================================
There are 5 clusters
user1 : ['milk', 'bread', 'coffee']
user2 : ['milk', 'bread', 'cola']
user3 : ['cereal', 'milk', 'donut']
user4 : ['donut', 'cream', 'cola']
user5 : ['cola', 'milk', 'cereal', 'tea']
Computing pair wise similarities
Jaccard_sim of user1 user2 is 0.5
Jaccard_sim of user1 user3 is 0.2
Jaccard_sim of user1 user4 is 0.0
Jaccard_sim of user1 user5 is 0.16666666666666666
Jaccard_sim of user2 user3 is 0.2
Jaccard_sim of user2 user4 is 0.2
Jaccard_sim of user2 user5 is 0.4
Jaccard_sim of user3 user4 is 0.2
Jaccard_sim of user3 user5 is 0.4
Jaccard_sim of user4 user5 is 0.16666666666666666
Best pair to merge is ('user1', 'user2')
================================
There are 4 clusters
user3 : ['cereal', 'milk', 'donut']
user4 : ['donut', 'cream', 'cola']
user5 : ['cola', 'milk', 'cereal', 'tea']
user1+user2 : {'coffee', 'milk', 'cola', 'bread'}
Computing pair wise similarities
Jaccard_sim of user3 user4 is 0.2
Jaccard_sim of user3 user5 is 0.4
Jaccard_sim of user3 user1+user2 is 0.16666666666666666
Jaccard_sim of user4 user5 is 0.16666666666666666
Jaccard_sim of user4 user1+user2 is 0.16666666666666666
Jaccard_sim of user5 user1+user2 is 0.3333333333333333
Best pair to merge is ('user3', 'user5')
================================
There are 3 clusters
user4 : ['donut', 'cream', 'cola']
user1+user2 : {'coffee', 'milk', 'cola', 'bread'}
user3+user5 : {'donut', 'milk', 'cola', 'tea', 'cereal'}
Computing pair wise similarities
Jaccard_sim of user4 user1+user2 is 0.16666666666666666
Jaccard_sim of user4 user3+user5 is 0.3333333333333333
Jaccard_sim of user1+user2 user3+user5 is 0.2857142857142857
Best pair to merge is ('user4', 'user3+user5')
================================
Final Clusters:
user1+user2 : {'coffee', 'milk', 'cola', 'bread'}
user4+user3+user5 : {'donut', 'cream', 'milk', 'cola', 'tea', 'cereal'}