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URL: http://pages.cs.aueb.gr/~kotidis/
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Recent Projects/Student Theses
(http:/ /pages.cs.aueb.gr/~kotidis /index.html)
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and Analysis Techniques for Time-
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2TOXOL — pabnoloka amoteAeopata

To HABNUA ATTOOKOTIEL OTNV UEAETN TEXVIKWV KOL CUCTNMATWYV TA oTtola
XpNoLUomoloUvTaL yla TNV anodoTikr opyavwon, avaiuvon Kal

Slaxeiplon dedopévwv og KEVTPLKA KOl KATAVEUNUEVA TTEPLBAAAOvVTA
HEYAANG KALpOKOLC.

MeTd tnv emtuxn oAokApwaon tou padripatoc, ot doltnTteg Oa eival oe
Bcon va

1) N'vwpilouv kol va XpnNOLUOTIOLOUV TEXVLKEC KOIL CUCTAMATA
Slaxeipnong kat avaAuvong peyaAwv Sedopévwy.

2) Katavoouv Tol TTAEOVEKTAMOTO KoL LELOVEKTAMATA TWV SLoDOPETLKWY
CUCTNUATWV.

3) EmAéyouv kat epappolouv TEXVIKEC Kal alyopiBuouc avaluong yla
ovaduoueVEC edapLoYEC LeyAAwY SeSOUEVWV.



YAkO MaBnuatoc: E-class

Avokowwoelc/epyaoiec/Baboloyiec
Atadpavelec Atale€swv
bakeloc «Eyypoda»

[poalpeTikeC Stadavelec, mapadeiyporta
KwOLKA

ddikehoc «éyypado/BonBNTkOYAKO»
Epyaciec MaBniuatog



BonOnTtka cuyypOoUOATO (tpoatpetixd)

[MPOMTUXLOKEC YVWOELC QIO TNV TIEPLOXN TWV BAoewv
AebopEvwy

Database Systems The Complete Book (H. Garcia-Moling, J. Ullman, J.
Widom)

OepeAlwOELC apXEC ouoTnUATwY Baoswv Asdopévwy, Topoc A (R.
Elmasri, S. B. Navathe)

AvaAvon MeyaAwv Asdopévwy

Mining of Massive Datasets, Jure Leskovec, Anand Rajaraman, Jeff
Ullman, http://www.mmds.org/



Evotntec MaBnuatoc (1,2,3)

Etlcaywyn (onpepvn dtaleén)
XapaKTNPLOTLKA peyaAwv dedopevwy, epapuoyE,
npoPARHaTA Kol EVOELKTIKEG TEXVLKEG
OepneAlwOELC YVWOELC avaAuonc Kat dtaxeipiong
SebopEVWV
Mwc ocuykpivw dedopeva avaloya Pe TOo HOPPHOTUTIO TOUG?

Xpron ToU KOTAKEPUATLOMOU YLOL TNV 0pYAVWON KoL
Slapoipaon dedbouevwy og Katavepnueva eptBaiilovia

AmoOnkec dedopévwy / Emxeipnpatikn Evdpuia
2xeblaon, mapadeiypata OLAP, kUBoc dedopevwy, oYeLg



Evotntec MaBnuatoc (4,5)

ZUOTHHOTO KOl TEXVIKEG SLaxeipLonc HeyaAwyv
SebopEVWV

HDFS /Hadoop /Map-Reduce

Hive, Spark (Storm /Flink /Kafka)

Graph analytics: Neo4j, GraphFrames, Pregel
Etoaywyn otnv avaAuvon & e€opuén debopEvwy

Association Rules

Link Analysis

NN-search (if enough time)

Graph Convolutional Networks/Streams — TBD)



[Mpoodoc & Epyaoiec

1 x 45min poodoc¢ pe TNV oAoKANpwoN TwV
ELOOYWYLKWV SLaAEEewv (evotntec 1 & 2)
EvOeLKTIKA oTNV apxn TNS TPLtNS N TETaptnc SLtaAeénc

AUO UTTOXPEWTLKEC (OLLAOLKECS) EpYAOLEC UE TN XPNON
TPOYUOTIKWY CUCTNHATWY

Oa nponynBet kabe popd PpoVILOTAPLO CXETIKA UE TN
xpnon twv epyaleiwv mou Ba armotnBoulv

H mpwtn epyaocia Ba eival otnv mepLoxn Twv amobnkwv
SedopeEvwV/emxelpnUaTikne evuduiog

H deltepn otnV mepLoxn Twv cUoTNUATWY Slaxeiplonc
neyaAwv debopevwv



BaBOpoAoyia Mabnupotoc

Mpoodog: 20%
Epyaoiec: 50%
Opadwkn Epyacia 1: 25%
Opadwkn Epyacia 2 : 25%
TeAwkn e€etaon : 30%

O LEOCOC 0pOoC TOU BaBuoU TWV EPYACLWV TIPETTIEL
va eivall =5

2TOOLLOEVOC LLECOC OPOC YPOTTTWY =5



Big Data is everywhere and knows it alll

COMSULTANTS SAY
THREE QUINTILLION
BYTES OF DATA ARE
CREATED EVERY DAY,

IT COMES FROM
EVERYLIHERE. 1T
EMOLIS ALL.

ACCORDIMNG TO THE
BOOK OF WIKIPEDIA,
ITS MAME IS "BIG

BIG DATA LIVES
IN THE CLOUD. IT
KW.-JED%HHT LJE

Al

IN THE PAST. OUR
COMPANY DID MANY
EVIL THINGS

BUT IF WE ACCEPT
BIG DATA TN OUR
SERVERS, WE WILL
BE SAVED FROM
BANKRLUPTCY.

Is IT TOO
LATE TO SHHHH!
SIDE WITH [ IT HEARS |




Data is the new oil in the 215" century

Industrial revolution: abundant fossil fuels, and
technological advances launched an era of
accelerated change that continues to transform
human society.

Information revolution: data drives the information
economy in much the same way that oil has fuelled
the industrial economy



Data is the new oil in the 215" century

Data (such like oil) needs to be

10710 ® =
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Extracted, N
/% &@:)
Cleansed, EANG
° ¢
Refined, o .
Anclyzed, DATA

Distributed '

S THE NEW OIL

https://medium.com/@adeolaadesina/data-is-the-new-o0il-2947ed8804f6



Data is no oill

Qil is finite - data is infinite and reusable

Via its use oil degrades into a form that is of no use
anymore while data is transformed into knowledge

Common ground: Data is an asset and by using that
data, it opens huge opportunities for the business



Data is an asset, not a burden!

* Web interactions (e.g. yahoo has
2PB of web data)

* Social Media (tweets, Facebook,
etc.)

* Scientific experiments (e.g. NASA
EOSDIS archives over1PB /year)

* Business Applications (e.g.
Bank /Credit Card transactions)

* Data will have value in the future
...even for purposes not envisioned!



Digital Data Explosion

Everything we see, read, hear, write, and measure
can now be in a digital forml!

Every few days we generate more data than we
did from the dawn of civilization until 2000

Multimediaq, scientific, sensor, etc. data is becoming
prevalent

How to use this data to drive new growth?



Location history based on cellular

connections
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Phone GPS tracking
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Provide useful services: Live traffic data
—
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4

Another Application: Fitness Analytics

How do you explain this peak?

65.0 Y
—+— RestingHeartRate
B62.5 1 :

60.0 1

571.5 4

55.0 1

52.5 1

50.0 4

47.5 4

45.0 1

_Iull Aug Sep
2018
date
» Descriptive analytics: answer queries looking back in time [this example]
* Predictive analytics: forecasting [what is my marathon predicted time?]
* Prescriptive analytics: planning in order to achieve predicted outcomes [e.g. workout schedule]



More data = more insights

e
Kcal(down) & totalSteps(down)—>RestHR(up)
Exercise(down) - Fitness (down)

i qrnios

M M’ R “' |

-2
— RestingHeaFt'Rate
=3 7 - Kcal
- totalSteps
Jul Aug Sep

2018
date



Data Mining

The process of analyzing data to identify new
information in the form of features, patterns or
relationships

Has become a well-established discipline related to
Artificial Intelligence, Machine Learning and
Statistical Analysis
Led by advances in computer hardware and database
technology

Data warehousing, Business Intelligence, Cloud Computing,
Big Data frameworks



The big (&very abstract) picture

Ingest Data

I

Capture
Extract
Filter/compress
Inspect
Cleanse
Transform
Integrate
Load/Index
Aggregate

_—
\

N
-

\

Data Warehouse
Column Store
RDF Store

(key,value)
GraphDB

HDFS

etc.

-

Heterogeneity

Scale

Timeliness
Privacy

Extract knowledge

I

Useful (be able to act
upon)

Profitable ($$$)

Valid (applicable on new
data with some certainty)
Unexpected (non-obvious
to the expert user)



Data Mining: Cultures
B

1 Different cultures:

o1 To a DB person, data mining is an extreme form of
analytic processing — queries that
examine large amounts of data

= Result is the query answer, focus on the process/algorithm

o To a ML person, data-mining
is the inference of models

w Result is the parameters of the model

Slide from J. Leskovec, A. Rajaraman, J. Ullman: Mining of
Massive Datasets, http://www.mmds.org




Limiting factors

Hardware

Technological /economical limitations

Software

Complexity of deploying, monitoring and maintaining
computing resources

Huge advances in this area in the past decades ¥
Algorithmic complexity of certain tasks

Theory and practice need to converge



Mind the (technological) gap!

Data is scaling faster than compute resources, and
CPU speeds are static.

Moore’s law is not coming to our rescue anymore...

A

*CPU speed
-Cores
*Disks
‘Memory
*Energy




Gordon Moore’s Law
co-founder of Intel, 1965

Prediction: the number of transistors per square inch on
integrated circuits had doubled every year since the
integrated circuit was invented. Moore predicted that this
trend would continue for the foreseeable future.

100000 N B
Intel CPUs

10000

|
FE(FPentivm
Prao) |

P&
1000 k (Fenfium)

100 F

Thousands of Transistors

—
fan]
T

Doubling time of fitted line is 2.0 years.

1

Yearl: '19I75 | 19I80 I 19I85 | '19I90 | 19I95 I QOIOO |
x2 transistors per square inch / 18 months
HDDs: < 0.5 euro/GB



Complexity of a simple (yet very

imgor’rqn’ri comgu’ro’rion

1 Given a collection of

address: address:
customer data, o o
1 1 ) 76, ABriva
compute most similar ADr Ve f

p q i rs user name:

papadl

o1 Applications
o1 ldentity Resolution

1 Fraud detection

I’rem 8 user name:
pap2

device: android

1 Customer

. device: win
Segmentation
. userA: papad1,android,{item1,item3}, “lNartnciwv 76, ABrAva”
O Co”q borqhve userB: pap2,win {item2,item3,item8}, “28 OkTwPpiou 76, ABrva”

filtering



How to compare customers based

on these data?
I
0 “papadl” vs “pap2”

address: address:

] Gnd rOid VS Win Motnoiwv 76, 28 Oktwppiou

ABnva

76, ABrnva

o {item1,item3} vs '
{item?2,item3,item8 popad

o “Matnoiwv 76,
ABnva” vs “28
Oktwpplou 76,
ABnva”

I’rem 8 user name:
pap2

device: android

device: win

userA: papad1,android,{item1,item3}, “lNartnciwv 76, ABrAva”
userB: pap2,win,{item2,item3,item8}, “28 OkTwppiou 76, ABrRva”



How to compare customers based
on these data?

We will address these problems in the next lecture!

For now assume we have a function sim(userl,user2)
that estimates the similarity between two users based
on their data attribute values



Let us focus on the running time

Run brute-force all-pairs similarity computation in
your favorite programming language

n(n—1) .
For n customers we need S comparisons

CS theory: task complexity is O(n?)

Assume task completes in 5 minutes (yeahl)
In a year from now, dataset gets 100 times larger

How long will in take for the same task to compute?

. 50000
Ans: ~100%*5min =
60x24

days = 34,7 days > 1 month!



Scale-up versus Scale-out

o1 They refer to different strategies for expanding your
computing resources to handle the growth of work

0 Scale-up (vertical scaling): adding more /better
resources to an existing system to reach a desired
state of performance

More powerful CPU/GPU
More RAM

Larger /faster Disks

More network interfaces

71 In cloud computing environments this translates to
moving up to larger, more powerful instances



AWS Compute Optimized instances
I

Model vCPU  Memory (GiB) Instance Storage (GiB) Network Bandwidth (Gbps)
c5.large 2 4 EBS-Only Upto 10
c5.xlarge 4 8 EBS-Only Up to 10
c5.2xlarge 8 16 EBS-Only Upto 10
c5.4xlarge 16 32 EBS-Only Upto 10
¢5.9xlarge 36 72 EBS-Only 10
¢5.12xlarge 48 96 EBS-Only 12
¢5.18xlarge 72 144 EBS-Only 25
c5.24xlarge 96 192 EBS-Only 25
¢5.metal 96 192 EBS-Only 25
c5d.large 2 4 1 x 50 NVMe SSD Up to 10
c5d.xlarge 4 8 1 x 100 NVMe SSD Upto 10
¢5d.2xlarge 8 16 1 x 200 NVMe SSD Upto 10
c5d.4xlarge 16 32 1 x 400 NVMe SSD Upto10
c5d.9xlarge 36 72 1 x 900 NVMe SSD 10
c5d.12xlarge 48 96 2 x 900 NVMe SSD 12
¢5d.18xlarge 72 144 2 x 900 NVMe SSD 25
¢5d.24xlarge 96 192 4 x 900 NVMe SSD 25

c5d.metal 96 192 4 x 900 NVMe SSD 25



Horizontal scaling
B

11 Scale-out: increase capacity by adding more
instances

o1 May reduce costs by employing less sophisticated
resources to accommodate variable workloads




Big Data — The 4 Vs




Big Data: Volume

Organizations process terabytes or even petabytes
of raw data.

Turn 12 terabytes of Tweets created each day into
improved product sentiment analysis.

Typical bottleneck: move data across the memory

hierarchy
One HDD reads 12TB @ 145 MB/sec in ~24 hours
One NVMe SSD reads 12TB @ 2GB/sec in ~1,7 hours

Common tasks require multiple passes over the dataset

Need to also consider CPU processing time...



Big Data: Velocity

Ability to react quickly to streaming data

Real-Time Enterprise: reduce the gap between when
data is recorded in an organization and when it is
available for information processing and decision-
making.

For time-sensitive processes such as catching fraud, big
data must be used as it streams into your enterprise in
order to maximize its value.

Scan 5 million trade events created each day to
identify potential fraud.



Big Data: Variety

Big data is any type of data - structured and
unstructured data (or anything in between) such as
text, sensor dataq, time series, audio, video, click
streams, log files, graph structures and more.

Does the relational model meet your data needs?
Key-value pairse, column-based, documents-oriented?
graphs?

New insights are found when analyzing these data
types together.

But they often live in different (data) eco-systems...



Big Data: Veracity

How to deal with uncertain or imprecise data
In traditional applications there was always the assumption
that the data is certain, clean, and precise
Need to act based on information collected from
disparate sources or the social web

How much faith can we put in social media data like Tweets,
Facebook posts?

Can you explain your ML models?

How can we act upon information/processes if we don't
completely trust or understand them?

Can you modify your algorithms to provide strong statistical
guarantees over imprecise data?



Implications of 4Vs in data analysis
R
7 Big data = big noise = big errors?

0 Need faster/scalable algorithms

O Partitioning /Parallelization helps sometimes but
best you can hope for is linear speed up

M Some algorithms are hard to parallelize

O Theoretical bounds reached

B Trade accuracy for efficiency

O Provision for data that is always in flux



Beware the Big Errors of ‘Big Data’

(Nassim N. Taleb)
s 4

Spurious Correlations
140000 |
120000 |
100000

80000
60000
40000 -
20000

number of variables




Swimming pool drownings

Spurious Correlations
(http:/ /tylervigen.com/)

Number of people who drowned by falling into a pool
correlates with

Films Nicolas Cage appeared in

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

140 drownings

120 drownings

100 drownings WW

80 drownings

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009

-®- Nicholas Cage -#- Swimming pool drownings

Correlation: 66.7%

6 films

4 films

28e) sejoydIN

2 films

0 films

tylervigen.com



Spurious Correlations

(http:/ /tylervigen.com/)

&
e~ People who drowned after falling out of a fishing boat
correlates with

Marriage rate in Kentucky

ooé

1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010
20 deaths 11 per 1,000
a 10 per 1,000 7Z
= 2
° 5
4 \<x
§ 10 deaths 9per1,000 3
&0 8
£ =
5 @
2 8per1,000 {
0 deaths 7 per 1,000
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010

-8 Kentucky marriages - Fishing boat deaths

tylervigen.com

Correlation: 95.2%



Rhine Paradox™ — (1)

Joseph Rhine was a parapsychologist in the 1950’s
who hypothesized that some people had Extra-
Sensory Perception (ESP).

He devised an experiment where subjects were
asked to guess 10 hidden cards — red or blue.

He discovered that almost 1 in 1000 had ESP — they
were able to get all 10 right!

*example from http://infolab.stanford.edu/~ullman/mmds.html



Rhine Paradox — (2)

He told these people they had ESP and called them
in for another test of the same type.

Alas, he discovered that almost all of them had lost
their ESP.

What did he conclude?

Answer on next slide.



Rhine Paradox — (3)

S
11 He concluded that you shouldn’t tell people they
have ESP; it causes them to lose it.



Meaningfulness of Answers

A big data-mining risk is that you will “discover”
patterns that are meaningless.

When looking for a property make sure that the
property does not allow so many possibilities that
random data will surely produce facts “of interest”



Example Case™: detect “evil-doers”

There arel billion people out there who might be

evil-doers

Out of those, about 100 are indeed evil-doers
This is the number of “events” (people) you expect to
find in your investigation

Make a hypothesis: a pair of people should be
under investigation if they visit on two different
days the same hotel

Maybe different hotel on each day

*example from http://www.mmds.org/



Simplifying Assumptions

Look for people who, on two different days, were
both at the same hotels.

1 billion people who might be evil-doers
A person goes to a hotel one day in 100
Loot at booking records of 100K hotels

Examine hotel records for 1000 days to find evil-doers



Assume Random Behavior

Probability any two people both decide to visit a
hotel on any given day is 0.01*0.01 = 0.0001

There are 10° hotels to choose from

Assume hotels are visited with same probability (not
realistic)

Thus, probability that they visit the same hotel is
p=10"* 105=10"
Probability that they visit the same hotel on two
different days is p?=10""8 (hotels may differ on the
two days)



What we have found

o Probability of observing an event on random data

is very small: 0.000000000000000001

0 Thus, if we see one such pair of people it should be
investigated, right?



The effects of big data in
calculations

Event = two people were at the same hotel on two
different days

There are n=1billion people resulting in

R RRLPTRL
2 pairs of people

Similarly, there are =5*10° pairs of

(1000] 1000°
T

days to look for



Expected number of events

(5%10'7) * (5*%10°) * 10-'® = 250000 events

Pairs of people Pairs of days Probability of an event

Each event is a pair of people (who have visited the
same hotels on two occasions)

Thus, there are 250K pairs of people to investigate

But there are only100 real evil-doers

ls it feasible? Does it justify the intrusion on people's
lives?



Traditional Data Processing

Queries Resuls

$




Stream Processing

Data Stream(s) Stream(s) of Results

Queries




Related topic: Complex Event Processing

(example from: hitp://cer.iit.demokritos.gr /publications /papers/2020/VLDB-D-19-00003_CRVersion.pdf)

e

Input : Recognition » : Output M
; vent :
Simple Events | Recomniion | [ CmpleR BReis  -
: System :

lowSpeedStart(1Dg, 10, 00:00:12)
turn(IDg, 11,00:03:12)
turn(IDy, 12, 00:06:46)
lowSpeedEnd(IDy, 11, 00:10:33)

\

PATTERN  SEQ(lowSpeedStart a,turn + b, lowSpeedEnd c)
WHERE skip-till-next-match

AND [vesselld]

AND bli].heading—b[i—1].heading > 90

WITHIN 21600




Nikos Giatrakos, Eleni Kougioumtzi, Antonios Kontaxakis : ATHENS UNIVERSITYJl
OF ECONOMICS !

Antonios Deligiannakis, Yannis Kotidis ' AND BUSINESS
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& ] EasvFlinkCEP FlinkCEP program o o, =
FlinkCEP: 5y i % 5048 predDiff
parser ) F trueDiff
t Distributed processing over computer| e “a"?“’t' W submit O Pn v H x
== =% Cost Modeler ‘ ;
clusters Pattern 2 85 34 ‘— FI'?:EEP Input Streams
i i (Rege) @ B B8 [ ing | m—
) ¢ Language of hlgh expressive power z % £% | :Sc Fr::krcér;gr Flink
x Low level language (Scala/Java) 3 Cofimbeee Flink Cluster
; i | Statistics Collecti
x Cluster admin decisions needed A Microbenchmarks s s
* a R"QE" o Increase in Parallelism (From -To)
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+ automates FlinkCEP job configurations Hy " E Throughpat (7)
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. : E ] = Optimizer pick st.meN,
Achievements: (1) Non-programmer event analysts rapidly 119 Je i ¢ max]T

develop and deploy new CEP pipelines. (2) Exploits the processing
capacity of modern hardware without requiring practitioners to make cluster administration decisions.

sl BN SN @ J 2 DA adyerbaiibaiobmtsdl CIM Nov 1-5, 2021 Online, Gold Coast, QN, Australia



Stream processing: exact computations over
infinite data

For a stream of n values,
some problems require
O(n) memory in order to
compute a definite answer,
others don’t

Consider the following
computations

Maximum /minimum value in a stream
Average value?

Median value?

Most frequent value?

Data Stream



Windows: used to segment a continuous

data stream into batches of tuples

8

1 Restrict the computation on

the most recent tuples
(window)

Tuple-based window: 5 most recent
tuples (example on the left)

Time-based window: all data in the
past 15 minutes

o1 The previous issue still holds (for n
= window size)

Data Stream



Approximate query processing

1 Maintain synopses over the data
and use them at query time to
produce approximate answers

o Example: data sketches, discussed
next

Data Stream



Distributed Stream Processing

f( I.I.I I.w )>T? ///\‘ ? " ‘ Clusterhead

Coordinator Continuous Query : Q‘ %5 1 @  RegularSensor

”
e s /
N o T / \ \
Local Windows R \ . |
il \ ! -~

$.. |

8 Lo \ /

. b /

Global Window —

Distributed among Sites —
(see color/shape)

In-network outlier detection (Kotidis et. al)

-2.0
-2.0 -15 -1.0 -05

0.0 0.5 10 15 2.0

Geometric Monitoring



Stream processing example (1):

Most frequent items
|ﬁﬂ|lllllllllllELllllllllllllllllllllllllllllllllll

1 Compute most-frequent #hashtags each day
21 500 million tweets each day
0 Multiple hashtags / tweet

#a, #b, #a, #a, #d, #b, #c, #a, #a, #b, #a, #a, #a, #a, #Ha
—

| )
f

1 day, hundreds of millions stream records




Stream processing example (2):

moment estimation (Window=last 15 hashtags)
S
a,b,c,b,dacdab,dcaab

m,=5 stream 1
m, = 4
‘ S=2"d moment = 25+16+9+9=59
m, =3
m, = 3

ab aadacaaaaa,a,a,a

m, = 1 2 stream 2

m, = 1
m =1 DEEE)  S=2MY moment = 144+1+1+1=147

my — 1 S is a measure of how uneven the distribution is



Another Streaming Application

Compare twitter usage across
different countries in real-time

Connect to twitter API

Filter based on location (e.g.

#android .
#MeToo#N BAfinals

#iphone #android

#android #NBAfinals

Greece)
Parse tweets, find hashtags
Compute frequencies

Compare frequency distributions

#android #android

Bag of hashtags for Greece

!

(#android,5)
(#MeToo0,1)
(#iphone,1)
(#NBAfinals,2)

Compute frequencies



A simple idea (just to keep going)
oo

-1 For each country, embed all frequencies into a
single vector

1 Compare counties by comparing their respective
vectors

We will discuss details of alternative metrics in the next
lecture



Frequency vector for Greece
N

ab,c,bda,c,dabdc aab

Tweets

+1
8 4 0 0 5 0 0 2 0

N dims

0LG reece

A

v

Each hashtag (string) in mapped to a coordinate in a N dimensional space
The coordinate value is a counter that depicts the frequency of this particular hashtag



What does it mean?
e

My Data (hashtags = strings from Greek tweets):

a b, c b,dacdabcaadec

Time
How | chose to represent this information in my program:
-
Ol reece | 3 o Jo |5 Jo |o |2 1
C b a d e

What | am actually capturing with the above representation:




Note

This representation is “correct” if comparing

frequency distributions using vectors is my means of
analyzing this data

Dimensionality curse?
ju 1 veni i
Don’t jump into a “convenient” representation

Consider the pros and cons of each approach

Goals, accuracy, performance tradeoffs, feasibility



Hashing: map keys to an integer domain

@ e B oo o @
I : ;r J
4 \: : : P
......... #paobc............. #paobc E¥Ea:
| p
Tweets
h(“#paobc”)=7
Slot 0 Slot 1 Slot 7
S
OGreece |8 4 0 0 5 0 0 2 0
“— N dims >

N=2™ for h() returning m-bit integer values

* In this example key values are the different hashtags (that we do not know in
advance)
* We need a function h(s) that maps a string s to an integer (next lecture)



Now that | have these vectors, | can
compare them!

1 Vector for Greece
#aek #paobc #oly
—>
Ogreece | 8 10 O o |5 Jo Jo |2 0
« N dims >
1 Vector for China (not likely but for the shake of this example...)
—
Ochina 795 0 0 0 508 0 0 204 0
— N dims >

Greece



QOoops!

In order to avoid collisions, | chose a large number

for N (e.g. N=232= 4294967296)

Thus, hash values are 4-byte integers
Each slot holds a 4-byte integer counter (freq)

Thus, each vector occupies 16GB of RAM if stored
“uncompressed”

Slot 0 Slot 1 Slot 7

—>
0LG reece

8 4 0 0 5 0 0 2

N dims

N=2" for h() returning m-bit integer values



Data sketches

Mathematical representations of data that allow
useful information to be extracted effectively

Preserve distance computations (approximately)
Have small time /space complexity

Allow for real-time changes in data

Data Iltem A 2

‘ a[l] | a[2] | a[3] | a[4] | a[5] | a[6]| a[7]| a[8] > ? ? ?

< N > «— K<<N—/
Data Item B 2

| b[21| br21| br31| br41| bis]| biel| bi71| bis] > 2 |2 |2




Dot (inner) product between two vectors

X .y =2(x, * Yy

Example:

%= (1,3,0,5)
S/’Z (1,0,1,6)
Then:

X .y=1*1+3%0+0%14+5%6=31

= |X|*|¥]*cos(B(X, ¥))



Dot product with unit vector

X .y =2(x, * Yy

Example for unit vector y:

x=(1,3,0,5)
y=(1/2,1/2,1/2,1/2)
Notice that |y | =1

Then:
X.y=1/2+3/2+5/2=9/2
= |X|*1*cos(B(X, ¥))



ofi]
ry[i]

ro[i]
r5[i]

Linear Projections (AMS Sketches)

[Alon9?6]: inner (dot) product of data vector with
O(log(N/d)/e?) pseudo-random vectors {-1,+1}

(linear projections)
€: approximation error

d: failure probability

4 2 7 1 0 3

h 4
=
[N

1
[IEN
[HEN
[N
[N

6 lemma: we can estimate the
cosine similarity among two
vectors from their sketches



Random Projections

I's
Not a pure orthonormal base
s ® /
I

High-dimensional space % @
Q@

Iy




What can we do with them

Estimate norms, distances, dot products with (g,6)-
guarantees
€: approximation error

O: failure probability

Using much less space/time than using the real
vectors
Need O(e?(log1/8)) time and space (addressed

volume, velocity)

Note: there are more accurate sketching techniques
available in the literature



Updatability (addresses velocity)
—

0 Linearity permits incremental updates

o1 Thus, suitable for streaming datal

+2 new #paobc tweets

alt] b1l S sketch(a)
+2

Al 1 |-l 1 |1 |—— 110
+2

r,[i] E 1 |1 ]—— 0




Sketches: Recap

Simple Linear Projections
(efficient computation)

Permit incremental updates

Sketches are compassable

[]

[]

[]




What we have achieved
B

0 Reduced (significantly) memory footprint of the
data analysis algorithm

= Data now fits in memory = processing is orders of
magnitude faster

-1 Have introduced (controlled) impression



What is (still) missing?
B
e



Recall complexity of pair-wise
computations

For an all-pair computation we need to perform

n*(n-1)/2 comparisons @

For a Nearest-Neighbor query NN-k(q) we need to

compute n-1 distances (using g as a source)

How do we scale these computations?
With the use of indexes!



Nearest Neighbor Queries Example

0 Spatial (2-dim) domain: find me 3 restaurants
nearest to my location (=query point q)

1 NN-k(q) (k=3) query



Nearest Neighbor Query



Nearest Neighbor Query




Dimensionality Curse

0 Curse of : BT - - 5
dimensionality renders ! | o
|
common indexes N | o
|
ineffectual | R 't 3:::
|| N o
1 Often full scan of DB is | ! | ! 5 | ::
preferable but slow | ! | — ::
| |
1 Consider also: velocity ' | e : n
& volume of bigdata |57~~~ "75=====7 :
I|—]-1————| | hC o
I|:|=| G, 117 :I l
|
T B A [
||I I L. -8 ————— I| |
| |
| |



“Approximation” to the rescue (again)

c-Approximate k-NN problem:
build data structure which

If there is a point p: dist(p,q)<R, p

is returned with high probability
i.e. high probability of not missing a
true NN = few false negatives

If dist(p’,q)>cR, the probability of

returning p’ is small

Most results are true NN = few false
positives

False positives may be pruned in a
second step

/7 4 \
/! /7@ ANEY
I 7 \

\
| {.p q I
AR ® 7
AR 7
\ ~



Locality Sensitive Hashing (LSH)

Assign items to buckets using O O
a hash function h(x) O " ®
E.g. h(@)=1

Details of function h() depend
on the preferred similarity
metric:

Similar objects are hashed to the

same bucket with high
probability
o |©

Dissimilar objects are hashed to

probability O

O
O
the same bucket with very small O .i
O

Repeat several times
Buckets (1-4)



Intuition of a hash function that

R Eerves the Euclidian Distance

Recall : length of projection of vector x onto a is the inner product a.x



False positives

In this example y’ is a false positive (will be pruned when computing true distance)



False negatives

In this example X’ is a false negative (unless we use additional hash functions)



LSH example for Basket Data
=

Customers’ Purchaces

o ; -1+ b
ab(u) = [——
C2 7
C3
C4 ASSIGNING
c5 CUSTOMER VECTOR
TO HASH BUCKETS
C6

Hash tablel

Hash table2

Hash table3

Hash table4

Hash tabl@6




More on LSH

Families of hash function exist for several popular
distance (similarity) metrics

Euclidian, Manhattan, Jaccard
Hashing on multiple hash tables is parallelizable

...and map-reduce-able!



Personal View

Past work on Data Streams from Databases and
Algorithms community may help overcome some of
the obstacles in dealing with Big Data

We can revisit Data Analysis/Mining algorithms
(Clustering, Eigenvector Analysis, Outlier detection)
so as to benefit from methods and techniques
developed in those areas



Summary

Big data raises several issues in Data Analysis

Scale, noise, dynamics, heterogeneity, inter-dependencies

Data analysis itself can also be used to help improve
the quality and trustworthiness of big datq,
understand its semantics, and provide intelligent
querying functions

Coordination & integration between different
technological platforms is required

Data Warehouses/NoSQL platforms /DSMS /DM&ML
libraries



Word Cloud from today's lecture

clcanse b d
data i 0lgs data
sensor hNash & memor Yanelytics
_ vectaor 2 'fDlLrﬂE‘
5 d1skfreguency -~ Sy rlinear
' RDF . dof twitter

byte ML1N1NE caplure

RAMEE — moments | SH complexity yyL oo Lo
var1FT}

nradL StI'F_‘EJITI sketches

transform aggregale gxlracl



Bibliography on Sketches & LSH
(beyond scope of this class)

A. Gilbert, Y. Kotidis, S. Muthukrishnan, M. Strauss. Surfing Wavelets on Streams:
One-Pass Summaries for Approximate Aggregate Queries. In proceedings of the
27th Very Large Data Bases (VLDB) Conference, Rome, Italy, September 2001.

Noga Alon, Yossi Matias, Mario Szegedy: The Space Complexity of Approximating
the Frequency Moments. STOC 1996: 20-29.

Distributed Similarity Estimation using Derived Dimensions. K. Georgoulas, Y. Kotidis.
The VLDB Journal, Volume 21(1), pages 25-50, February 201 2.

Alexandr Andoni, Piotr Indyk: Near-optimal hashing algorithms for approximate
nearest neighbor in high dimensions. Commun. ACM 51(1): 117-122 (2008).



THANK YOU!
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