Deploying Neural Network
Architectures using PyTorch

Data Mining Lectures

Machine Learning & Deep Learning

Deep Learning

* Less is more
 ML; structured data, DL; unstructured data

Machine Learning/Deep Learning Pipeline

» To successfully design and implement a machine learning model or deep
learning model, researchers often follow the steps below:

+ Data collection
» Data Preparation
» Designing and training model

* Evaluation

« We will explore these steps using PyTorch.

Offline data
ML Ops

Manual experiment steps

Data extraction and . . . Model evaluation Trained - .
A Data preparation Model training) e Model serving
analysis and validation model Model registery

Machine Learning/Deep Learning P

Model
and Data
Preparation

Initialization

for training

Training

Decoding
Data

Scoring

Design model
Define architecture (layers, dropout, activation functions)
Forward function: the flow of data through the model

Collected Data

* Preprocess data offline (if necessary)
Design Dataset class to produce data in mini batches.

Model architecture

Processed Data

Initialize device (CPU or GPU)

Initialize model and send to device

Initialize loss function, optimizer, epoch count, batch
size, other hyperparameters.

- Separate a small part of the train set for

validation

= |nitialize train and validation Dataloaders with

the designed Dataset

Initialized model and batch data

i ~ Nepochs

Train Model (model.train())
Set optimizer.zero _arad() and
torch.set arad enabled

= (et data from train loader, convert to tensor (if

necessary), send to device.
Get prediction from model

« Calculate loss
= Perform backpropagation (loss.backward(),

optimizer.step(})

D T T AT

_Trained weights

Tk

necessary), send to device.

Get prediction

Compare performance measurement
Save best weights

,-—""'

Prepare data in the same
way as the training step

Initialize device and model,
load Trained Weights, and
send to device

Get and save the predicted
labels for the samples

Predicted

Get ground truth and prediction for the samples

Perform scoring as necessary

peline

What is PyTorch?

* PyTorch is a machine and deep learning library by Facebook’s Al Research Lab (FAIR).

* PyTorch has gained popularity among the research community as it is easy to develop and debug machine
learning models in PyTorch.

. N_owlqdays, all state-of-the-art models and more are available in PyTorch and easy to integrate with any
pipeline.

* With proper seeding, PyTorch can generate reproducible models.

* Like Tensorflow, a machine learning library by Google, PyTorch works with tensors which can be thought of as
matrices with higher dimensions. These are equivalent to ndarrays in NumPy.

* A replacement for NumPy to use the power of GPUs

. Theéelare other deep learning framework available. For example, MATLAB can be used to design and train
models.

» Keras is a high-level API library that uses TensorFlow as backend and suitable for beginners. It is
straightforward to build and test models using Keras. However, it can be difficult to debug in Keras.

Why PyTorch?

* Most popular & easier to develop and debug models

PyTorch at Tesla - Andrej Karpathy, Tesla
Self-driving cars

Q@ i

5 9.8k 7 DISLIKE) SHARE + SAVE

Jeromy Howard: Deep

OpenAl Standardizes on PyTorch

We are standardizing OpenAl's deep learning framework on PyTorch. In the
past, we implemented projects in many frameworks depending on their
relative strengths. We've now chosen to standardize to make it easier for our
team to create and share optimized implementations of our models.

@ openAT O PyTorch

Laaming Eramenaks .

PYTHRCH
[stars 8400+ | forks 1200+ J icense s]

ated list of tutorials, projects, libraries, videos, papers, books and anything related
lible PyT

OfC

Data
i t
ation

ece © e 0 «

QO Meta Al Research Publication

ibility ; i

Detectio

liled / Oy
Bilon Func PyTorch builds the future of Al C
gy-Based | . .
- and machine learning at

ftecture Se

Facebook

Facebook’s Al models perform trillions of infe
the billions of people that use our technologit
workload demand means we have to continui
Which is whv. todav we're announcina that w

O PyTorch
(]

Al for AG: Production machine learning for
agriculture

Author: Chris Padwick, Director of Computer Vision and Machine Learning at Blue

River Technology

How did farming affect your day today? If you live in a city, you might feel

d. Agriculture is a

'S Peo Events Tools Join Us

Datasets Blog

» Share on Facebook

Share on Twitter

Our Work

—— S o —

Microsoft

Why PyTorch?

* Faster

Computation Graph

Numpy

import numpy as np

np.random.seed(0)
N, D=3, 4

*
X = np.random.randn(N, D)
y = np.random.randn(N, D)
z = np.random.randn(N, D)
a=x*y
b=a+z2
c = np.sum(b)

@-H-&-&

grad_x
grad_y

grad ¢ = 1.0
grad b =
grad a =
grad_z =

grad_c * np.ones((N, D))
grad_b.copy()
grad_b.copy()

grad_a * y

grad_a * x

Tensorflow

import numpy as np
np.random.seed(0)
import tensorflow as tf

N, D=3, 4

with tf.device('/gpu:0'):

x
y
z

a
b
c

grad_x,

tf.placeholder(tf.float32)
tf.placeholder(tf.float32)
tf.placeholder(tf.float32)

x*y
a+z
tf.reduce_sum(b)

grad_y, grad_z = tf.gradients(c, [x, ¥y, 2])

with tf.Session() as sess:
values = {

}

out = sess.run([c, grad_x, grad_ y, grad_z],
feed_dict=values)
arad z val = out

x: np.random.randn(N, D),
y: np.random.randn(N, D),
: np.random.randn(N, D),

c val. arad x val., arad v val.

PyTorch

import torch

N, D=3, 4

X
y
z

a
b

c=

C.

torch.rand((N, D),requires_grad=True)
torch.rand((N, D),requires_grad=True)
torch.rand((N, D),requires _grad=True)

=x *y
=a + 2
torch. sum(b)

backward()

Why PyTorch?

* PyTorch enables users to leverage a GPU through an interface called
CUDA, which is a parallel computing platform and API.

A GPU is a graphics processing unit that was originally designed for video
games, but it's very fast at crunching numbers.

* CUDA allows software to use certain types of graphics processing units for
general-purpose computing.

* PyTorch leverages CUDA to enable users to run their machine learning
code on NVIDIA GPUs.

* TPUs, or tensor processing units, are another option for running
PyTorch code, but GPUs are far more popular in practice.

Run a PyTorch process on GPU

* Anacondais popular platform to deploy various deep learning and data science libraries. It facilitates the
usage of separate environments for different setups.

* The appropriate conda environment should be activated with:
“conda activate <env_name>"
* Source the .bashrc script from the home directory.

* The available GPU might need to be set up as an environment variable (it may vary in different setups):
export CUDA_VISIBLE_DEVICES=0’

* The PyTorch script needs to recognize the available devices:
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
This code checks if a GPU is available. If it is not available, the code utilizes CPU.
* Sending data/model/objects is easy: obj.to(device)
* Alternate: cuda = True if torch.cuda.is_available() else False
* However, this requires branching when an entity is being sent to the device.

What is a tensor in PyTorch?

e To use a neural network, input data must be numerically encoded.

* The numerical encoding is passed to the neural network to learn
patterns.

* The output is a representation that can be converted to a human-
readable form.

* Tensors are the fundamental building block of PyTorch.
 Tensors can represent almost any type of numerical data.

* The torch tensor is a key component of PyTorch.

Tensor in PyTorch vs Numpy Array

* A PyTorch Tensor is basically the same as a numpy array: it does not
know anything about deep learning or computational graphs or
gradients, and is just a generic n-dimensional array to be used for
arbitrary numeric computation.

* The biggest difference between a numpy array and a PyTorch Tensor
is that a PyTorch Tensor can run on either CPU or GPU. To run
operations on the GPU, just cast the Tensor to a cuda datatype

PyTorch tensors

* By default, the 'requires_grad' attribute of a tensor in S Eoreh
PyTorch is set to False, making it a non-trainable parameter.
. . . N, D=3, 4
* You can turn on the 'requires_grad’ attribute ugm% _
't.requires_grad_()' or by setting it to True explicitly when T torahipady iy D)y i Ien. grai i)
creating the tensor. L = o, mand((1, D3, retuit s sitrum)
* To access the value of the tensor, you can use 't.data’. ST
. . 1 1 b=a+2z
To access the gradient of the tensor, you can use 't.grad’. et ook sl
* The 'grad_fn' attribute keeps track of the history of ¢ batkardt)
operations for automatic differentiation (autograd) in
PyTorch. print Ec-gradsfrw
print(x.data
* The 'grad_fn' attribute represents the function that print(x.grad)|
generated the tensor and is used to compute the gradients SimBackunndi diied:at ST SocE>
durlng backpropagatlon. tensor([[0.4118, ©.2576, 0.3470, 0.0240],
* The gradient of a tensor represents the derivative e et oore o sl
of that tensor with respect to some other tensor. tensor([[0.6855, 0.9696, 0.4295, 0.4961],
[0.3849, ©.0825, 0.7400, 0.0036],
[0.8104, ©.8741, 0.9729, 0.3821]])

Loading Data, Devices and CUDA

* Numpy arrays to PyTorch tensors < Fallback to cpu if gpu is

 torch.from_numpy(x_train) unavailable:
e Returns a cpu tensor! * torch.cuda.is_available()

* PyTorchtensor to numpy * Check cpu/gpu tensor OR
e t.numpy() numpyarray ?

* type(t)or t.type() returns
* numpy.ndarray

e t.to()
4 " devi 4 * torch.Tensor
Sends to whatever device (cudaor * CPU - torch.cpu.FloatTensor

cpu) e GPU - torch.cuda.FloatTensor

* Using GPU acceleration

Autograd

Lreate tensors.
x = torch.tensor(1., requires_grad=True)

w = torch.tensor(2., requires_grad=True)

* Autograd is a PyTorch package for automatic :
differentiation b = torch.tensor(3., requires_grad=True)
* Computes gradients without worrying about . -
partial differentiation or chain rule # Build a computational graph.
 Use 'backward()' method for computing FEMTREh S¥E=2T e

gradients during backpropagation

* Gradients are accumulated for each step by ..
default y.backward()

e Zero out gradients after each update to prevent

accumulation of gradients from previous # Print out the gradients
COmpUtatIOHS pr"int(x.gr‘ad) # x.grad = 2
* 'tensor.grad_zero()' method sets gradients of PR r] R =
the tensor to zero, ensuring that only current print(b.grad) # b.grad = 1

computation gradients are accumulated

Optimizer and Loss

* Optimizer:
« Adam, SGD, etc.

* Takes the parameters we want to update, the learning rate, and other hyper-
parameters

e Performs updates to minimize the loss function

* |LOSS:

* Measure of how well the model is performing on the training data
 Scalar value that is minimized during training
» Various predefined loss functions to choose from in PyTorch

L1 loss (MAE), computes absolute difference between predicted and true value
MSE loss, computes square of the difference between predicted and true value

Cross-entropy loss, measures difference between predicted probability distribution and true
probability distribution

Commonly used in classification tasks where the model output is a probability distribution
over classes

Optimizer and Loss

torch.randn(1, requires_grad=True, dtype=torch.float, device=device)
torch.randn(1, requires_grad=True, dtype=torch.float, device=device)

c W
nnu

Defines a SGD optimizer to update the parameters
optimizer = optim.SGD([a, b], lr=1lr)

for epoch in range(n_epochs):
yhat = a + b * x_train_tensor
error = y_train_tensor - yhat
loss = (error ** 2).mean()
loss.backward()
optimizer.step()

optimizer.zero_grad()

print(a, b)

PyTorch Model

* In PyTorch, a model is represented by a regular Python class that
inherits from the Module class.

* Two components

 init (self): it defines the parts that make up the model- in our case, two parameters,
aandb

* forward(self, x) : it performs the actual computation, that is, it outputs a prediction,
given the inputx

class ManuallLinearRegression(nn.Module):
def __init__ (self):
super().__init__ ()
To make "a" and "b" real parameters of the model, we need to wrap them with nn.Parameter
self.a nn.Parameter(torch.randn(1l, requires_grad=True, dtype=torch.float))
self.b nn.Parameter(torch.randn(1, requires_grad=True, dtype=torch.float))

def forward(self, x):
Computes the outputs / predictions
return self.a + self.b * x

Neural bag-of-words (ngrams) text
classification

Sentence

Embe“dding
Layer

Linear
Layer

Softmax

TraW Wi on

Cross ‘
Entropy

Prediction

Desigh Model

* |nitialize modules.

import torch.nn as nn
import toxch.nn.functional as F

* Use linear layer here. class TextSentiment(nn.MHodule):

def __init__(self, vocab_size, embed_dim, num_class):

 Can change it to RNN, super().__init__()

>17.embedding = nn.EmbeddingBag(vocab_size, embed_dim, sparse=True)
1f.fc = nn.Lineaxr(embed_dim, num_class)

* CNN, Transformer etc. 1. init_weights()
* Randomly initialize def init_weights(<11):

initrange = 0.5
pa ra m ete rS f.embedding.weight.data.uniform_(-initrange, initrange)
f.fc.weight.data.uniform_(-initrange, initrange)

o Fowa r‘d paSS f.fc.bias.data.zero_()

def forward(, text, offsets):
embedded = .embedding(text, offsets)
return f.fc(embedded)

Preprocess

* Build preprocessed dataset
* Build vocab

import toxch

import torchtext

from torchtext.datasets import text_classification

NGRAMS = 2

import os

if not os.path.isdir('./.data'):
os.mkdir('./.data')

train_dataset, test_dataset = text_classification.DATASETS['AG_NEWS'](
root="./.data’', ngrams=NGRAMS, vocab=None)

BATCH_SIZE = 16

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

VOCAB_SIZE = len(train_dataset.get_vocab())

EMBED_DIM = 32

NUN_CLASS = len(train_dataset.get_labels())

model = TextSentiment(VOCAB_SIZE, EMBED_DIM, NUN_CLASS).to(device)

Preprocess

* One example of dataset:

print(train dataset[0])

(2, tensor([572, 564, 2, 2326, 49106, 150,
1143, 14, 32, 15, 32, 16, 443749,
572, 499, 17, 10, 741769, 7, 468770,
-7 4 7019, 1050, 442, 24 14341, 673,
326092, 55044, 7887, 411, 9870, 628642, 43,
144, 145, 299709, 443750, 51274, 703, 14312,
1111134, 741770, 411508, 468771, 3779, 86384, 135944,
40521))

* Create batch (Used in SGD)
* Choose pad or not (Using [PAD])

88, 3,
a,
a,
141447,
44,
23,
371666,

def generate_batch(batch):

label = torch.tensoxr([entry[@] for entry in batch])
text = [entry[1l] for entry in batch]
offsets = [0] + [len(entry) for entry in text]

torch.Tensor.cumsum returns the cumulative sum
i ; : A ;

of elements in the dimension dim.
- . < 3 ’ ” - * N - ™ 1 14T 5

torch.Tensor((1.0, 2.0, 3.0)).cumsum(dim=0)

offsets = torch.tensor(offsets[:-1]).cumsum(dim=0)
text = torch.cat(text)
return text, offsets, label

Training each epoch

from torch.utils.data import Dataloader
def train_func(sub_train_):
Train the model

train_loss = 0
train_acc = 0

ls.to(device)

Iterable batches » data = Dataloader(sub_train_, batch_size=BATCH_SIZE, shuffle=True,
T . collate_fn=generate_batch)
Before each optimization, make for i, (text, offsets, cls) in enumerate(data):
previous gradients zeros » optimizer.zero_grad()
text, offsets, cls = text.to(device), offsets.to(device),
Forward pass to compute loss QUL Mone oxd, oo eatn)
loss = criterion(output, cls)
Backforward propagation to HIsin 1os o= losa-diei)
loss.backward()

compute gradients and update

optimizer.step()

parameters train_acc += (output.argmax(l) == cls).sum().item()

Adjust the learning rate

After each epoch, do learning schediTer stent)

rate decay (optional)

return train_loss / len(sub_train_), train_acc / len(sub_train_)

Test process

Do not need back propagation or parameter update !

def test(data_):

loss = 0
acc = 0
data = Dataloader(data_, batch_size=BATCH_SIZE, collate_fn=generate_batch)
for text, offsets, cls in data:
text, offsets, cls = text.to(device), offsets.to(device), cls.to(device)

with torch.no_grad():
output = model(text, offsets)

loss = criterion(output, cls)
loss += loss.item()
acc += (output.argmax(l) == cls).sum().item()

return loss / len(data_), acc / len(data_)

The whole training process

e Use CrossEntropylLoss() as
the criterion.

* The input is the output of
the model.

* First do logsoftmax, then
compute cross-entropy loss.
* Use SGD as optimizer.

* Use exponential decay to
decrease learning rate

import time

from toxc

n

.utils.data.dataset import random_split

N_EPOCHS = 5
min_valid_loss = float('inf')

criterion
optimizexr
scheduler

train_len

sub_train_,
random_split(train_dataset,

torch.nn.CrossEntropylLoss().to(device)
torch.optim.SGD(model.parametexrs(), lr=4.0)

= int(len(train_dataset) * 0.95)
sub_valid_ =\

for epoch in range(N_EPOCHS):

start_time = time.time()
train_loss, train_acc = train_func(sub_train_)
valid_loss, valid_acc = test(sub_valid_)

secs = int(time.time() - start_time)

mins = secs [/ 6C

secs = secs %

print('Epoch: %d' %(epoch + 1), " | time in %d minutes, %d seconds™
print(f'\tLoss: {train_loss:.4f}(train)\t|\tAcc: {train_acc * 100:
print(f'\tLoss: jvalid_loss:.4ft(valid)\t|\tAcc: jvalid_acc * 100:

torch.optim.lxr_scheduler.SteplLR(optimizer, 1, gamma=0.9)

[train_len, len(train_dataset) - train_len])

%(mins, secs))

£

LAft%(train) ')

.1ft¥%¥(valid) ')

Evaluation with test dataset or random news

print('Checking the results of test dataset...')
test_loss, test_acc = test(test_dataset)
print(f'\tlLoss: jtest_loss:.4fi(test)\t|\tAcc: {test_acc * 100:.1f}%(test)"')

import 1e
from torchtext.data.utils import ngrams_iterator
from torchtext.data.utils import get_tokenizer

ex_text_str = "MEMPHIS, Tenn. - Four days ago, Jon Rahm was \
enduring the season’s worst weather conditions on Sunday at The \
Open on his way to a closing 75 at Royal Portrush, which \
considering the wind and the rain was a respectable showing. \

ag_news_label = {1 : "World", Thursday'’s first round at the WGC-FedEx St. Jude Invitational \

& :Sports“," was another story. With temperatures in the mid-80s and hardly any \
3 ¢ "Business”, wind, the Spaniard was 13 strokes better in a flawless round. \
4 : "Sci/Tec"}

Thanks to his best putting performance on the PGA Tour, Rahm \
finished with an 8-under 62 for a three-stroke lead, which \
was even more impressive considering he’'d never played the \
front nine at TPC Southwind."

def predict(text, model, vocab, ngrams):
tokenizer = get_tokenizer(“"basic_english")
with torch.no_grad():
text = torch.tensox([vocab[token]
for token in ngrams_iterator(tokenizer(text), ngrams)])
output = model(text, toxch.tensor([0]))
return output.argmax(l).item() + 1

vocab
model

train_dataset.get_vocab()
model.to("cpu”)

print("This is a %s news" %ag news_label[predict(ex_text_str, model, vocab, 2)])

CNN example

Image Maps

F

Output

Fully Connected

Convolutions Subsampling

Load Required Classes and
Modules

-

import torch

~N

\\
/

\

import torch.nn as nn

import torch.nn.functional as F

J
\

J

/'import torch.optim as optim

from torch.optim import 1lr_scheduler

~

To use the Torch in Python

To create a model by layers

To set the optimization

Ve

(.

import numpy as np

N\

To manipulate arrays

import torchvision

from torchvision import datasets, models, transforms

To Process the data
and use the existing

import os

Models

<——— To save the best model and get data files

import copy

Code Reference: https://pytorch.org/tutorials/beginner/transfer learning tutorial.html

27

Image Transformation

* We need to transform the images:
1. Change size of all images to a unanimous value.

2. Convert them to tensor. Tensor transfer the values from
scale 0-255 to 0-1.

3. Normalize the image with mean and standard deviation for
RGB values.

data_transforms = {
‘train': transforms.Compose([
transforms.Resize(256),
transforms.ToTensor(),
transforms.Normalize(|[0.485, 0.456, §.406]1,|[0.229, 0.224, 0.225])
1),
‘val': transforms.Compose([
transforms.Resize(256),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406]1,|[0.229, 0.224, ©0.225])
1),
}

Code Reference: https://pytorch.org/tutorials/beginner/transfer learning tutorial.html

Image Normalization

e After converting image to tensor, every pixel value is in
range [0,1]

* Then For every pixel, we apply the following formula to
each of the channel values and range will be [-1,1]:

Pixel Red Value - Red_Channel _Mean Pixel Red Value - 0.486
Red Channel _Standard Deviation 0.229
Pixel Green Value - Green Channel _Mean Pixel_Green_Value - 0.456
Green_Channel_Standard_Deviation 0.224
Pixel Blue Value - Blue_Channel_Mean Pixel_Blue_Value - 0.406

Blue _Channel Standard Deviation 0.225

Why Image Normalization?

* In general, in order to handle noise in data, data can be
transformed globally to change the scale or range of data
(normalize).!

* [n Convolutional Neural Network if we don’t scale
(normalize) the values, the range of different features
(e.g. image channels) will be different.?

* Since the values are multiplied by learning rate, the
features that have larger scale might be over-
compensated and features with smaller scale might be
under-compensated.?

1. https://www.coursera.org/lecture/data-genes-medicine/data-normalization-jGN7k
2. https://stats.stackexchange.com/questions/185853/why-do-we-need-to-normalize-the-
images-before-we-put-them-into-cnn

More Data Preprocessing

* In addition to the mentioned data preprocessing, there are some
transformation that are used mainly for data augmentation:
o transforms.RandomHorizontalFlip()
o transforms.RandomResizedCrop(224)

* Data augmentation is a strategy that enables practitioners to
significantly increase the diversity of data available for training
models, without actually collecting new data.?

1. https://bair.berkeley.edu/blog/2019/06/07/data_aug/

Mini Batch and Epoch

e Batch: Number of images which is propagated to a model iteration.
* Epoch: An epoch refers to one cycle through the full training dataset.!

batch_size
num_epochs

* Example:

** Number of Images = 1024
¢ Batch Size = 4
** Number of Iterations in Every Epoch: 256

1. https://deepai.org/machine-learning-glossary-and-terms/epoch

Load Data and Set Device

Dataset Directory
l Load Data

[data_dir = 'datasets/hw2'] J/

/

for x in ['train', 'val'l}

image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms([x])

\

dataloaders = {x: torch.utils.data.DatalLoader(image_datasets[x], batch_size=4, shuffle=True, num_workers=4)

J

for x in ['train', ‘'val'l}
\
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val'l}))
Get number of images
class_names = image_datasets['train'].classes and name Of cIasses
J
N\

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

I

Set the Device to GPU or CPU

Code Reference: https://pytorch.org/tutorials/beginner/transfer learning tutorial.html

Sample Network

* Here is an example of a PyTorch model

class
def

def

self.
self.
self.
self.
self.
self.

X
X
X
X
X
X
r

nonnonon

etu

Code Reference:
https://github.com/pytorch/tutorials/blob/master/beginner_source/blitz/neural_networks

+1itorial nyv

(nn.Module):
(self):
(Sample_Network, self).__init__ ()
convl = nn.Conv2d(3, 6, 5)

pool = nn.MaxPool2d(2, 2)

conv2 = nn.Conv2d(6, 16, 5)

fcl = nn.Linear(16 x 5 x 5, 120)
fc2 = nn.Linear(120, 84)

fc3 = nn.Linear(84, 10)

(self, x):
self.pool(F.relu(self.convl(x)))
self.pool(F.relu(self.conv2(x)))
X.view(-1, 16 x*x 5 % 5)
F.relu(self.fcl(x))
F.relu(self.fc2(x))
self.fc3(x)
rn X

<— Define the layers of model (1)

<— Forward function is called during
forward pass (2)

34

Visualization of Sample Network

Layers which have been
declared in model initialization

(1)

pool

35

Forward Pass of model (2) ———

Input Image

I

pool

pool

Classification Result

Apply View

36

Before Start Training

* For starting the training process we need to

1.

w

Initialize an instance from the model which we have
already defined

Specify the criterion (loss) for evaluation of model
Specify the setting of optimizer

Specify the way learning rate changes during
training

1 model = Sample_Network()

2 criterion = nn.CrossEntropyLoss()

3 optimizer

4 scheduler

optim.SGD(model.parameters(), 1lr=0.001, momentum=0.9)

Lr_scheduler.StepLR(optimizer, step_size=7, gamma=0.1)

Code Reference: https://pytorch.org/tutorials/beginner/transfer learning tutorial.html

Save the Best Model Parameter

* We need to train the network for the specified number of epochs.

* Before training process, we save the initial weight as the best model weight
and set the best accuracy as zero.

* |[n every epoch and after finishing the training process, we use the trained
model to select the model which has best performance on the validation
set.

best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0

Code Reference: https://pytorch.org/tutorials/beginner/transfer learning tutorial.html

'terate Over Train and Validation Sets in every
Epoch

* In every epoch we either train the model or just use it
for evaluation.

* For training, we need to set the model to train mode
and for test we need to set to eval mode.

phase ['train', 'val'l]:
phase == 'train':
model.train()

model. ()

Code Reference: https://pytorch.org/tutorials/beginner/transfer learning tutorial.html

iterate Over every Minibatch

e We use the data loader which we have created in
previous slides to go thorough the data.

* What we get from data loader are tensors for images
(inputs) and labels and we need to transfer them to
the device which we have created before.

* Note: Phase here is ‘train’ and ‘test’

inputs, labels dataloaders|[phase]:
inputs = inputs.to(device)
labels labels.to(device)

Code Reference: https://pytorch.org/tutorials/beginner/transfer learning tutorial.html

Prediction and Back Propagation

[optimizer.zero_grad() } <—— Zero the gradient before start of a new mini batch

r

\

outputs = model(inputs)] <—— Apply Forward Function and get logit

-

preds = torch.max(outputs, 1) }% Get the highest logic as prediction
&

[1055 = criterion(outputs, labels) }% Compute the loss based on predicted value

1T phase == 'train':

loss.backward() <—— Back propagate if we are in train phase
optimizer.step()

- :

% Sum the loss of batch with

b
_ running_loss += loss.item() * inputs.size() } all loss values
[running_corrects += torch.sum(preds == labels.data)] Sum correctly predicted values

™ in batch with all loss values

Code Reference: https://pytorch.org/tutorials/beginner/transfer learning tutorial.html 41

Finish Iterating over Data in One Epoch

 When iteration over all data finished then we need to
compute the loss and save the best model.

Scheduler setting (e.g. learning rate) needs to be updates

/ Loss and accuracy needs to be computed at the
if phase == 'train': end of epoch
scheduler.step() l

epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]

if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict()) <— Save the best model
torch.save(best_model_wts , 'best_model_weight.pth')

Code Reference: https://pytorch.org/tutorials/beginner/transfer learning tutorial.html 42

Load Data for Test

Transform the test images

l

data_transforms = {
‘test': transforms.Compose([

transforms.Resize(256),

transforms.ToTensor()

transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
1),

g J

/G;fa_dir = 'datasets/hw2’

image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x), data_transforms[x])
for x in ['test']}

for x in ['test']}

\gffaset_sizes = {x: len(image_datasets[x]) for x in ['test']}

dataloaders = {x: torch.utils.data.DatalLoader(image_datasets[x], batch_size=4, shuffle=True, num_workers=4)

~

/

|

Load the data and get the dataset size

Code Reference: https://pytorch.org/tutorials/beginner/transfer learning tutorial.html

43

Test the Loaded Data

model. () <—— Set the model in evaluation mode

phase = 'test'

for inputs, labels in dataloaders[phase]:
inputs = inputs.to(device)

labels = labels.to(device) lterate over test

< data and compute
outputs = model(inputs)

loss and correctly
_, preds = torch. (outputs, 1) _
loss = criterion(outputs, labels) predicted values

running_loss += loss.item() * inputs.size(9)
running_corrects += torch. (preds == labels.data)

test_loss = running_loss / dataset_sizes[phasel]

. Compute the loss and
test_acc = running_corrects.double() / dataset_sizes[phase]

Accuracy over all data

Code Reference: https://pytorch.org/tutorials/beginner/transfer learning tutorial.html a4

