For a given view direction, the BRDF gives the relative contribution of each incoming direction

The BRDF Varies by Light Wavelength

- But there is no cross-talk between frequencies
- BRDF can be treated as an RGB-valued function that gets multiplied with RGB-valued light colors

The Reflectance Equation

$$L_o(\mathbf{v}) = \int_{\Omega} f(\mathbf{l}, \mathbf{v}) \otimes L_i(\mathbf{l}) (\mathbf{n} \cdot \mathbf{l}) d\omega_i$$

- Outgoing radiance equals the integral (over all directions above the surface) of incoming radiance times BRDF and cosine factor
- "X in circle" denotes component-wise vector (RGB) multiplication

Surface Reflection (Specular Term)

Microfacet BRDF

- BRDF derived for surface reflection from general (non-optically flat) surfaces
- Assumes surface is composed of many microfacets – individual optically flat surfaces too small to be seen

Microfacets Are Optically Flat

 Each one reflects an incoming ray of light in only one outgoing direction

The Half Vector

 Only those microfacets which happen to have their surface normal m oriented exactly halfway between I and v will reflect visible light

The Half Vector

 This vector which is halfway between I and v, is called the half-vector (or half-angle vector) h

Shadowing and Masking

- Not all microfacets with m = h will contribute
- Some will be blocked by other microfacets from either I (shadowing) or v (masking)

Multiple Surface Bounces

- In reality, blocked light continues to bounce; some will eventually contribute to the BRDF
- Microfacet BRDFs ignore this – blocked light is lost

Microfacet BRDF

$$f(\mathbf{l}, \mathbf{v}) = \frac{F(\mathbf{l}, \mathbf{h})G(\mathbf{l}, \mathbf{v}, \mathbf{h})D(\mathbf{h})}{4(\mathbf{n} \cdot \mathbf{l})(\mathbf{n} \cdot \mathbf{v})}$$

Fresnel Reflectance

$$f(\mathbf{l}, \mathbf{v}) = \frac{F(\mathbf{l}, \mathbf{h})G(\mathbf{l}, \mathbf{v}, \mathbf{h})D(\mathbf{h})}{4(\mathbf{n} \cdot \mathbf{l})(\mathbf{n} \cdot \mathbf{v})}$$

- Value range: 0 to 1, spectral (RGB)
 - Fraction of light reflected (vs. refracted) from optically flat surface given light direction I and surface normal h (m = h for participating facets)

Fresnel Reflectance

- Depends on refraction index (in other words, the substance of the object) and light angle
- As angle increases, at first the reflectance barely changes, then for very glancing angles goes to 1 at all wavelengths

Normal-Incidence Fresnel for Metals

No subsurface term; this is only source of color

Metal	$F(0^{\circ})$ (Linear)	$F(0^{\circ})$ (sRGB)	Color
Gold	1.00,0.71,0.29	1.00,0.86,0.57	
Silver	0.95,0.93,0.88	0.98,0.97,0.95	
Copper	0.95,0.64,0.54	0.98,0.82,0.76	
Iron	0.56,0.57,0.58	0.77,0.78,0.78	
Aluminum	0.91,0.92,0.92	0.96,0.96,0.97	

Normal-Incidence Fresnel for Non-Metals

 Subsurface term (diffuse) usually also present in addition to this Fresnel reflectance

Insulator	$\mathbf{F}(0^{\circ})$ (Linear)	$\boldsymbol{F}(0^{\circ})$ (sRGB)	Color
Water	0.02,0.02,0.02	0.15,0.15,0.15	
Plastic / Glass (Low)	0.03,0.03,0.03	0.21,0.21,0.21	
Plastic High	0.05,0.05,0.05	0.24,0.24,0.24	
Glass (High) / Ruby	0.08,0.08,0.08	0.31,0.31,0.31	
Diamond	0.17,0.17,0.17	0.45,0.45,0.45	

The Schlick Approximation to Fresnel

• Pretty accurate, cheap, parameterized by c_{spec}

$$F_{\text{Schlick}}(\mathbf{c}_{\text{spec}}, \mathbf{l}, \mathbf{n}) = \mathbf{c}_{\text{spec}} + (1 - \mathbf{c}_{\text{spec}})(1 - (\mathbf{l} \cdot \mathbf{n}))^5$$

• For microfacet BRDFs (m = h):

$$F_{\text{Schlick}}(\mathbf{c}_{\text{spec}}, \mathbf{l}, \mathbf{h}) = \mathbf{c}_{\text{spec}} + (1 - \mathbf{c}_{\text{spec}})(1 - (\mathbf{l} \cdot \mathbf{h}))^5$$

Microfacet Normal Distribution

$$f(\mathbf{l}, \mathbf{v}) = \frac{F(\mathbf{l}, \mathbf{h})G(\mathbf{l}, \mathbf{v}, \mathbf{h})D(\mathbf{h})}{4(\mathbf{n} \cdot \mathbf{l})(\mathbf{n} \cdot \mathbf{v})}$$

- Value range: unbounded, scalar
 - $-D(\mathbf{m})$: concentration of microfacets with normal \mathbf{m}
 - $-D(\mathbf{h})$: concentration of microfacets with normal \mathbf{h}

Microfacet Normal Distribution

- Determines the size and shape of the highlight
- Several (Gaussian-like) functions available
- All have some kind of "roughness" or variance parameter (anisotropic ones have two)
- As roughness decreases, concentration of microfacets around n increases; values of D() can get very high for smooth surfaces

Geometry Factor

$$f(\mathbf{l}, \mathbf{v}) = \frac{F(\mathbf{l}, \mathbf{h}) G(\mathbf{l}, \mathbf{v}, \mathbf{h}) D(\mathbf{h})}{4(\mathbf{n} \cdot \mathbf{l})(\mathbf{n} \cdot \mathbf{v})}$$

- Value range: 0 to 1, scalar
 - Chance that a microfacet of the given orientation is shadowed and/or masked
 - Various functions available in the literature; typically have no parameters or use the D() roughness

Modular Nature of Microfacet Models

- The choice of D() and G() are independent; you can mix and match from different models
- Most papers proposing a new BRDF model are really introducing a new D() or a new G()

Compact Parameterization

- Once distribution & geometry functions chosen, most microfacet BRDFs have just 2 parameters:
 - $F(0^{\circ}) = \mathbf{c}_{\text{spec}}$: (RGB)
 - Roughness: 1 scalar (2 for anisotropic)
- However, this only describes surface reflection...

Subsurface Reflection (Diffuse Term)

Lambert: The Simplest BRDF

- Many models for subsurface local reflection in the literature; Lambert by far the most common
- Constant value (n•l is part of reflection equation):

$$f_{\mathrm{Lambert}}(\mathbf{l}, \mathbf{v}) = \frac{\mathbf{c}_{\mathrm{diff}}}{\pi}$$

- c_{diff}: fraction of light reflected, or diffuse color
 - Value range 0 to 1, spectral (RGB)

Implementing Shading

General Lighting

- In the general case, the BRDF must be integrated against the incoming light from all different directions
 - Primary light sources, skylight, indirect reflections
- Requires global Illumination algorithms
- Course on Thursday, Global Illumination Across Industries, 2:00 to 5:15 PM, Room 502 A

Punctual Light Sources

- Production lighting models often use punctual (point / directional / spot / etc.) light sources
 - Infinitely small, infinitely bright
- Not physically realizable or realistic, but computationally convenient

Punctual Light Sources

- Parameterized by light color c_{light} and direction to the light center l_c
- c_{light} equals radiance from a white Lambertian surface illuminated by the light at 90 degrees
 - Value range: unbound, spectral (RGB)

Punctual Light Reflection Equation

$$L_o(\mathbf{v}) = \pi f(\mathbf{l_c}, \mathbf{v}) \otimes \mathbf{c}_{\text{light}}(\mathbf{n} \cdot \mathbf{l_c})$$

- Derivation in the course notes
- Underbar denotes clamping to 0: $\underline{x} = \max(x, 0)$

Image Based Lighting

- Such as environment maps
- Production experiences with environment maps in *Terminators and Iron Men* talk, later in this course

Image Based Lighting

- For correct solution, need to do many samples
 - Importance sampling helps
 - Faster Photorealism in Wonderland talk in this course and Importance Sampling for Production Rendering course on Tuesday (9:00 to 10:30 AM, Room 406 AB)
- Prefiltering alone or with importance sampling

Course Notes Go Into More Detail

And include references to relevant books and papers

Acknowledgements

- A K Peters for permission to use RTR3 images
- Paul Edelstein, Yoshiharu Gotanda and Dimitar Lazarov for thought-provoking discussions

