
A N o t e on the U s e of Java in Scientif ic C o m p u t i n g

J u a n Vi l lac is

Computer Science Department, Indiana Univemity

Bloomington, IN 47405, USA

j v i l l ac i @cs. i nd iana , edu

Abstract

Java provides an easy-to-use language and platform for writ-
ing distributed, network-aware applicatious. For the scien-
tific computing community, Java has the potential of ex-
tending the range and usefulness of scientific codes, as well
as widening the codes current user base. However, certain
features of Java may limit its usefulness as a platform in
which to develop and deploy scientific codes. In this paper,
we analyze where Java could be used within scientific com-
puting, and examine several Java-based systems that aim to
provide tools and runtimes suitable for progr-mm;ng scien-
tific codes within distributed computing environments.

1 Introduction

One of the main benefits that Java brings to the scientific
computing community is an easy-to-use, portable f~ame-
work that facilitates distributed computing. Programmers
can take advantage of this fxamework to convert otherwise
stand-alone scientific codes into network-aware applications.
However, speed, numerical precision and operator expres-
siveness, are important factors in most scientific codes, and
a careful e_Yamination in these areas should be considered be-
fore diving into the programming. In the remainder of the
paper, a discussion of these and related issues is presented
fIom a progr~Lmmer'S perspective. An alternative program-
ming paradigm that is not Java-specific, but which may take
advantage of several key features of Java, is offered, along
with several evramples systems which illustrate the concept.

2 Overview o[Issues

The kinds of codes used in scientific computing typically in-
volve compute-intensive numerical calculations, as well as
the management and distribution of large data sets. So a
natural question to ask is: how does Java fit in this pic-
tnre? At first glance, two extremes exist: use Java as a re-
placement for everything (equivalently, program everything
in Java), or don' t use Java at all. While the latter is not
very interesting, the former does require some analysis. In
this section, we explore several issues that identify Java's
limitations as a programming environment and platform for
scientific computing. A more comprehensive analysis, along
with interesting debates on these issues, can be found in [11].

2.1 Platform Independence

By design, Java provides a platform-independent view of
computing resources that programmers can access and 'rely
on [1]. The Java Virtual Machine (JVM) and accompanying
set of Java Developer Toolkit (JDK) libraries constitute the
platflorm to which Java programmers code. This platform
hides much of the underlying hardware, operating system,
and even JVM/JDK implementation details through its use
of a uniform application programming interface (API). A
consequence of this is that programmers rely heavily on the
JVM vendors to provide optimizatious for key operations
(e.g., floating point, vector arithmetic, etc.). Although just-
in-time (JIT) compilation and related technologies promise
to improve overall JVM performance, it is not clear whether
specific optimizatious unique to scientific codes will be avail-
able. Hence, optimal, or even good, performance relative
to what might be obtained by programming "closer to the
machine" may not be achievable within a Java-only environ-
ment.

2.2 Numerics

Java is not suitable for doing precise scientific computations
due to its present lack of support for the IEEE floating point
standard [16]. This memas that numerical calculations which
require a certain level of floating point accuracy and consis-
tency cannot be guaranteed to possess such characteristics
across all JVM implementations. This poses a fundamental
problem for many codes.

2.3 Bandwidth

Java Remote Method Invocation (RMI) provides a frame-
work that allows an object residing in one JViV[to invoke
methods on an object residing in another JVM, This facili-
tares distributed computing within Java, and makes it very
easy to pass data between remote objects. However, P~/II is
not well-su/ted for high-bandwidth data passing due to its
inei~cient object serialization [3]. Furthermore, preliminary
studies show that improvements in this area have not mate-
rialized under the most recent JVMs [5]. Thus, bandwidth
scalability (and by extension, problem aize acalability) are
still unresolved issues in Java.

2.4 Memory Management

Java uses garbage-collection to automatically manage mem-
ory. Thus, the programmer has no direct control of when

14

memory resources are freed. Furthermore, since direct ac-
cess to memory is prohibi ted (e.g., no pointer ari thmetic),
code which uses memory opt imizat ion techniques would need
to be re-designed and re-wri t ten for Java. This can be prob-
lematic for codes which require large da ta sets, or whose
algonthm~ depend on or assume manua l memory manage-
ment.

2.5 Legacy Code

A large percentage of scientific codes are wri t ten in For-
t r an and C, while a smaller percentage are wri t ten in C + +
and other higher-level languages. It could be argued that
these codes should be re-wri t ten in Java, in order to take ad-
vantage of the object-oriented paradigm and the Java plat-
form features [6]. Unfortunately, direct suppor t for complex
types and an easy-to-use syntax for mult i -dimensional ar-
rays are not current ly available as par t of the core J a r a lan-
guage/pla t form [16]. Furthermore, a significant amount of
t ime and effort has been spent on gett ing existing scientific
codes to work efficiently and reliably on specific platforms.
Hence, there will be a reluctance to port existing codes to
Java.

3 Middle Ground

Given the preceding points, Java seems ill-suited as a "re-
placement" language/pla t form for writ ing scientific codes.
However, between the "all-or-nothing" Java extremes lies
the possibility for using Java as the "glue" to connect e~dst-
ing scientific codes. Tha t is, Java could be used for bui lding
software frameworks (or Uglueware") tha t manage the use
of scientific codes. Or, to pu t it another way, one need not
write scientific codes in Java, rather, one can write Java
~round scientific codes.

3.1 Java as "Glueware"

The not ion of bui lding composit ional tools to incorporate
legacy codes into an under lying software framework is not
new. In fact, there are quite a few non-Java software sys-
tems current ly being used as the "glue" to connect scien-
tific codes. In particular, scripting languages such as Perl,
Py thon and Tel, have recently been used in the construc-
t ion of several scientific comput ing frameworks [19]. So,
what makes Java be t te r t han these other "glue" program-
ruing systems? Perhaps no single feature gives Java a com-
plete advantage over other systems (language preferences
notwiths tanding) . But as an integrated system, Java does
provide key mechanisms tha t facilitate its use as "glue".
These include a uniform API (described below) for accessing
non-Java codes, and bui l t - in remote object interoperabil i ty
facilities such as RMI [13] and IDL [15] tha t allow these
codes to be accessible wi thin a wider dis t r ibuted comput ing
environment .

3.2 Programming Approaches

Ass-ming Java is to be used as the "glueware" for scien-
tific computing, two broad programmat ic approaches be-
come readily apparent . The first is to use a fine-grained,
l ibrary-based approach tha t stays close to the Java platform.
The second is to embrace language/pla t form heterogeneity
and use a coarse-grained, component-based approach. Both
approaches involve the use of wrapper codes which provide
facilities for invoking functions and passing da ta between

Java and (potentially) non-Java systems. A brief overview
of these approaches is out l ined below.

The l ibrary-based approach is a small step away from the
Java-only extreme. This approach involves using the Java
Native Interface (JNI) to make funct ion calls between Java
code and non-Java codes [12]. Depending on how far the
programmer wishes to step into (or out of) the Java-only
environment , the wrapper code could range from m;~;mal
(e.g., use Java only as a high-level front-end), to maximal
(e.g., all code is in Java except for nat ively compiled com-
puta t ional kernels). This approach may work best for a
restricted set of platforms for which little or no communica-
t ion is requ.ired (e.g., s tand-alone programs), or which can
take advantage of the target platforms' special capabilities
to enhance performance. In short, programmers can use this
approach to retain the benefits of working within Java, while
gaining some control over platform-specific optimizations.

An alternative is to move away from the Java-only ex-
t reme and adopt a language/pla t form neut ra l approach. In
this scenario, scientific codes can be wri t ten in whichever
language is convenient or appropriate to use, and for which
wrapper code has been provided. The wrapper code pro-
r ides access to a new kind of platform: the component
framework. This framework dfdqnes a set of interfaces tha t
describe the kinds of functions tha t may be invoked on the
component . Like the previous approach, the incorporat ion
of scientific codes into the framework may entail an initial
lower-level programming phase (e.g., compiling and /o r link-
ing against a set of framework libraries to produce a run t ime
executable). However, once the assimilation is complete, a
different programming paradigm emerges: application level
programming. Here, progrA.mmers, as well as end users, are
able to assemble mad compose scientific component codes to
form larger applications based solely on a components public
interface. This is one of the key ideas behind component-
based programming [18].

4 Example Frameworks

A sampling of several Java-based frameworks that utilize
the "glue" concept, and which specifically target scientific
comput ing in a dis t r ibuted comput ing context, are described
below. A more comprehensive review of these and related
systems can be found in [19]. These frameworks are exam-
ined in decreasing order of Java-dependency.

4.1 Symphony

Symphony is a cJient/server framework for specifying and
t ransparent ly executing dis t r ibuted (legacy) applications. I t
relies heavily on the JavaBeans [14] architecture to provide
much of its functionality. Although programmers are re-
quired to write their scientific codes as "beans" (Java-centric
components) , certain port ions may be JN'I-wrapped. The
server side is implemented as a Java daemon process, which
performs the actual code execution. The client front end
is derived from the Java BeanBox GUI, bu t does provide
addit ional value with a set of simple, yet powerful, generic
beans. Finally, beans communica te through Java itself (e.g.,
via Jav~ RMI, Java sockets, etc); however, the under lying
codes are not necessarily restricted to this. [17].

4.2 IceT

IceT is a system tha t facilitates the t ranspor t and dynamic
execution of of nat ive codes via Java [9]. Using the IceT

15

API, programmers can write JNI-wrapped codes optimized
for specific platforms, and the IceT system handles the in-
stantiation details at runtime via a Usoft install" mechanism.
The IceT framework automatically detects and sets up the
proper environment for running the code on compatible ma-
chines within a distributed computing environment. By us-
ing IceT, the programmer is afforded some degree of runtime
portability to his otherwise non-portable JNI-wrapped code.

4.3 WebFIow

WebFlow is a client/server system that enables
high-performance commodity computing for dataflow ap-
plications [2]. The server side is implemented as mesh of
Java servers, called the WebVM, which manage and coor-
dinate distributed computations. Programmers can write
their codes in whichever language is most suitable, and then
use a Java-based API to to encapsulate their scientific codes
as "modules" in the WebFlow system. The cfient side con-
sists of a Java applet front end that allows users to visually
compose modules into distributed applications.

4.4 VDCE

The Virtual Distributed Computing Environment (VDCE)
provides a problem solving environment for performing par-
allel and distributed computing over wide-area networks [10].
The system is composed of two parts: an application editor
and a runtime system. The Java-based application editor
provides a set of libraries for developing VDCE appllc&tions,
as well as a GUI for visually composing applications from
a database of components. The runthne system provides a
task scheduler for mapping components to a matching set of
resources, a real-time task monitor for obtaining feedback on
the status of components, and a socket-based point-to-point
inter-component communication system. To use this sys-
tem, programmers must write their codes using the VDCE
support libraries, which allow components to interact with
the application editor, as well as the runtime kernel services.

4.5 CAT

The Component Architecture Toolkit (CAT) facilitates
component-based programming by providing programmers
and end users with the following items: a conceptually sim-
ple "port-based" component model, a suite of developer
tools for incorporating existing scientific codes into its frame-
work, and a set of end user tools for locating, composing,
building and running distributed component applications.
The framework has been implemented in both Java (for
the GUI composition workspace, and Java-based compo-
nents), and in H P C + + [8] (for components written in For-
trait, C, or C + +) . Using the CAT component model, pro-
grammers can target their codes to whichever framework
implementation best suits their performance needs. Nexus
[7] provides the multi-platform, high-performance communi-
cation layer that, with the use of NexuaKMI [4], enables Java
components to inter-operate with non-Java components. A
complementary resource information subsystem (BLIS) al-
lows both programmers and end users to publish informa-
tion about components (static or r , uning) in a distributed
directory service so that other RIS users may access them.
A more detailed description can be found in [20].

S Conclusions

Java provides a rich object model, extensive set of core li-
braries, and a framework that simplifies distributed com-
puting. However, Java falls short of providing a viable pro-
grimm;rig and execution environment for scientific comput-
ing due to its unsatisfactory performance, poor scalabifity,
inadequate numerics, and lack of core support for opera-
tions/types unique (and very useful) to scientific computing
programmers. Nonetheless, it has been shown that Java is
quite useful as the "glue" for progr~mm;ug around scientific
codes, and that one can thereby gain some advantages of
Java's distributed computing facilities to broaden the class
of users who can make use of such codes.

6 Acknowledgments

I would like to thank colleagues and associates in the Ex-
treme! Computing Lab for their help in reviewing this pa-
per, as well as the editors for their patience in receiving it.

References

[1] ARNOLD, K., AND GOSLING, J. The Java Programming
Lcnguage. Addison Wesley, 1996.

[2] BHATIA, D., BURZEVSKI, V., CAMUSEVA, M., FOX,
G.,
FURMANSKI, W., AND PREMCHANDRAN, G. WebFlow
- A Visual Programming Paradigm for Web/Java-
based Coarse Grain Distributed Computing. June 1997.
http: //osprey T.npac.syr.edu:1998 /iwt98 /products /webfiow /.

[3] BREG, F., DIWAN, S., VILLACIS, J., BALASUBRAMA-
NIAN, J., AKMAN, E., AND GANNON, D. Java RMI Per-
formsnce and Object Model Interoperability: Exper-
iments with J a v a / H P C + + Distributed Components.
In Concurrency Parctice and Ezperience, ~pecial Issue
from the Fourth Jaua for Beientifie Computing Work-
shop (March 1998), John Wiley and Sons, Ltd., p. (to
appear).

[4] BREG, F., AND GANNON, D. Compiler Support for an
KMI Implementation using Nexus Java. Tech. Rep. 500,
Computer Science Dept., Indiana University, 1997.

[5] BREO, F., AND GANNON, D. A Custom.izable Im-
plementation of B.MI for High Performance Comput-
ing. In International Workshop on Java /or Parallel
and Distributed Computing, Second Merged Symposium
IPPS/SPDP I999 (1999), Computer Science Dept., In-
diana University, p. (to appear).

[6] BUDIMLIC, Z., KENNEDY, K., AND PIPER, J. The Cost
of Being Object Oriented: A Prelimminary Study. In
First UK Workshop: Java/or High Per]ormance Net-
~ork Computing (July 1998), Center for Research on
Parallel Computation, Rice University, p. (to appear).

[7] FOSTER, I., KESSELMAN, C., AND TUECKE, S- The
Nexus Approach to Integrating Multithreading and
Communication. J. Parallel and Dis~'ibuted Computing
37 (1996), 70-82.

[8] GANNON, D., BECKMAN, P., JOHNSON, E., AND
GItEEN, T. Compilation Issues on Distributed Memory
Systems. Springer-Verlag, 1997, ch. 3 H P C + + and the
H P C + + L i b Toolkit.

16

[9] GRAY, P., SUNDERAM, V., AND GETOV, V. As-
pects of Portability and Distributed Execution for JNI-
Wrapped Code. In First UK Workshop: Java for High
Pe~orrnance Nehvork Computing (July 1998), p. (to
appear).

[10] HARIRI, S., TOPCUOGLU, H., FURMANSK], W., KIM,
D., I~IM, Y., l:tA, I., BINO, X., YE, B., AND VALENTE,
J. Problem Solving Env/ronmen/s. IEEE Computer
Society, 1998, ch. A Problem Solving Environment for
Network Computing.

[11] JAVAGRANDE NUMERICS WORKING GROUP. Im-
proving java for numerical computation, 1998.
http: / / gams.nist.gov/j avanumerics/j gfawK-01.html.

[12] JAVASOFT. Java Native Interface Specification, 1997.
ht tp : / / j ava.sun.com /products / j d.k /1.1/ do cs / guide / jni / index.html.

[13] JAVASOFT. PtP..Hlote Method Invocation Specification,
1997.
http://jav~.stm.com/products/j dk/1.1/doca/guide/rmi/index.html.

[14] JAVA SOFT. Jawa, beans, 1998.
http: //java.sun.com/beans/index.html.

[15] JAvASOFT. Java idl tutorial, 1998.
http: / /java.sun.com/ docs/books/tutorial/idl/index.html.

[16] KAHAN, W., AND DARCCY, J. How JAVA's Floating-
Point Hurts Everyone Everywhere, March 1998.
http: //www.cs.berkeley.edu/wk~h ~n/JAVAhurt.pdf.

[17] SHAH, A. Symphony: A Java-based Composition
and Manipulation Framework for Distributed Legacy
Resources. Tech: rep., MS Thesis, Department of
Computer Science, Virginia Tech, March 1998 1998.
http://actor.~.vt.edu/~m~tre/~ymphony/.

[18] SZYPERSKI, C. Com~onenl~ ,.qoflware: Beyond Object-
oriented Programming. Addison-Wesley, 1998.

[19] VILLACIS, J. The CAT, PhD Thesis, Department of
Computer Science, Indiana University, (in progress)
1999. http ://www.extreme.indiana.edu/cat.

[20] VILLACIS, J.,
GOVINDARAJU, M-, STERN, D., WHITAKER, A., BREG,
F-, DEUSKAK, P., TEMKO, B., GANNON, D., AND
BRAMLEY, R. CAT: A High Performance, Distributed
Component Architecture Toolkit for the Grid, 1999.
http://wTw, extreme, indiana, edu/cat/p ap ers/hp dc99. ps.

17

