
OLAP/Data Warehouses

Yannis Kotidis

What is a Database?

• From Wikipedia:

– A database is a structured collection of records or data. A computer database relies upon software to
organize the storage of data. The software models the database structure in what are known as
database models. The model in most common use today is the relational model. Other models such as
the hierarchical model and the network model use a more explicit representation of relationships …

– Database management systems (DBMS) are the software used to organize and maintain the database.
These are categorized according to the database model that they support. The model tends to
determine the query languages that are available to access the database. A great deal of the internal
engineering of a DBMS, however, is independent of the data model, and is concerned with managing
factors such as performance, concurrency, integrity, and recovery from hardware failures. ...

2

http://en.wikipedia.org/wiki/Structure
http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Computer
http://en.wikipedia.org/wiki/Software
http://en.wikipedia.org/wiki/Database_model
http://en.wikipedia.org/wiki/Relational_model
http://en.wikipedia.org/wiki/Hierarchical_model
http://en.wikipedia.org/wiki/Network_model
http://en.wikipedia.org/wiki/Database_model
http://en.wikipedia.org/w/index.php?title=Hardware_failure&action=edit&redlink=1

Note

• Term “database” often used interchangeably for both the
data and the system that manages it

3

4

Basic Database Usage (1): Querying

Relations
Statements

(select columns and rows)
Results

A B C D E A D

A D

5

Basic Database Usage (2): Updates

• Banking transaction: transfer 100 euro from
account A to account B

– What can go wrong?

Account Balance

A 275

B 64

-100

+100

6

Issue 1: Partial results

• System failure prior to adding funds to
account B (but after deleting them from A)

Account Balance

A 175

B 64

-100

+100 SYSTEM FAILURE

7

Issue 2: No isolation

• For an observer that monitors all funds
money seem to temporality disappear (and
reappear again)

Account Balance

A 175

B 64

-100 total funds are
reduced by 100

+100

8

Issue 3: lost update

• Two concurrent transactions on account A

– T1: remove 100

– T2: remove 50

Account Balance

A 275

B 64

T1
Read balance (275)
Subtract 100
Write balance 175

T2
Read balance (275)
Subtract 50
Write balance 225

9

Programming abstraction: Transactions

• Implement real-world transactions

• DBMSs guarantee ACID properties
– Atomicity

– Consistency

– Isolation

– Durability

Begin Run
Commit

Abort

Atomicity (A.C.I.D.)

• The "all or nothing" property.
– Programmer needn't worry about partial states persisting.
– Two possible outcomes: transaction commits or rollbacks

(aborts)

• Examples:
– T1: Delete person from consultants table, insert person into

employees table
– T2: Transfer funds from account A to account B

10

Begin Run

Abort

Commit

Consistency (A.C.I.D)

• The database should start out "consistent“
(legal state), and at the end of transaction
remain "consistent".

• The definition of "consistent" is up to the
database administrator to define to the
system
– integrity constraints

– other notions of consistency must be handled by
the application.

11

Integrity or correctness of data

• Would like data to be “accurate” or
“correct” at all times

EMP:

12

Name

John
Jim

Martha

Age

52
24
1

CREATE TABLE EMP (
Name varchar(255) NOT NULL,
Age int,
CHECK (Age>=18)

);

Integrity/consistency constraints

• Predicates data must satisfy

• Examples:

– age >= 18 and age < 65

– x is key of relation R

– x → y holds in R

– Domain(x) = {Red, Blue, Green}

– no employee should make more than twice the
average salary

13

Isolation (A.C.I.D)

• Each transaction must appear to be executed
as if no other transaction is executing at the
same time.

• Transfer funds from A to B (T1).

• Another teller makes a query on A and B (T2).

• T2 could see funds on A or B but not in both!

– Result may be independent of the time
transactions were submitted

14

Durability (A.C.I.D.)

• Once committed, the transactions effects
should not disappear.

– Of course, they may be overwritten by subsequent
committed transactions.

15

Implementation

• A, C, and D are mostly guaranteed by recovery
(usually implemented via logging).

• I is mostly guaranteed by concurrency control
(usually implemented via locking).

• Of course, life is not so simple. For example,
recovery typically requires concurrency
control and depends on certain behavior by
the buffer manager…

16

17

Operational DBs: OLTP systems

• OLTP= On-Line Transaction Processing

– order update: pull up order# XXX and update status
flag to “completed”

update Orders set status=“Completed”
where orderID=“XXX”

Index on Orders.orderID

orderID=“XXX”

XXX

Reconstruction of logical records

• List projects & hours assigned to employee Nick Long

18

EmpID Ename

101 John Smith

102 Nick Long

103 Susan Goal

104 John English

105 Alice Web

106 Patricia Kane

EmpID ProjID Hours

101 3 16

102 2 24

102 3 8

104 4 32

105 4 24

106 4 24

ProjID Pname

2 Web_TV

3 Web_portal

4 Billing

Select Pname,Hours
From Employees E, Projects P, Assignments A
Where E.Ename = “Nick Long”
And E.EmpID=A.EmpID
And A.ProjID=P.ProjID

Employees Projects Assignments

Physical Plan (step a): IndexSeek

19

EmpID Ename

101 John Smith

102 Nick Long

103 Susan Goal

104 John English

105 Alice Web

106 Patricia Kane

EmpID ProjID Hours

101 3 16

102 2 24

102 3 8

104 4 32

105 4 24

106 4 24

ProjID Pname

2 Web_TV

3 Web_portal

4 Billing

Employees Projects Assignments

σE.name=“Nick Long”(Employees)

Index on Employees.Ename

Nick Long
<102,Nick Long>

Physical Plan (step b):
INLJ(Employees,Assignments)

20

EmpID Ename

101 John Smith

102 Nick Long

103 Susan Goal

104 John English

105 Alice Web

106 Patricia Kane

EmpID ProjID Hours

101 3 16

102 2 24

102 3 8

104 4 32

105 4 24

106 4 24

ProjID Pname

2 Web_TV

3 Web_portal

4 Billing

Employees Projects Assignments

Index on Assignments.EmpID

EmpID=102
<102,2,24>

Employees Assignments <102,3,8>

Physical Plan (step c):
INLJ(Assignments,Projects)

21

EmpID Ename

101 John Smith

102 Nick Long

103 Susan Goal

104 John English

105 Alice Web

106 Patricia Kane

EmpID ProjID Hours

101 3 16

102 2 24

102 3 8

104 4 32

105 4 24

106 4 24

ProjID Pname

2 Web_TV

3 Web_portal

4 Billing

Employees Projects Assignments

Index on Projects.ProjID (primary key)

ProjID=2
<2,Web_TV>

Assignments Projects <3,Web_portal>
ProjID=3

22

On-Line Transaction Processing
• Examples

– order update: pull up order# XXX and update status flag to “completed”
– banking: transfer 100 euros from account #A to account #B

• Transactions:
– Implement structured, repetitive clerical data processing tasks
– Require detailed, up-to-date data
– Are (most of the times) short-lived

• read and/or update a few records

• Integrity of the database is critical
– DBMS should manage hundreds or thousands of concurrent

transactions

• Systems supporting this kind of activity are called transactional
systems
– Most traditional database management systems

Transactional Systems

• Transactional systems are optimized primarily for the
here and now

• Can support many simultaneous users
– concurrent read/write access

• Transactional systems don’t necessarily record all
previous data states
– E.g. customer updates its address (moves to new town)

• Lots of data gets thrown away or archived
– Old orders are deleted/archived to reduce size

23

Analytical queries on a production
system?

• CEO wants to report total sales per store in Athens,
for stores with at least 500 sales

• 3 tables:

Ι. Κωτίδης 24

SELECT Stores.storeid, SUM(amt) as totalSales
FROM Sales, Stores, Addresses
WHERE Stores.storeid = Sales.storeid
AND Stores.addressid=Addresses.addresid
AND Addresses.city=“Athens”
GROUP BY Stores.storeid
HAVING count(*) 500

Sales(custid, productid,storeid,amt)

Stores(storeid, manager,addressid)

Addresses(addressid,number,street,city)

Joins

Group by

Aggregation

Filter/Aggregation

Logical Plan

scity = “Athens”

gStores.storeId,SUM(amt)->totalSales, COUNT(*)

Addresses(addressid,number,street,city)

Stores(storeid, manager,addressid)

Sales(custid, productid,storeid,amt)

What happens if
new sales take
place while this
query executes?

sCOUNT(*) 500

πstoreId,totalSales

Sad realization

• Analytical queries on an operational database
often take for ever

– Schema favors small atomic actions

• Excessive normalization results in costly joins

– Need to scan LOTS of records

• Indexes are not very useful when queries are not
selective

– Interference with daily transactions

• Overhead of OLTP engine (logging, locking)

26

My employees & their projects

• Schema is bad for OLTP (1NF)
– Update anomalies, repetition of values

• But is all we need for reporting our employees and their projects!

27

EmpID Ename ProjID Pname City Hours

101 John Smith 3 Web_portal Thessaloniki 16

102 Nick Long 2 Web_TV Athens 24

103 Susan Goal 3 Web_portal Thessaloniki 8

104 John English 4 Billing Athens 32

105 Alice Web 4 Billing Athens 24

106 Patricia Kane 4 Billing Athens 24

OLAP:
ONLINE ANALYTICAL PROCESSING

OLAP

• OLAP = online analytical processing

• OLAP is the process of creating and
summarizing historical, multidimensional data

– To help organizations understand their data better

– Provide a basis for informed decisions (Decision
Support Systems, Business Intelligence)

– Allow users to manipulate and explore data easily
and intuitively

34

Data Analytics Stack

OLAP

• Well defined
computations over
data categorized by
multiple dimensions
of interest

• Enables users to
easily and
selectively extract
and query data in
order to analyse it
from different
points of view

Data Mining

• Seek to find
relationships and
patterns in data

• Frequent itemset

• Association rules

• Clustering

Machine Learning

• Build models for
prediction,
classification etc.

• Image classification

• Speech processing

• Sentiment analysis

• NLP

OLAP Examples

OLAP

• Well defined
computations over
data categorized by
multiple dimensions
of interest

• Enables users to
easily and
selectively extract
and query data in
order to analyse it
from different
points of view

Data Mining

• Seek to find
relationships and
patterns in data

• Frequent itemset

• Association rules

• Link prediction

Machine Learning

• Build models for
prediction,
classification etc.

• Image classification

• Speech processing

• Sentiment analysis

• NLP

Data Analysis Stack

A. Group sales data across different dimensions:
Product, Customer, Location (point of sale) and
Time
▪ Dimensions identify what, who, where & when

B. Compute interesting stats on selected measures

Examples:
1. “Average January sales (€) for all stores in Attika”

2. “Number of shoes over 100€ sold to female

customers between ages 18 and 25”

3. “Top-10 product-categories whose sales (%)

increased the most over the past year“

Can you identify the dimensions
in these queries???

1st query in more details

OLAP

• Well defined
computations over
data categorized by
multiple dimensions
of interest

• Enables users to
easily and
selectively extract
and query data in
order to analyse it
from different
points of view

Data Mining

• Seek to find
relationships and
patterns in data

• Frequent itemset

• Association rules

• Link prediction

Machine Learning

• Build models for
prediction,
classification etc.

• Image classification

• Speech processing

• Sentiment analysis

• NLP

Data Analysis Stack

“Average January sales (€) for all stores in Attika”

1st dimension denotes when

2nd dimension denotes where

A common aggregate function: AVG() over the available
measure (sales)

Other examples: Max(), Min(), Count(), StDev(), Median()

46

OLAP vs. OLTP

OLAP

Knowledge worker

Decision support

Subject-oriented

(Star, snowflake)

Historical, Consolidated

Summarized, Multidimensional

Ad hoc

Complex query

Read mostly

Lots of scans

Millions

Hundreds

100 GB - TB

Query throughput, response

OLTP

Clerk, IT professional

Day to day operations

Application-oriented

(E-R based)

Current, Isolated

Detailed, Flat relational

Structured, Repetitive

Short, simple transaction
Read/write

Index/hash on prim. key

Tens

Thousands

100 MB - GB

Trans. throughput

User

Function

DB design

Data

View

Usage

Unit of work

Access

Operations

Records accessed

Users

Db size

Metric

DATA WAREHOUSES

The Data Warehouse

• In order to support OLAP, data is collected from
multiple data sources, cleansed and organized in data
warehouses

• The data warehouse is a huge repository of enterprise
data that will be used for decision making

• After data is loaded in the data warehouse, OLAP cubes
are often pre-summarized across dimensions of
interest to drastically improve query time

-- W.H. Inmon, Building the Data Warehouse, 1992.

• A decision support database that is
maintained separately from the organization’s
operational databases.

• A data warehouse is a
• subject-oriented,

• integrated,

• time-varying,

• non-volatile

collection of data that is used primarily in

organizational decision making.

Data Warehouse definition

Subject-Oriented

• Organized around major subjects, such as
customer, product, sales

• Focusing on the modeling and analysis of data
for decision makers, not on daily operations or
transaction processing

• Provide a simple and concise view around
particular subject issues by excluding data that
are not useful in the decision support process

50

Integrated

• Constructed by integrating multiple,
heterogeneous data sources
– relational databases, files, external sources

• Data cleaning and data integration techniques are
applied
– Ensure consistency in naming conventions, keys,

attribute measures, etc. among different data sources
• E.g., Hotel price: currency, tax, breakfast covered, etc.

– When data is moved to the warehouse, it is
transformed

51

Time-Variant

• The time horizon for the data warehouse is
significantly longer than that of operational
systems

– Operational database: current data, old values
overwritten, deleted or archived

– Data warehouse: provides data from a historical
perspective (e.g., past 5-10 years) for trend
analysis

52

Non-volatile

• A physically separate store of data
transformed from the operational
environment

• Operational update of data does not occur in
the data warehouse environment

– Does not require transaction processing, recovery,
and concurrency control mechanisms

– Requires only two operations in data accessing:

• loading of data and access to data

53

56

Data Warehouse Architecture

Data
Warehouse

Extract
Transform
Load

OLAP Engine

Monitor
&

Integrator

Metadata

Data Sources Front-End Tools

Serve

Data Marts

csvjson

Operational
DBs

Other
sources

Data Storage

OLAP Cubes
OLAP

Data Mining

Query/Reporting

Front-End Tools

Staging Area

57

Implementation

• Warehouse database server
– Almost always a relational DBMS.

• OLAP Servers (for computing OLAP Cubes)
– Relational OLAP (ROLAP): extended relational DBMS that maps

operations on multidimensional data to standard relational
operations.

– Multidimensional OLAP (MOLAP): special purpose server that
directly implements multidimensional data and operations.

• Clients
– Query and reporting tools.
– Analysis tools.
– Data mining tools.

58

Data Marts

• Smaller warehouses

• Span part of organization

– e.g., marketing (customers, products, sales)

• Do not require enterprise-wide consensus

– But may lead to long term integration
problems

Basic Query Pattern

• Analyst projects data into a selected subset of
dimensions and computes interesting statistics

• In SQL this is expressed by grouping records using
the selected attributes and computing aggregate
functions (e.g. sum(), average(), count(), max())
over each group
– “Group by followed by aggregation”

– Additional filtering may be used to restrict the scope
of the query

Example

• “Compute the total revenue (=sum) the
minimum and maximum price for each
combination of customer and store”

60

⚫ Sales Data:

Time Customer Store Product Price

T1 C1 S2 P1 $90

T2 C2 S1 P2 $70

T3 C1 S1 P2 $45

T4 C3 S1 P1 $40

T5 C1 S2 P2 $25

T6 C1 S2 P2 $50

T7 C2 S1 P4 $45

T8 C3 S1 P1 $10

available dimensions measure

facts

In SQL: Group By + Aggregation
Select Customer, Store, SUM(Price) as Revenue, MIN(Price) as MinPrice,

MAX(Price) as MaxPrice

From Sales Group by Customer, Store

61

1. Identify
groups:

C1,S1

C2,S1

C3,S1

C1,S2

Time Customer Store Product Price

T1 C1 S2 P1 $90

T2 C2 S1 P2 $70

T3 C1 S1 P2 $45

T4 C3 S1 P1 $40

T5 C1 S2 P2 $25

T6 C1 S2 P2 $50

T7 C2 S1 P4 $45

T8 C3 S1 P1 $10

Customer Store Revenue Min Price Max Price

C2 S1 $115 $45 $70

C1 S1 $45 $45 $45

C3 S1 $50 $10 $40

C1 S2 $165 $25 $90

2. Perform
aggregation

Relational Algebra (logical plan)

γStore, Customer, SUM(Price)->Revenue, MIN(Price)->MinPrice, MAX(Price)->MaxPrice

Sales

Map data and aggregates into a high-
dimensional space

• Example: compute total sales volume per
productID and storeID

63

Total

Sales

ProductID

1 2 3 4

S
to

re
ID

 1 $454 - - $925

2 $468 $800 - -

3 $296 - $240 -

4 $652 - $540 $745

ProductID

StoreID

468

All sales of ProductID 1
at storeID 2 are
accumulated here

This value denotes
the result of the
aggregation

Multidimensional Data Model

• Database is a set of facts (points) in a multidimensional space
– E.g. a sale/an order/a contract

• A fact has
– A set of dimensions with respect to which data is analyzed

• e.g., store, product, date associated with a sale

– A set of measures
• quantity that is analyzed, e.g., sale amount, quantity

• Dimensions form a sparsely populated coordinate system
– Not all combinations exist as facts. E.g. a customer does not visit all stores

worldwide

• Each dimension has a set of attributes
– e.g., owner, city and state of store
– Often attributes are used to encode a hierarchy

64

Product Hierarchy

65

ΠΡΟΙΟΝΤΑ

Κρεατικά

Χοιρινό

Μπριζόλα Καπνιστό

Σουβλάκι

Μοσχάρι

Κιμάς Φιλέτο

Γαλακτοκομικά

Γιαούρτι

Στραγγιστό Βελουτέ

Τυρί

Γραβιέρα Φέτα

Γάλα

Πλήρες

Εβαπορέ

Όσπρια

Φακές

Χοντρές Ψηλές

Φασόλια

Πρεσπών Γίγαντες

Ρύζι

Κίτρινο

Γλασέ

Καρολίνα

Κωδικοί για όλα τα τυριά τύπου «φέτα»

p187 p96

More on Attribute Hierarchies

• Values of a dimension may be related

– Hierarchies are most common

• Dependency graph may be:

– Hierarchy (tree): e.g.,

city → state → country

– Lattice:

date →month → year

date → week (of a year) → year

66

year

week
month

date

Another example

• VIN: Vehicle
Identification Number
(unique key)

• Model: e.g. Fiesta

• Type: e.g. Compact
Car

• Manufacturer: e.g.
Ford

Type
Manufacturer

Model

VIN

Using hierarchies

• While projecting the data into a set of
dimensions, we may select an appropriate
hierarchy level for each dimension
– “Compute total sales per productID”
Vs
– “Compute total sales per product-category”

• In the second query, sales of different productIDs
that all belong to the same category e.g. “Milk”
will be accumulated together in the same
“coordinate” (value) of the category dimension

Multidimensional View of selected
hierarchy levels per dimension

• Aggregate sales volume as a function of product (category),
time (day-of-week), geography (city)

69

P
ro

d
u

ct
-c

at
eg

o
ry

Day-of-week

Milk
Soda

Beer

Bread

Toothpaste

Soap

1 2 3 4 76 5

LA
SF

07

06

22

18

45

20

NY

All NY’s sales of
milk on a Sunday
are aggregated in
this cell

1: Sunday
2: Monday
….

Roll-up Operation

• Dimension reduction:
– e.g., total sales by city by product

– e.g., total sales by city

• Navigating attribute hierarchy:
– e.g., sales by city

→ total sales by state

→ total sales by country

– e.g., total sales by city and year

→ total sales by state and by year

→ total sales by country

Product

1 2 3 4

C
it

y

NY $454 - - $925

SF $468 $485 - $315

LA $296 - $340 -

SE $652 - $640 $645

70

 Total Sales by City

C
it

y

NY $1379

SF $1268 3

LA $636 -

SE $1937

Roll-up

Drill-Down

• Drill-down: Inverse operation of roll-up
– Provides the data set that was aggregated

• e.g., show “base” data for total sales figure of the state of CA

71

Other Operations

• Selection (slice & dice) defines a
subcube

• Project the cube on fewer
dimensions by specifying coordinates
of remaining dimensions

• e.g., sales to customer XXX

• Ranking
• top 3% of cities by average sales

72

Warehouse Database Schema

• Relational design should reflect
multidimensional view

• Typical schemas:
– Star Schema

– Snowflake Schema

– Fact Constellation Schema

• Data tables (relations) are of two types: fact
tables and dimension tables

73

The Star Schema (Example 1)

74

time_key
day
day_of_the_week
month
quarter
year

TIME

location_key
store
street_address
city
state
country
region

LOCATION

SALES

product_key
product_name
category
brand
color
supplier_name

PRODUCT

time_key

product_key

location_key

units

amount
{measures

Fact Table

Dimension Table

Fact Table

• A table in the data warehouse
that contains facts consisting of
– Numerical performance measures

– Foreign keys that tie the fact data
to the dimension tables

• Each row records measurements
describing a fact
– Where? When? Who? How much?

How many?

• Provides the most detailed view
of the data an analyst has access
to in the data warehouse
– this denotes the grain of the

design

75

SALES

Foreign keys to dimension tables measures

time_key product_key location_key units amount

T1 P44 L4 1 12

T2 P157 L4 3 180

T2 P6 L1 14 2560

T3 P25 L3 1 2

T3 P157 L1 1 60

Dimension
Tables

• Dimension Tables contain
– a key column linked to a foreign key in the fact table
– textual descriptors such as name of products, addresses

etc
– attributes that encode dependences within the dimension

(e.g. hierarchies)

• Dimension tables may be wide
• Dimension tables are usually shallow (e.g. few

thousand rows)

76

product_key product_name category brand color supplier name

P1 I7-8600K CPU Intel black Jim

P2 I5-2400 CPU Intel black Jim

P3 Samsung 830 SSD Samsung brown Ben

P4 Barracuda HDD Seagate silver Ben

P5 MQ01ABD032 HDD Toshiba silver John

encodes product → category hierarchy

Keys uniquely
identify each
product

Advantages of Star Schema

• A single fact table where to look for facts to
analyze

• One table for each dimension
– dimensions are clearly depicted in the schema

• Easy to comprehend (and write queries)

• Loading of data
– dimension tables are relatively static
– data is loaded (append mostly) into fact table(s)
– new indexing opportunities

78

TIME

Querying the Star Schema

79

“Find total sales per product-category in our stores in Europe”

time_key
day
day_of_the_week
month
quarter
year

location_key
store
street_address
city
state
country
region

LOCATION

SALES

product_key
product_name
category
brand
color
supplier_name

PRODUCT

time_key

product_key

location_key

units_sold

amount

Querying the Star Schema

80

SELECT PRODUCT.category, SUM(SALES.amount)

FROM SALES, PRODUCT,LOCATION

WHERE SALES.product_key = PRODUCT.product_key

AND SALES.location_key = LOCATION.location_key

AND LOCATION.region=“Europe”

GROUP BY PRODUCT.category

“Find total sales per product-category in our stores in Europe”

Join fact table SALES with dimension tables PRODUCT, LOCATION to
fetch required attributes (category & region in this example)

Star Schema Query Processing

time_key
day
day_of_the_week
month
quarter
year

TIME

location_key
store
street_address
city
state
country
region

LOCATION

SALES

product_key
product_name
category
brand
color
supplier_name

PRODUCT

time_key

product_key

location_key

units_sold

amount
{measures

σregion=“Europe”

πproduct_key,category

Another Example

82

Fact table

Order

OrderNo
OrderType
OrderNotes

Customer

CustomerNo
CustomerName
CustomerAddress
City

Salesperson

SalespersonID
SalespersonName
City
Quota

ProdNo
ProdName
ProdDescr
Category
CategoryDescr
UnitPrice
QOH

City

CityName
State
Country

Date

DateKey
Date
Month
Year

OrderNo
SalespersonID
CustomerNo
ProdNo
DateKey
CityName
Quantity
TotalPrice

Product

Fact constellation

• Multiple fact tables that
share common
dimension tables

– Example: Delivery and
Sales fact tables share
dimension tables Time &
Product

83

Delivery

Time Product

CustomerStore

Sales

Supplier

Snowflake Schema: represents dimensional
hierarchy by normalization

84

Fact table

OrderNo
SalespersonID
CustomerNo
DateKey
CityName
ProdNo
Quantity
TotalPrice

Order

OrderNo
OrderType
OrderNotes

Customer

CustomerNo
CustomerName
CustomerAddress
City

Salesperson

SalespersonID
SalespesonName
City
Quota

Product

ProdNo
ProdName
ProdDescr
CategoryID
UnitPrice
QOH

Category

CategoryID
CategoryDescr

City

CityName
State

State

StateName
Country

Date

DateKey
Date
Week
Month

Month

Month
Year

Year

Year

Week
Year

Multidimensional Modeling Stages
(adapted from https://www.kimballgroup.com/)

Gather Business Requirements
and Data Realities

Determine the grain of the
data

Choose your dimensions

Choose your facts

Gather Business Requirements and
Data Realities

• Study the underlying business processes

– Understand their objectives based on key
performance indicators (KPIs), compelling
business issues, decision-making processes, and
supporting analytic need

• Identify available data sources (internal and
external)

– Assess their quality and completeness

Grain

• Establishes exactly what a single fact table row
represents

– Different grains must not be mixed in the same
fact table

• Atomic grain refers to the lowest level at
which data is captured by a given business
process

– Safer to start with the atomic grain in order to
cope with unpredictable query workload

Identify the dimensions

• Dimensions provide the “who, what, where,
when, why, and how” context surrounding a
business process event.

• Dimension tables contain descriptive
attributes used by BI applications for filtering
and grouping the facts.

Identify the facts

• A single fact table row has a one-to-one
relationship to a measurement event as
described by the fact table’s grain.

• Facts contain measurements that result from a
business process event.

• Within a fact table, only facts consistent with the
declared grain are allowed.

Indexing Techniques

• Exploiting indexes to reduce scanning of data
is of crucial importance

• ROLAP

– Bitmap Indexes

– Join Indexes

• MOLAP

– Array representation

90

Bitmap Index Example

91

Cust Region Rating

C2

C3

C4

C5

C6

C1

C7

Base Table

N

S

W

W

S

W

N

H

M

L

H

L

L

H

RowID

Region Index

2

3

4

5

6

1

7

N S WE

1 0 0 0

0 0 0 1

0 1 0 0

0 0 0 1

0 1 0 0

1 0 0 0

0 0 0 1

Bitmap Index Example

92

Cust Region Rating

C2

C3

C4

C5

C6

C1

C7

Base Table

N

S

W

W

S

W

N

H

M

L

H

L

L

H

RowID

Region Index

2

3

4

5

6

1

7

N S WE

1 0 0 0

0 0 0 1

0 1 0 0

0 0 0 1

0 1 0 0

1 0 0 0

0 0 0 1

Bitmap encodes position of
customer records in the
base table (rows 1,7) that
reside in the North Region

Bitmap Index Example

93

Cust Region Rating

C2

C3

C4

C5

C6

C1

C7

RowID H

Rating Index

2

3

4

5

6

1

7

Base Table

N

S

W

W

S

W

N

H

M

L

H

L

L

H

M LRowID

Region Index

2

3

4

5

6

1

7

N S WE

1 0 0 0

0 0 0 1

0 1 0 0

0 0 0 1

0 1 0 0

1 0 0 0

0 0 0 1

1 0 0

0 1 0

0 0 1

1 0 0

1 0 0

0 0 1

0 0 1

Bitmap Index Example

94

Cust Region Rating

C2

C3

C4

C5

C6

C1

C7

RowID H

Rating Index

2

3

4

5

6

1

7

Base Table

N

S

W

W

S

W

N

H

M

L

H

L

L

H

M LRowID

Region Index

2

3

4

5

6

1

7

N S WE

1 0 0 0

0 0 0 1

0 1 0 0

0 0 0 1

0 1 0 0

1 0 0 0

0 0 0 1

1 0 0

0 1 0

0 0 1

1 0 0

1 0 0

0 0 1

0 0 1

Customers where Region = W and Rating = L

0011010 AND 0010110=0010010 (rows 3,6)

Bit Map Index Example 2

95

Cust Region Rating

C2

C3

C4

C5

C6

C1

C7

Base Table

N

S

W

W

S

W

N

H

M

L

H

L

L

H

RowID

Region Index

2

3

4

5

6

1

7

N S WE

1 0 0 0

0 0 0 1

0 1 0 0

0 0 0 1

0 1 0 0

1 0 0 0

0 0 0 1

How many customers in W region?

Bitmap Index

• An alternative representation of RID-list
• Comparison, join and aggregation operations are

reduced to bit arithmetic
• Especially advantageous for low-cardinality

domains
– Significant reduction in space and I/O (30:1)
– Have been adapted for higher cardinality domains
– Compression (e.g., run-length encoding) exploited

• Products: Model 204, Redbrick, IQ (Sybase),
Oracle, etc

96

Join Index

• Traditional index maps the value in a column
to a list of rows with that value

• Join index maintains relationships between
attribute value of a dimension and the
matching rows in the fact table

• Join index may span multiple dimensions
(composite join index)

97

Example: Join Indexes

98

sale prodId storeId date amt

p1 c1 1 12

p2 c1 1 11

p1 c3 1 50

p2 c2 1 8

p1 c1 2 44

p1 c2 2 4

• “Combine” SALE, PRODUCT relations

product id name price

p1 bolt 10

p2 nut 5

joinTb prodId name price storeId date amt

p1 bolt 10 c1 1 12

p2 nut 5 c1 1 11

p1 bolt 10 c3 1 50

p2 nut 5 c2 1 8

p1 bolt 10 c1 2 44

p1 bolt 10 c2 2 4

Join Indexes

99

product id name price jIndex

p1 bolt 10 r1,r3,r5,r6

p2 nut 5 r2,r4

sale rId prodId storeId date amt

r1 p1 c1 1 12

r2 p2 c1 1 11

r3 p1 c3 1 50

r4 p2 c2 1 8

r5 p1 c1 2 44

r6 p1 c2 2 4

join index

Example: Compute total sales in
AFRICA

time_key
day
day_of_the_week
month
quarter
year

TIME

location_key
store
street_address
city
state
country
region

LOCATION

SALES

product_key
product_name
category
brand
color
supplier_name

PRODUCT

time_key

product_key

location_key

units_sold

amount

SELECT SUM(sales.amount)
FROM sales, location
WHERE sales.location_key=location.location_key
AND location.region=“AFRICA”

Join-Index in the Star Schema

• Join index relates the values of
the dimensions of a star
schema to rows in the fact
table.

– a join index on region
maintains for each distinct
region a list of ROW-IDs of
the tuples recording the sales
in the region

• Join indices can be
implemented as bitmap-
indexes (next slides)

101

R102

R117

R118

R124

SALES

region = Africa
region = America
region = Asia
region = Europe

LOCATION

1

1

1

1

Join Index on Location.Region
implemented as bitmap index

time_key product_key location_key units amount

T1 P44 L4 1 12

T2 P157 L4 3 180

T2 P6 L1 14 2560

T3 P25 L3 1 2

T3 P157 L1 1 60

Africa Asia Europe America

0 0 0 1

0 0 0 1

1 0 0 0

0 0 1 0

1 0 0 0

Fact Table Sales Bitmaps for Location.Region

Assuming L1 refers to a store location in Africa, L2 to a store location in Asia etc
This information is stored in the dimension table Location

In SQL

• Join index implemented as bitmap index:
CREATE BITMAP INDEX loc_sales_bit
ON sales(location.region)
FROM sales, location
WHERE sales.loc_location_key = location.location_key;

• The following query uses the index to avoid
computing the join
SELECT SUM(sales.amount)
FROM sales,location
WHERE sales.location_key=location.location_key
AND location.region=“AFRICA”

103

THE DATA CUBE

Aggregation
(on a single group via filtering)

105

sale prodId storeId day amt

p1 s1 1 12

p2 s1 1 11

p1 s3 1 50

p2 s2 1 8

p1 s1 2 44

p1 s2 2 4

• Sum up amounts for day 1

• In SQL: SELECT sum(amt)

FROM SALE

WHERE day = 1

81

Assume following fact table:

Group by & Aggregation

106

sale prodId storeId day amt

p1 s1 1 12

p2 s1 1 11

p1 s3 1 50

p2 s2 1 8

p1 s1 2 44

p1 s2 2 4

• Sum up amounts by day

SELECT day, sum(amt) FROM SALE

GROUP BY day

ans day sum

1 81

2 48

Common operations

107

sale prodId storeId day amt

p1 c1 1 12

p2 c1 1 11

p1 c3 1 50

p2 c2 1 8

p1 c1 2 44

p1 c2 2 4

• Sum up amounts by day, product

• In SQL: SELECT prodid,day,sum(amt) FROM SALE

GROUP BY prodId, day

sale prodId day amt

p1 1 62

p2 1 19

p1 2 48

drill-down

rollup

Recall: Star Schema Example 1

time_key
day
day_of_the_week
month
quarter
year

TIME

location_key
store
street_address
city
state
country
region

LOCATION

SALES

product_key
product_name
category
brand
color
supplier_name

PRODUCT

time_key

product_key

location_key

units_sold

amount
{

Compute volume of sales
per product_key and store

110

Store Product_key sum(amount)
1 1 454
1 4 925
2 1 468
2 2 800
3 1 296
3 3 240
4 1 652
4 3 540
4 4 745

Sales
Product_key

1 2 3 4 ALL

S
to

re

1 454 - - 925 1379

2 468 800 - - 1268

3 296 - 240 - 536

4 652 - 540 745 1937

SQL: SELECT LOCATION.store, SALES.product_key, SUM (amount)

FROM SALES, LOCATION

WHERE SALES.location_key=LOCATION.location_key

GROUP BY SALES.product_key, LOCATION.store

Multiple Simultaneous Aggregates

Sales
Product_key

1 2 3 4 ALL

S
to

re

1 454 - - 925 1379

2 468 800 - - 1268

3 296 - 240 - 536

4 652 - 540 745 1937

ALL 1870 800 780 1670 5120

111

Cross-Tabulation (products/store)

Sub-totals per store

Sub-totals per product_key
Total sales

How many queries
to obtain this result?

Multiple Simultaneous Aggregates

Sales
Product_key

1 2 3 4 ALL

S
to

re

1 454 - - 925 1379

2 468 800 - - 1268

3 296 - 240 - 536

4 652 - 540 745 1937

ALL 1870 800 780 1670 5120

 112

Cross-Tabulation (products/store)

Aggregate sales
group by (store,product_key)

Multiple Simultaneous Aggregates

Sales
Product_key

1 2 3 4 ALL

S
to

re

1 454 - - 925 1379

2 468 800 - - 1268

3 296 - 240 - 536

4 652 - 540 745 1937

ALL 1870 800 780 1670 5120

 113

Cross-Tabulation (products/store)

Aggregate sales
group by (store)

Multiple Simultaneous Aggregates

Sales
Product_key

1 2 3 4 ALL

S
to

re

1 454 - - 925 1379

2 468 800 - - 1268

3 296 - 240 - 536

4 652 - 540 745 1937

ALL 1870 800 780 1670 5120

114

Cross-Tabulation (products/store)

Aggregate sales
group by (product_key)

Multiple Simultaneous Aggregates

Sales
Product_key

1 2 3 4 ALL

S
to

re

1 454 - - 925 1379

2 468 800 - - 1268

3 296 - 240 - 536

4 652 - 540 745 1937

ALL 1870 800 780 1670 5120

 115

Cross-Tabulation (products/store)

What is this?

Multiple Simultaneous Aggregates

Sales
Product_key

1 2 3 4 ALL

S
to

re

1 454 - - 925 1379

2 468 800 - - 1268

3 296 - 240 - 536

4 652 - 540 745 1937

ALL 1870 800 780 1670 5120

116

Cross-Tabulation (products/store)

Sub-totals per store

Sub-totals per product_key

4 Group-bys here:
(store,product_key)
(store)
(product_key)
()

Need to write 4 queries!!!

Total sales

Multiple Simultaneous Aggregates:
Optimizations?

Sales
Product_key

1 2 3 4 ALL

S
to

re

1 454 - - 925 1379

2 468 800 - - 1268

3 296 - 240 - 536

4 652 - 540 745 1937

ALL 1870 800 780 1670 5120

 117

Cross-Tabulation (products/store)

4 Group-bys here:
(store,product_key)
(store)
(product_key)
()

product_key store

none

product_key, store

Fact Table (raw data)

The Data Cube Operator
(Gray et al)

• All previous aggregates in a single query:

118

SELECT LOCATION.store, SALES.product_key, SUM (amount)

FROM SALES, LOCATION

WHERE SALES.location_key=LOCATION.location_key

GROUP BY SALES.product_key, LOCATION.store WITH CUBE

Challenge: Optimize Cube Computation

Relational View of Data Cube

119

Store Product_key sum(amount)
1 1 454
1 4 925
2 1 468
2 2 800
3 1 296
3 3 240
4 1 652
4 3 540
4 4 745
1 ALL 1379
2 ALL 1268
3 ALL 536
4 ALL 1937
ALL 1 1870
ALL 2 800
ALL 3 780
ALL 4 1670
ALL ALL 5120

Sales
Product

1 2 3 4 ALL

S
to

re

1 454 - - 925 1379

2 468 800 - - 1268

3 296 - 240 - 536

4 652 - 540 745 1937

ALL 1870 800 780 1670 5120

SELECT LOCATION.store, SALES.product_key, SUM (amount)

FROM SALES, LOCATION

WHERE SALES.location_key=LOCATION.location_key

GROUP BY SALES.product_key, LOCATION.store

WITH CUBE

Quiz

• SALES(customer,sales_person,store,product,amt)

• Assume the SUM() aggregate function

• What is the meaning of the following data cube
records?

(ALL,’JOHN’,ALL,ALL,5000)

(‘NICK’,ALL,ALL,’BEER’,250)

(ALL,ALL,ALL,’MILK’,70000)

(ALL,ALL,ALL,ALL,250000)

120

121

Group by (Product, Quarter, Region)
SUM() aggregate function

Quarter

R
eg

io
n

1.2M

DVD

VCR
PC

1Qtr 2Qtr 3Qtr 4Qtr

America

Europe

Asia

Total sales of VCRs in
the 4th Qtr in Europe

122

Group by (Product, Quarter, Region)

Quarter

R
eg

io
n

DVD

VCR
PC

1Qtr 2Qtr 3Qtr 4Qtr

America

Europe

Asia

Total sales of PCs in
the 4th Qtr in Asia

4M

123

Group by (Product, Quarter, Region)

Quarter

R
eg

io
n

DVD

VCR
PC

1Qtr 2Qtr 3Qtr 4Qtr

America

Europe

Asia

Total sales of DVDs in the
1st Qtr in America

2.2M

126

Data Cube: Multidimensional View

Total annual sales
of DVDs in America

Quarter

R
eg

io
nALL

ALL
DVD

VCR
PC

1Qtr 2Qtr 3Qtr 4Qtr

America

Europe

Asia

ALL

How are aggregates computed?

1. Bring all records with same values in the
groupping attributes together

2. Aggregate their measures

• (1) is done via Hashing / Sorting

• (2) depends on the type of function used

– Simple calculations for max, sum, count etc

– Harder for median

127

Example: Sum sales/prodId ?

128

sale prodId storeId date amt

p1 s1 1 12

p2 s1 1 11

p1 s3 1 50

p2 s2 1 8

p1 s1 2 44

p1 s2 2 4

Raw data (fact table)

Step 1: Sort tuples by prodId

sale prodId storeId date amt

p1 s1 1 12

p1 s1 2 44

p1 s2 2 4

p1 s3 1 50

p2 s1 1 11

p2 s2 1 8

129

sale prodId storeId date amt

p1 s1 1 12

p2 s1 1 11

p1 s3 1 50

p2 s2 1 8

p1 s1 2 44

p1 s2 2 4

Raw data (fact table)

Sort(prodId)

Step 2: Aggregate records (sum amt)

sale prodId storeId date amt

p1 s1 1 12

p1 s1 2 44

p1 s2 2 4

p1 s3 1 50

p2 s1 1 11

p2 s2 1 8

130

ans prodId sum

p1 110

p2 19

Sorted Raw data

Aggregate

Sales for prodId=1

More on aggregate

• Assumed SUM() function

• How much space needed?

• How about AVG()?

• How about MEDIAN()?

sale prodId storeId date amt

p1 s1 1 12

p1 s1 2 44

p1 s2 2 4

p1 s3 1 50

p2 s1 1 11

p2 s2 1 8

131

Aggregate Computation

• Certain functions
(SUM,MIN,MAX,COUNT,AVERAGE, etc) require
small (bounded) space for storing their state
and may be computed on the fly, while
executing the merging phase of the 2-phase
sort algorithm.

• Cost = 3 * B(R) , assuming M2 ≥ B(R) > M

132

Hashing

key → h(key)

133

<key>

.

.

.

Buckets
(typically 1
disk block)

Example: 2 records/bucket

INSERT:

h(a) = 1

h(b) = 2

h(c) = 1

h(d) = 0

134

0

1

2

3

d

a

c

b

h(e) = 1

e

How does this work for aggregates?

135

Hash on prodId

h(prodId) =
prodId mod 2

Two buckets

sale prodId storeId date amt

p1 s1 1 12

p1 s3 1 50

p1 s1 2 44

p1 s2 2 4

p3 s5 1 7

p7 s2 2 1

sale prodId storeId date amt

p2 s1 1 11

p2 s2 1 8

Not the best hash function

Possibly keep
records sorted
within bucket

Naïve Data Cube Computation
• Fact table:

• Compute: SUM(amt) GROUP BY prodId,storeId WITH
CUBE
– 4 group bys contained in this Data Cube:

sale prodId storeId amt

p1 s1 12

p2 s1 11

p1 s3 50

p2 s2 8

p1 s1 44

p1 s2 4

136

prodId storeId sum(amt)

p1 s1 56

p1 s2 4

p1 s3 50

p2 s1 11

p2 s2 8

prodId amt

p1 110

p2 19

storeId amt

s1 67

s2 12

s3 50

amt

129

Full Data Cube
(from previous example)

137

prodId storeId sum(amt)
p1 s1 56
p1 s2 4
p1 s3 50
p2 s1 11
p2 s2 8
p1 ALL 110
p2 ALL 19
ALL s1 67
ALL s2 12
ALL s3 50
ALL ALL 129

How much does it cost to compute?

• Assume B(SALES)=1 Million Blocks, larger than
main memory

• Our (brute force) strategy: compute each
group by indepedently

– Compute GROUP BY prodId,storeId

– Compute GROUP BY prodId

– Compute GROUP BY storeId

– Compute GROUP BY none (=total amt)

138

First Group By: prodId,storeId

• In SQL

SELECT prodId,storeId,sum(amt)

FROM SALES

GROUP BY prodId,storeId

• Use sorting: 3*B(SALES) = 3M I/O

139

Second Group By: prodId

• In SQL

SELECT prodId,sum(amt)

FROM SALES

GROUP BY prodId

• Use sorting: 3*B(SALES) = 3M I/O (same)

140

Third Group By: storeId

• In SQL

SELECT storeId,sum(amt)

FROM SALES

GROUP BY storeId

• Use sorting: 3*B(SALES) = 3M I/O (same)

141

Group By (none) = sum(amt)

• SQL:

SELECT sum(amt)

FROM SALES

• Cost ?

142

Recap

• Group By prodId,storeId : 3M I/Os

• Group By prodId : 3M I/Os

• Group By storeId : 3M I/Os

• Group By none : 1M I/Os
– Compute aggregate function over all records, no

sorting necessary

• Total Cost for the Data Cube: 10M I/Os
– Is this a lot?

143

Practice Problem

• Rotation speed 7200rpm

• 128 sectors/track

• 4096 bytes/sector

• 4 sectors/block (16KB page size)

• Sequential I/O: ignore SEEKTIME, gaps, etc

144

Sustained disk speed

• 1 full rotation

– takes 60/7200=8.33ms

– retrieves 1 track = 128 sectors = 32 pages (blocks)

• 10 Million blocks in

8.33/1000 * 10M/32 = 43.5 minutes

• Can we do better?

145

Share sort orders

prodId storeId date amt

p1 s1 1 12

p1 s1 2 44

p1 s2 2 4

p1 s3 1 50

p2 s1 1 11

p2 s2 1 8

If sorted on (prodId,storeId)

prodId storeId date amt

p1 s1 1 12

p1 s1 2 44

p1 s2 2 4

p1 s3 1 50

p2 s1 1 11

p2 s2 1 8

Then, also sorted on (prodId)

Thus, no need to sort SALES twice!

Two group-bys with a single sort on (prodId, storeId)

147

prodId storeId date amt

p1 s1 1 12

p1 s1 2 44

p1 s2 2 4

p1 s3 1 50

p2 s1 1 11

p2 s2 1 8

Output of 2-phase sort algorithm
(one row at a time)

SUM1 SUM2

12 12

56 56

4 60

50 110

11 11

8 19

Maintain 2 variables output

p1,s1,56

p1,s2,4
p1,s3,50

p2,s1,11

p2,s2,8

p1,110

p2,19

- SUM1 is used for group-by(prodId,storeId), SUM2 for group-by(prodId)

-Each time we see a new (prodId,storeId) combination we report the previous

pair and SUM1 value and initialize SUM1 to the new amt

- Similar logic for SUM2

- Report last combination at EOT

+

EOT (End-Of-Table)

Share sort orders for multiple group bys

• Sort SALES on prodId,storeId
– At the merging phase compute

both group by prodId and
prodId,storeId

– Also compute group by none

• Then compute group by storeId
by sorting SALES on storeId

• Cost = 3B(SALES) + 3B(SALES) =
6M I/Os
– Compared to 10M I/Os
– 40% savings

148

prodId storeId date amt

p1 s1 1 12

p1 s1 2 44

p1 s2 2 4

p1 s3 1 50

p2 s1 1 11

p2 s2 1 8

Can we do better?

• Sort SALES on prodId,storeId
– At the merging phase compute

both group by (prodId,storeId))
and group by (prodId)

– Also compute group by none at
the same time

• Compute group by (storeId) by
sorting the result of group by
(prodId,storeId) on storeId
– Notice that by construction

B(gb(prodId,storeId)) ≤ B(SALES)
• Each tuple in gb(prodId,storeId) is

produced by one or more tuples
in SALES

149

prodId storeId sum(amt)

p1 s1 56

p1 s2 4

p1 s3 50

p2 s1 11

p2 s2 8

storeId sum(amt)

s1 67 p1

s2 12

s3 50

gb(prodId,storeId)

gb(storeId)

Cost = 3*B(SALES) + 3*B(gb(prodId,storeId))

3D Data Cube Lattice

• Model dependencies among the aggregates
(independently of the method of computation, e.g.
by sorting or otherwise)

150

most detailed “group by”

can be computed from grouby
(product,store,quarter) by
summing-up all quarterly sales

product,store,quarter

product storequarter

none

store,quarterproduct,quarter product, store

gb(product,store) is equivalent
to gb(store,product)

Discussed optimization (sharing sort
orders) on the 3D Data Cube

• Sort SALES on product,store,quarter (also get
gb product,store, gb product and gb none)

• Sort SALES on product,quarter

• Sort SALES on store,quarter (also get gb store)

• Sort SALES on quarter

151

product,store,quarter

product storequarter

none

store,quarterproduct,quarter product, store

Cost of new plan
4*3M=12M I/Os

(45% savings)

Compute from “smallest parent”
vs

“sharing sort orders”

• Consider computation of gb product, quarter

• Previously: Sort SALES on product,quarter

• Alternative: read and sort previously computed gb
product,store,quarter
– This gb will be smaller than SALES

• It may even fit in memory (one-pass sort)

– This gb is partially sorted (common prefix)

152

product,store,quarter

product storequarter

none

store,quarterproduct,quarter product, store

ESTIMATING THE DATA CUBE SIZE

154

How many group bys in the Data Cube?

• N-dimensional data, no hierarchies

2N group bys
product,store,quarter

product storequarter

none

store,quarterproduct,quarter product, store

Order of dimensions doesn’t
matter in the notation

155

2D Data Cube lattice

• 2-dimensional data (product, store)

22 =4 group bys

product store

none

product, store

Let’s add a simple hierarchy

• Assume that products are organized into
categories

• When we group the sales (facts) we have the
option to use this knowledge

– Aggregate sales per category

– Aggregate sales per category and store

– But it does not make sense to aggregate sales per
product and category (WHY?)

Compare these two results

product category sum(amt)

p1 cat1 110

p2 cat1 19

p3 cat3 240

p4 cat2 255

p5 cat1 75

product sum(amt) sum(amt)

p1 110 56

p2 19 4

p3 240 50

p4 255 11

p5 75 8

Notice that there is no difference in the
computed aggregates, since prodId→category

158

2D Data Cube lattice with simple hierarchy

product category

none

product, store

store

category, store

160

2D Data Cube lattice with 2 separate
hierarchies on the product dimension

product category

none

product, store

store

category, store

brand

brand, store brand, category

store, brand, category

Notice lack of gb on (product,store,brand,category) ….

161

#of group bys when there is a single
hierarchy per dimension

• N dimensions

• Dimension di has a hierachy of length Li

• Location: store→city→country
LLocation =3

– If no hierarchy, then Li =1

• Number of group bys = (1+L1) (1+L2)… (1+LN)

– No need to memorize formulas! Seek to
understand their derivation instead (next slide)

162

How is the formula derived

• Consider Location dimension with hierarchy
– store→city→country (i.e. LLocation =3)

• In a group by (aggregate) query I may
– Not consider location at all (e.g. total sales per product)

• Another way to think about this is that +1 stands for ALL

– Consider location information at the store-level
• (e.g. total sales per customer, store)

– Consider location information at the city-level
• (e.g. total sales per product, city)

– Consider location information at the country-level
• (e.g. total sales per sales_person, country)

• There are (1+3) choices regarding that dimension independently on
what other dimensions I select in a gb
– Thus, (1+L1) (1+L2)… (1+LN) possible combinations of dimensions in a query

163

Example

• 8 dimensions (typical)

• 3-level hierarchy/dimension

• Number of group bys = 48=65536 group bys!

• BUT, how many tuples in the cube?

– Depends on data distribution

– Worst case is uniform

customer
p

ro
d

u
ct ?

164

Upper bound on the size of each group by

• Assume relation R (fact table) has T(R) tuples

• Each dimension has cardinality ti

• Size of group by (d1, d2,… dk) is upper bounded
by both
– t1* t2 *..* tk

– T(R) (since records in the group by are produced
by combination of attribute values that appear in
existing facts)

Example gb(customer,product)

• Assume I have 1000 customers and 50 products
• Assume uniform distribution (customers buy

products with same probability)
– There can be 1000 x 50 combinations of pairs

(customer, product) in the fact table (sales)
– Thus, 50000 records in gb(customer,product) (at most)

• Each record in this gb is derived from a real sale
– There can not be an aggregated record if there are not

base records in the fact table to support it

• Thus, there can not be more records in the gb
than the number of actual sales in the fact table

165

166

Example

• Consider R(product,store,quarter,amt) with 1M
records

• 10,000 products, 30 stores, 4 quarters
– Let G(x,y) denote the maximum number of records in group by x,y
– G(product,store,quarter)=min(1M,10000*30*4)=1,000,000
– G(product,store)=min(1M,10000*30)=300,000
– G(product,quarter)=min(1M,10000*4)=40,000
– G(store,quarter)=min(1M,30*4)=120
– G(product)=min(1M,10000)=10,000
– G(store)=min(1M,30)=30
– G(quarter)=min(1M,4)=4
– G(none)=1

– Maximum cube size = 1,350,155 records

167

Quick and Dirty Upper Bound

MAX-SIZE<=10001*31*5 = 1550155

(1+t1)*(1+t2)*(1+t3)

(compare with 1350155)

This upper bound ignores size of fact table

WHY ??

168

Data Cube: Multidimensional View

Total annual sales
of DVDs in America

Quarter

R
eg

io
nALL

ALL
DVD

VCR
PC

1Qtr 2Qtr 3Qtr 4Qtr

America

Europe

Asia

ALL

169

Extended Cube with Hierarchies

• Products are organized in 50 categories

• Additional group bys in extended cube
– +G(category,store,quarter)=min(1M,50*30*4)=6,000

– +G(category,store)=min(1M,50*30)=1,500

– +G(category,quarter)=min(1M,50*4)=200

– +G(category)=min(1M,50)=50

– Maximum ext-cube size = 1,357,905 records

170

Correlated Attributes

• In practice there is some correlation between
different dimensions

• Example 1: each store sells up to 1,000
products (specialized stores)

• Example 2: some products are not sold
through-out the year

– Ice cream, watermelon, snow-chains

171

Solve Example-1

• R(product,store,customer) with 1M records

• 1,000 products, 20 stores, 100 customers

• Each customer buys from one store (closest)
FD: customer → store

G(store,customer)=min(1M,1*100)=100

G(product,store,customer)=min(1M,1000*1*100)

=100,000

172

More realistic example

• 100,000 parts

• 20,000 customers

• 2,000 suppliers

• 5 years (=365 *5 days)

• 100 stores

• 1,000 sales persons

• Max-cube size = 738,855,253,876,896,582,426
(tuples)

173

Catch With Data Cube

• …. toooooo many aggregates

• So Data Cube is large!

– And takes time to compute…

174

What to Materialize?

• Data Cube extremely large for many
applications

• Store in warehouse results useful for
common queries

• Example:
– Total sales per product, store
– Max sales per product
– Avg sales per store,day
– …

175

Materialization Factors

• Type/frequency of queries

• Query response time

• Storage cost

• Update cost

MATERIALIZED VIEWS

177

Preliminaries

• We will consider solutions that
selectively materialize some of the
groups by in the Data Cube

• We will be referring to the group bys as
“views”

• When a group by is materialized we will
call it “materialized view”

178

Views in OLTP databases

• Views are derived tables
– Instance of view is generated on demand by

executing the view query:
create view V as
select ename,age, address,telno
from employee
where employee.dept = “Sales”

• Views have many uses
– Shortcuts for complex queries
– Logical-physical independence
– Hide details from the end-user
– Integration systems

Employee(ename, age, dept, address, telno, salary)

• Sometimes, we may want to compute and store the
content of the view in the database

– Such Views are called materialized

– Queries on the materialized view instance will be much
faster

– Materialized views are now supported by some vendors

• Otherwise we will be storing their data in regular tables

• This is our extended architecture:
Data Warehouse=

detailed records (star schema) + aggregates (materialized views)

Materialized Views (OLAP)

Used to speed up certain queries of interest

180

Materialized views in OLAP

• Contain derived data
– Can be computed from the star schema

• Populated while updating the data warehouse
– Usually they contain results of complex aggregate

queries

• Several interesting problems:
– How to select which views to materialize?

– How to compute/refresh these views?

– How to store these views in the relational schema?

– How to use these views at query time?

181

View selection problem

• Set up as an optimization problem
– VDC = set of all group bys (=views) in the Data Cube

– Give a constraint
• Usually space bound B, e.g. materialize up to 100GB from the CUBE

• What else?

– Give an objective
• Minimize cost of answering set of (frequent/interesting) queries Q

• View selection problem (with space constraint):

• Problem is NP-hard

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒
V⊆VDC 𝐶𝑜𝑠𝑡(𝑄)

such that Size(V) ≤ B

182

View Selection Problem: Heuristic

• Use some notion of benefit per view based on the
dependencies depicted in the Data Cube lattice

product,store,quarter

product storequarter

none

store,quarterproduct,quarter product, store

Queries related to these group
bys can be computed from a
materialized view on group by
(product,store), independently
of the method of computation
(sort, hash, etc)

group by(product,store)
product store sum(amt)

p1 s1 56

p1 s2 4

p1 s3 50

p2 s1 11

p2 s2 8

183

A simple greedy algorithm

• Utilize a benefit criterion
– Assume V is the views we have chosen so far
– Let v be a candidate view not in V
– Benefit(v) = cost of answering queries using V – cost of answering

queries using V U {v}
• Measures the reduction in query answering cost if this view is materialized
• Benefit(v) ≥ 0

• Greedy algorithm
– At each step, pick the view that has the maximum benefit

• Re-compute benefits of remaining views
• Update B=B-sizeof(v)
• Remove views that do not fit in new B

– Stop if no more space available or no view fits in the remaining space

184

Simple Example

• Star schema with three dimensions

– Product (p), Store location (s), Quarter (q)

• Assume the following queries Q = {(p,s),(s,q),
(p,q), (p),(s)}

– Notation: (s,q) is a query on group by
(store,quarter)

(s,q): SELECT store, quarter, sum(amt)
FROM SALES
GROUP BY store, quarter

185

Query computation cost

• For ease of presentation, let us assume that
each query can be computed from the fact
table SALES with the same cost 100 I/O

(s,q): SELECT store, quarter, sum(amt)
FROM SALES
GROUP BY store, quarter

Cost = 100 I/O

186

Data Cube sizes

• Assume each group by in the Data Cube
requires the depicted number of blocks, when
stored as a materialized view

product,store,quarter

product storequarter

none

store,quarterproduct,quarter product, store

1

31 4

25 13 60

80

Size Vproduct,store=60 blocks

187

Assumption (for this simple example)

• A group by query is computable from an
ancestor materialized view V with Cost=size(V)

product,store,quarter

product storequarter

none

store,quarterproduct,quarter product, store

1

31 4

25 13 60

80

Alternative computation for (s,q):

SELECT store, quarter, sum(amt)
FROM Vproduct,store,quarter

GROUP BY store, quarter
Cost = 80 I/O

(s,q): SELECT store, quarter, sum(amt)
FROM SALES
GROUP BY store, quarter

Cost = 100 I/O

Computation for (s,q) from Sales:

188

View Selection Problem

• Minimize the cost of answering the depicted
queries when available space B=100

product,store,quarter

product storequarter

none

store,quarterproduct,quarter product, store

1

31 4

25 13 60

80

190

Initial Benefits
(no view is materialized yet)

Group By (Materialized

View)

Benefit for

Q={(p,s),(s,q), (p,q), (p),(s)}

p,s,q (100-80)+(100-80)+(100-

80)+(100-80)+(100-80)=100

p,q 2*(100-25)=150

s,q 2*(100-13)=174

p,s 3*(100-60)=120

p 100-4=96

s 100-3=97

q 0

None 0

191

Step-1

• Materialize view Vs,q

• Update space budget B = 100-13 = 87

• Recompute benefits (next slide)

192

Updated Benefits

Group By (Materialized

View)

Benefit for

Q={(p,s),(s,q), (p,q), (p),(s)}

p,s,q 3*(100-80)=60

p,q (100-25)+(100-25)=150

s,q MATERIALIZED

p,s 2*(100-60)+0=80 (careful)

p 100-4=96

s 13-3=10 (careful)

q 0

None 0

Space=87
V={(s,q)}

193

Step-2

• Materialize view Vp,q

• Update space budget B = 87-25 = 62

• Update benefits (next slide)

194

Updated Benefits
Space=62
V={(s,q),(p,q)}

Group By (Materialized

View)

Benefit for

Q={(p,s),(s,q), (p,q), (p),(s)}

p,s,q Not-enough-space-left

p,q MATERIALIZED

s,q MATERIALIZED

p,s (100-60)=40 (careful)

p 25-4 =21 (careful)

s 13-3=10 (careful)

q 0

None 0

195

Step-3

• Materialize view Vp,s

• Update space budget B = 62-60 = 2

• Update benefits

196

Updated Benefits
Space=2
V={(s,q),(p,q),(p,s)}

Group By (Materialized

View)

Benefit for

Q={(p,s),(s,q), (p,q), (p),(s)}

p,s,q Not-enough-space-left

p,q MATERIALIZED

s,q MATERIALIZED

p,s MATERIALIZED

p Not-enough-space-left

s Not-enough-space-left

q 0

None 0

197

Greedy algorithm selection

• Final choice V={(s,q),(p,q),(p,s)}

– Utilize 25+13+69=98 blocks out of 100 available

product,store,quarter

product storequarter

none

store,quarterproduct,quarter product, store

1

31 4

25 13 60

80

198

Query costs for this selection

• Q = {(p,s),(s,q),
(p,q), (p),(s)}

– Cost(p,s) = 60

– Cost(s,q) = 13

– Cost(p,q) = 25

– Cost(p) = 25

– Cost(s) = ?

product,store,quarter

product storequarter

none

store,quarterproduct,quarter product, store

1

31 4

25 13 60

80

199

Benefit of using Materialized Views

Using the suggested
Materialized Views

Cost(p,s) = 60

Cost(s,q) = 13

Cost(p,q) = 25

Cost(p) = 25

Cost(s) = 13

Total Query Cost = 136

Querying the
Fact Table

Cost(p,s) = 100

Cost(s,q) = 100

Cost(p,q) = 100

Cost(p) = 100

Cost(s) = 100

Total QueryCost = 500

Q = {(p,s),(s,q), (p,q), (p),(s)}

202

The View Update problem

Store Customer Price

S1 C2 $700

S1 C3 $240

S2 C1 $190

S2 C3 $450

Materialized View: Vsc

Store Customer Product Price

S1 C2 P2 $55

S1 C2 P3 $15

S1 C1 P1 $50

S2 C1 P3 $20

Table Deltas:
(new records to be appended in the fact table)

How to update this view?

New sale:

203

Choice 1:
Re-compute from fact table

• First update fact table (append new facts)

• Then re-execute SQL query to obtain view

In SQL:

//load new records
insert into Fact select * from Delta
//drop and recreate View
drop Vsc;
create table Vsc(store,customer,price);
//recompute View from scratch
insert into Vsc

select store,customer,sum(price)
from Fact
group by store,customer;

204

Choice-2: Incremental Updates

• Adding delta tuples means

– Step 1: Update sum() from combinations already in the view

– Step 2: Insert sum() with new coordinates for rest

Store Customer Price

S1 C2 $700

S1 C3 $240

S2 C1 $190

S2 C3 $450

Store Customer Product Price

S1 C2 P2 $55

S1 C2 P3 $15

S1 C1 P1 $50

S2 C1 P3 $20

205

Step 1: Increment existing combinations

update Vsc

set Vsc.m=Vsc.m+(select sum(price) from Delta
where Vsc.store=Delta.store and
Vsc.customer=Delta.customer)

where (Vsc.store,Vsc.customer)

in

(select store,customer from Delta);

206

Step 2: Add new combinations

insert into Vsc

select store,customer,sum(price)

from Delta where (store,customer) not in

(select store,customer from Vsc)

group by store,customer;

207

Choice-2: Alternative

• Idea: add delta records to the view, create a new table to hold
updated records, then rename

insert into Vsc
select store,customer,sum(price) from Delta
group by store,customer;

create table Vnew(store,customer,price);
insert into Vnew
select store,customer,sum(price) from Vsc
group by store,customer

drop table Vsc;
rename table Vnew to Vsc;

208

Simple Example

Store Customer Price

S1 C2 $700

S1 C3 $240

S2 C1 $190

S2 C3 $450

S1 C1 $50

S1 C2 $70

S2 C1 $20

After insertion of deltas
Final View

Store Customer Price

S1 C1 $50

S1 C2 $770

S1 C3 $240

S2 C1 $210

S2 C3 $450

Multiple View Update

Fact

delta

Updated
Fact

View
V1

View
V2

Assume V2 descendant of
V1 in the Data Cube
Lattice (e.g. V1 can be
used to compute V2)

Scenario 1: Re-compute views after
finishing updating the Fact table

Fact

delta

Updated
Fact

View
V1

View
V2

re-compute

Scenario 2: Re-compute V1 from Fact,
V2 from V1

Fact

delta

Updated
Fact

View
V1

View
V2

re-compute

Scenario 3: Incrementally update V1
from delta then recompute V2 from V1

Fact

delta

Updated
Fact

View
V1

View
V2

re-compute

update

Scenario 4: Incrementally update both
V1 and V2 from delta

Fact

delta

Updated
Fact

View
V1

View
V2

update

Consider

• More scenarios?

• Now consider the case of 100 views

PHYSICAL REPRESENTATION OF
MATERIALIZED VIEWS IN THE STAR SCHEMA

217

Fact table

Order

OrderNo
OrderDate

Customer

CustomerNo
CustomerName
CustomerAddress
City

Salesperson

SalespersonID
SalespesonName
City
Quota

ProdNo
ProdName
ProdDescr
Category
CategoryDescr
UnitPrice
QOH

City

CityName
State
Country

Date

DateKey
Date
Month
Year

OrderNo
SalespersonID
CustomerNo
ProdNo
DateKey
CityName
Quantity
TotalPrice

Product

Want to create View:
SUM(Quantity), SUM(TotalPrice) per Category, CityName

218

SQL Επερώτηση

Select Category,CityName,SUM(TotalPrice) as Sum_TotalPrice,SUM(Quantity) as
Sum_Quantity
From Fact,Product
Where Fact.ProdNo=Product.ProdNo
Group by Category,CityName

219

Create New Fact Table (= this view)

Aggregated
Fact table for
new View

CityName
State
Country

City

Category
CityName
Sum_Quantity
Sum_TotalPrice

Category
CategoryDescr

Category

What other queries
can you use this view for?

222

Using Materialized Views through
Selection

• A query can use a view through a selection if
– Each selection condition C on each dimension d in the

query logically implies a condition C’ on dimension d
in the view

• Example: A view has sum(sales) by product and
by year for products introduced after 1991
– OK to use for sum(sales) by product for products

introduced after 1992

– CANNOT use for sum(sales) for products introduced
after 1989

223

Using Materialized Views through
Group By (Roll Up)

• The view V may be applicable via roll-up if for
every grouping attribute g of the query Q:

– Q has Group By a1,..,g, an

– V has Group By a1,..,h, an

– Attribute g is higher than h in the attribute hierarchy

– Aggregation functions are distributive (sum, count,
max, etc)

• Example: Compute “sum(sales) by category” from
the view “sum(sales) by product”

225

Using Views

• Need cost-based optimization to decide which view(s) to use
for answering a query

– Consider a query on (category, state) and three materialized
aggregate views on

1. (product, state)

2. (category, city)

3. (category, country)

– (product, state) and (category, city) are candidate materialized views
to answer the query

category,city

product,state

category,country
category,state

query

view

view

view

Σημείωση

• Τα παρακάτω slides είναι εκτός ύλης για το
μάθημα του Σχεδιασμού Βάσεων Δεδομένων

227

Data Cube Storage and Indexing

• Several approaches within the relational world

– Cubetrees, QC-trees, Dwarf, CURE

• Main idea: exploit inherent redundancy of
multidimensional aggregates

228

The Dwarf (sigmod 2002)

• Data-Driven DAG
– Factors out inter-view redundancies
– 100% accurate (no approximation)
– All views are included
– Indexes for free
– Partial materialization possible

• Look at the Data Cube Records
– Common Prefixes

• high in dense areas

– Common Suffixes
• extremely high in sparse areas

229

Redundancy in the Cube (1)

• Common Prefixes

S2,C1,P1,90

S2,C1,P2,50

S2,C1,ALL,140

Mostly in dense areas:

➢ customer C1 buys a
lot of products at
store S2

➢ all these records have
the same prefix: S2,C1

Store Customer Product Price

S1 C2 P2 $70

S1 C3 P1 $40

S2 C1 P1 $90

S2 C1 P2 $50

230

Redundancy in the Cube (2)

• Common Suffices

S2,C1,P1,90

S2,ALL,P1,90

ALL,C1,P1,90

Mostly in sparse areas

C1 only visits S2 and is the
only customer that buys
P1,P2

Store Customer Product Price

S1 C2 P2 $70

S1 C3 P1 $40

S2 C1 P1 $90

S2 C1 P2 $50

231

Dwarf Example

Store Customer Product Price

S1 C2 P2 $70

S1 C3 P1 $40

S2 C1 P1 $90

S2 C1 P2 $50

Customer Level

Store Level

Product Level

$110

$40

$70

C3

P1 $40

(4)

P1 $40 P2 $70
(5)

C2

S1
(1)

(2)

P2 $70
(3)

$140P2 $50

(6)

S2

C1

P1 $90
(7)

C3C2C1
(8)

P2 $120 $250P1 $130
(9)

232

Dwarf Example

Store Customer Product Price

S1 C2 P2 $70

S1 C3 P1 $40

S2 C1 P1 $90

S2 C1 P2 $50
$120P2ALLALL

$130P1ALLALL

Sum(Price)ProductCustomerStore

Group-by Product:

Customer Level

Store Level

Product Level

$110

$40

$70

C3

P1 $40

(4)

P1 $40 P2 $70
(5)

C2

S1
(1)

(2)

P2 $70
(3)

$140P2 $50

(6)

S2

C1

P1 $90
(7)

C3C2C1
(8)

P2 $120 $250P1 $130
(9)

233

Dwarf Example

Store Customer Product Price

S1 C2 P2 $70

S1 C3 P1 $40

S2 C1 P1 $90

S2 C1 P2 $50
$140ALLALLS2

$110ALLALLS1

Sum(Price)ProductCustomerStore

Group-by Store:

Customer Level

Store Level

Product Level

$110

$40

$70

C3

P1 $40

(4)

P1 $40 P2 $70
(5)

C2

S1
(1)

(2)

P2 $70
(3)

$140P2 $50

(6)

S2

C1

P1 $90
(7)

C3C2C1
(8)

P2 $120 $250P1 $130
(9)

