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Machine Learning & Deep Learning

• Less is more

• ML; structured data, DL; unstructured data

AI

ML

Deep Learning



Machine Learning/Deep Learning Pipeline

• To successfully design and implement a machine learning model or deep 

learning model, researchers often follow the steps below:

• Data collection

• Data Preparation

• Designing and training model

• Evaluation

• We will explore these steps using PyTorch.



Machine Learning/Deep Learning Pipeline



What is PyTorch?

• PyTorch is a machine and deep learning library by Facebook’s AI Research Lab (FAIR).

• PyTorch has gained popularity among the research community as it is easy to develop and debug machine 
learning models in PyTorch.

• Nowadays, all state-of-the-art models and more are available in PyTorch and easy to integrate with any 
pipeline.

• With proper seeding, PyTorch can generate reproducible models.

• Like Tensorflow, a machine learning library by Google, PyTorch works with tensors which can be thought of as 
matrices with higher dimensions. These are equivalent to ndarrays in NumPy. 

• A replacement for NumPy to use the power of GPUs

• There are other deep learning framework available. For example, MATLAB can be used to design and train 
models. 

• Keras is a high-level API library that uses TensorFlow as backend and suitable for beginners. It is 
straightforward to build and test models using Keras. However, it can be difficult to debug in Keras.



Why PyTorch?

• Most popular & easier to develop and debug models



Why PyTorch?

• Faster



Why PyTorch?

• PyTorch enables users to leverage a GPU through an interface called 
CUDA, which is a parallel computing platform and API.
• A GPU is a graphics processing unit that was originally designed for video 

games, but it's very fast at crunching numbers.

• CUDA allows software to use certain types of graphics processing units for 
general-purpose computing.

• PyTorch leverages CUDA to enable users to run their machine learning 
code on NVIDIA GPUs.

• TPUs, or tensor processing units, are another option for running 
PyTorch code, but GPUs are far more popular in practice.



Run a PyTorch process on GPU

• Anaconda is popular platform to deploy various deep learning and data science libraries. It facilitates the 
usage of separate environments for different setups.

• The appropriate conda environment should be activated with:

“conda activate <env_name>”

• Source the .bashrc script from the home directory.

• The available GPU might need to be set up as an environment variable (it may vary in different setups): 
export CUDA_VISIBLE_DEVICES=‘0’

• The PyTorch script needs to recognize the available devices:

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

This code checks if a GPU is available. If it is not available, the code utilizes CPU.

• Sending data/model/objects is easy: obj.to(device)

• Alternate: cuda = True if torch.cuda.is_available() else False

• However, this requires branching when an entity is being sent to the device.



What is a tensor in PyTorch?

• To use a neural network, input data must be numerically encoded.

• The numerical encoding is passed to the neural network to learn 
patterns.

• The output is a representation that can be converted to a human-
readable form.

• Tensors are the fundamental building block of PyTorch.

• Tensors can represent almost any type of numerical data.

• The torch tensor is a key component of PyTorch.



Tensor in PyTorch vs Numpy Array

• A PyTorch Tensor is basically the same as a numpy array: it does not 
know anything about deep learning or computational graphs or 
gradients, and is just a generic n-dimensional array to be used for 
arbitrary numeric computation.

• The biggest difference between a numpy array and a PyTorch Tensor 
is that a PyTorch Tensor can run on either CPU or GPU. To run 
operations on the GPU, just cast the Tensor to a cuda datatype



PyTorch tensors

• By default, the 'requires_grad' attribute of a tensor in 
PyTorch is set to False, making it a non-trainable parameter.

• You can turn on the 'requires_grad' attribute using 
't.requires_grad_()' or by setting it to True explicitly when 
creating the tensor.

• To access the value of the tensor, you can use 't.data'.

• To access the gradient of the tensor, you can use 't.grad'.

• The 'grad_fn' attribute keeps track of the history of 
operations for automatic differentiation (autograd) in 
PyTorch.

• The 'grad_fn' attribute represents the function that 
generated the tensor and is used to compute the gradients 
during backpropagation.
• The gradient of a tensor represents the derivative 

of that tensor with respect to some other tensor.



Loading Data, Devices and CUDA

• Numpy arrays to PyTorch tensors
• torch.from_numpy(x_train)

• Returns a cpu tensor!

• PyTorchtensor to numpy
• t.numpy()

• Using GPU acceleration
• t.to()

• Sends to whatever device (cudaor
cpu)

• Fallback to cpu if gpu is 
unavailable:
• torch.cuda.is_available()

• Check cpu/gpu tensor OR 
numpyarray ?
• type(t)or t.type() returns

• numpy.ndarray
• torch.Tensor

• CPU - torch.cpu.FloatTensor
• GPU - torch.cuda.FloatTensor



Autograd

• Autograd is a PyTorch package for automatic 
differentiation

• Computes gradients without worrying about 
partial differentiation or chain rule

• Use 'backward()' method for computing 
gradients during backpropagation

• Gradients are accumulated for each step by 
default

• Zero out gradients after each update to prevent 
accumulation of gradients from previous 
computations

• 'tensor.grad_zero()' method sets gradients of 
the tensor to zero, ensuring that only current 
computation gradients are accumulated



Optimizer and Loss

• Optimizer:
• Adam, SGD, etc.
• Takes the parameters we want to update, the learning rate, and other hyper-

parameters
• Performs updates to minimize the loss function

• Loss:
• Measure of how well the model is performing on the training data
• Scalar value that is minimized during training
• Various predefined loss functions to choose from in PyTorch

• L1 loss (MAE), computes absolute difference between predicted and true value
• MSE loss, computes square of the difference between predicted and true value
• Cross-entropy loss, measures difference between predicted probability distribution and true 

probability distribution
• Commonly used in classification tasks where the model output is a probability distribution 

over classes



Optimizer and Loss



PyTorch Model

• In PyTorch, a model is represented by a regular Python class that 
inherits from the Module class. 
• Two components 

• __init__(self): it defines the parts that make up the model- in our case, two parameters, 
a and b 

• forward(self, x) : it performs the actual computation, that is, it outputs a prediction, 
given the inputx



Neural bag-of-words (ngrams) text 
classification



Design Model

• Initialize modules.

• Use linear layer here.

• Can change it to RNN,

• CNN, Transformer etc.

• Randomly initialize 
parameters

• Foward pass



Preprocess

• Build preprocessed dataset

• Build vocab



Preprocess

• One example of dataset:

• Create batch ( Used in SGD ) 

• Choose pad or not ( Using [PAD] ) 



Training each epoch



Test process



The whole training process 

• Use CrossEntropyLoss() as 
the criterion. 

• The input is the output of 
the model. 

• First do logsoftmax, then 
compute cross-entropy loss. 
• Use SGD as optimizer. 

• Use exponential decay to 
decrease learning rate



Evaluation with test dataset or random news



CNN example



Load Required Classes and 

Modules

Code Reference: https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html

To use the Torch in Python

To create a model by layers

To set the optimization

To manipulate arrays

To Process the data
and use the existing 
Models 

To save the best model and get data files 
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Image Transformation
• We need to transform the images:

1. Change size of all images to a unanimous value.

2. Convert them to tensor. Tensor transfer the values from 
scale 0-255 to 0-1.

3. Normalize the image with mean and standard deviation for 
RGB values.

Code Reference: https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html 28



Image Normalization

• After converting image to tensor, every pixel value is in 
range [0,1]

• Then For every pixel, we apply the following formula to 
each of the channel values and range will be [-1,1]: 

 
Pixel_Red_Value - Red_Channel_Mean 

Red_Channel_Standard_Deviation

 
Pixel_Green_Value - Green_Channel_Mean 

Green_Channel_Standard_Deviation

 
Pixel_Blue_Value - Blue_Channel_Mean 

Blue_Channel_Standard_Deviation

 
Pixel_Red_Value - 0.486 

0.229

 
Pixel_Green_Value - 0.456 

0.224

 
Pixel_Blue_Value - 0.406 

0.225
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Why Image Normalization?
• In general , in order to handle noise in data, data can be 

transformed globally to change the scale or range of data 
(normalize).1

• In Convolutional Neural Network if we don’t scale 
(normalize) the values, the range of different features 
(e.g. image channels) will be different.2

• Since the values are multiplied by learning rate, the 
features that have larger scale might be over-
compensated and features with smaller scale might be 
under-compensated.2

1. https://www.coursera.org/lecture/data-genes-medicine/data-normalization-jGN7k 
2. https://stats.stackexchange.com/questions/185853/why-do-we-need-to-normalize-the-

images-before-we-put-them-into-cnn
30



More Data Preprocessing

• In addition to the mentioned data preprocessing, there are some 
transformation that are used mainly for data augmentation:
o transforms.RandomHorizontalFlip() 

o transforms.RandomResizedCrop(224) 

• Data augmentation is a strategy that enables practitioners to 
significantly increase the diversity of data available for training 
models, without actually collecting new data.1

1. https://bair.berkeley.edu/blog/2019/06/07/data_aug/
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Mini Batch and Epoch

• Batch: Number of images which is propagated to a model iteration.

• Epoch: An epoch refers to one cycle through the full training dataset.1

• Example:
 Number of Images = 1024

 Batch Size = 4

 Number of Iterations in Every Epoch: 256

32

1. https://deepai.org/machine-learning-glossary-and-terms/epoch



Load Data and Set Device
Dataset Directory

Load Data

Get number of images 
and name of classes

Set the Device to GPU or CPU

Code Reference: https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html 33



Sample Network

• Here is an example of a PyTorch model 

Define the layers of model (1) 

Forward function is called during 
forward pass (2)

Code Reference: 
https://github.com/pytorch/tutorials/blob/master/beginner_source/blitz/neural_networks
_tutorial.py
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Visualization of Sample Network

conv1

conv2

pool

fc1

fc2

fc3

Layers which have been 
declared in model initialization 

(1)
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conv1

conv2

pool

fc1

fc2

fc3

ReLu

pool

ReLu

Input Image

Classification Result

Forward Pass of model (2)
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Apply View



Before Start Training
• For starting the training process we need to

1. Initialize an instance from the model which we have 
already defined

2. Specify the criterion (loss) for evaluation of model

3. Specify the setting of optimizer

4. Specify the way learning rate changes during 
training

1

2

3

4

Code Reference: https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html 37



Save the Best Model Parameter

• We need to train the network for the specified number of epochs.

• Before training process, we save the initial weight as the best model weight 
and set the best accuracy as zero.

• In every epoch and after finishing the training process, we use the trained 
model to select the model which has best performance on the validation 
set. 

Code Reference: https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
38



Iterate Over Train and Validation Sets in every 
Epoch

• In every epoch we either train the model or just use it 
for evaluation. 

• For training, we need to set the model to train mode 
and for test we need to set to eval mode.

Code Reference: https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
39



Iterate Over every Minibatch
• We use the data loader which we have created in 

previous slides to go thorough the data. 

• What we get from data loader are tensors for images 
(inputs) and labels and we need to transfer them to 
the device which we have created before. 

• Note: Phase here is ‘train’ and ‘test’

Code Reference: https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
40



Prediction and Back Propagation

Apply Forward Function and get logit

Get the highest logic as  prediction

Compute the loss based on predicted value 

Back propagate if we are in train phase 

Zero the gradient before start of a new mini batch

Sum the loss of batch with
all loss values

Sum correctly predicted values
in batch with all loss values

Code Reference: https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html 41



Finish Iterating over Data in One Epoch 

• When iteration over all data finished then we need to 
compute the loss and save the best model.

Scheduler setting (e.g. learning rate) needs to be updates 

Loss and accuracy needs to be computed at the 
end of epoch 

Save the best model

Code Reference: https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html 42



Load Data for Test
Transform the test images

Load the data and get the  dataset size 

Code Reference: https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html 43



Test the Loaded Data 

Set the model in evaluation mode

Iterate over test 
data and compute 
loss and correctly 
predicted values

Compute the loss and 
Accuracy over all data

Code Reference: https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html 44


