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1.9 Principal Component Analysis®

The LS procedure was introduced in the previous sections as a descriptive
device. Given a certain set of observations, how do we fit a linear relation as
well as possible ? The method answers this question by minimizing the sum of
squares of the discrepancies. We shall meet LS very frequently in later
chapters, but its role will be different because it will be based on a statistical
model. Here, however, we shall continue with the descriptive interpretation
and discuss the so-called principal component technique.

Our starting point consists of 7 observations on K variables, which will
be arranged in an # X K matrix X. An example is given in Table 1.1, which
contains time series data on 17 components of total income and outlay in the
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Dividends
and Adjustment
Inventory Net Rent Entrepre- Adjustment Interests for
Revalua- Received neurial for from Deprecia-

tion 34 With- Deprecia- Abroad, tion and Foreign
Adjustment  Individuals drawals Dividends tion Interest etc., Depletion Balance

(y) (@10 (w19 (z19) (Z13) [€2P)) (@5 (@49) @19)

—88 490 1079 296 —751 398 —105 —41 51

—16 516 1134 374 —839 421 —95 —85 25

16 563 1194 368 —834 437 —96 —68 78

—35 546 1250 427 —848 458 —96 —60 36

170 514 1245 462 —918 470 —105 —55 8

78 508 1262 492 —917 494 —104 —55 42

[ 494 1288 534 —941 527 —114 —46 63

70 492 1338 612 —1000 560 —127 —55 35

412 426 1277 577 —953 572 —109 -—29 56

323 303 1121 434- —842 571 —61 —1 9

147 209 975 275 —726 552 —37 35 16

—227 211 902 225 —682 500 —45 36 22

—149 190 910 290 —718 485 —75 4 35

—72 214 952 373 —738 465 —110 —2 —27

—16 219 1012 486 —768 461 15 —18 —47

—64 258 1123 502 —850 469 —221 —57 —26

110 258 1106 353 —857 459 —175 —52 61

United States in the 17 years, 1922 to 1938.2® Hence n = K = 17, but the
equality of #» and K should be regarded as accidental. The problem is: can we
describe each of these K variables by a linear function of a small number of
other variables with a high degree of accuracy? This would be trivially true
if all variables moved proportionally; one single variable would then suffice
to describe the behavior of all K variables. Let us start with one variable.

The First Principal Component

Our single variable takes n values, to be arranged in a column vector p.
At this stage p is not yet determined, but we proceed as if it were. If all
variables behave proportionally, each column of X is equal to some scalar
multiple of p. This implies X = pa’, where a’ is the K-element row vector
consisting of these scalar multiples, one for each column of X. Note that the
product pa’ remains unchanged when p is multiplied by some scalar ¢ % 0
and a by 1/c. By imposing
(9.1) pp=1
we shall be able to obtain uniqueness except for sign (i.e., p and a may still

be replaced by —p and —a, respectively).
Obviously, one should expect that X = pa’ will not hold exactly in general,

13 The numerical example is based on R. STONE (1947). Tables 1.1 through 1.5 are derived
‘rom this article, but the figures reproduced here have fewer decimal places.
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so that there will be a nonzero matrix of discrepancies, X — pa’, for whatever
vectors p and a. Our criterion is to select these vectors such that the sum of
squares of all Kn discrepancies is minimized. It is easily verified that the sum
of squares of all elements a;; of an m X »n matrix A can be written as the
trace of A’A:

m n

trA’A =3 Yaj;
i=1j=1

Therefore our objective is to minimize

(9.2). tr (X —pa’) (X —pa’) = tr X’X — trap’X — tr X'pa’ + tr ap’pa’
=tr X’X —2p'Xa + a’a

where use is made of trap’X = tr p’Xa = p'Xa and similarly trap’pa’ =
trp'pa’a = p’'pa‘’a = a’a. We differentiate (9.2) with respect to a for given p
and put the derivative equal to zero. This gives

9.3) a=X'p

which expresses the coefficient vector a in p, whatever p may be. When
substituting (9.3) into (9.2) we obtain tr X’X — p’XX'p, which shows that our
next task is to maximize p’XX'p for variations in p subject to (9.1). So we
form the Lagrangian expression p’XX'p — A(p’p — 1) and differentiate it with
respect to p. This gives 2XX'p — 24p, so that the condition on p becomes

(9.4) (XX’ — ADp = 0

Hence, p is a characteristic vector of the #n X n positive semidefinite matrix
XX’ corresponding to root 4. To find out which root is to be taken we pre-
multiply (9.4) by p’, which gives p’XX'p = Ap’p = A. Since our objective
is to maximize p’XX'p, we should take the largest root of XX'.24 Furthermore,
by premultiplying (9.4) by X’ we obtain

9.5) XX-ADXp=XX—-4ADa=0

in view of (9.3). Hence the coefficient vector a is a characteristic vector of
the matrix X'X corresponding to the largest root except that it is not normal-

ized such that it has unit length (see Problem 9.1). Note also that (9.4)
and (9.3) imply Ap = X(X'p) = Xa and, hence,

(9.6) p= lXa
A
The vector p thus derived gives the best linear description of the X columns
in the LS sense. It is known as the first principal component of the K variables
represented in X. The addition “first” will become clear immediately; it will
induce us to add a subscript 1 to p, a, and 4 of (9.4) to (9.6).

14 See Problem 9.2 for an analysis of the conditional maximum along the lines of the last
two paragraphs of Section 1.8.
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Other Principal Components

The matrix X is now approximated by p,a; and, therefore, the discrepancy
matrix is X — p,a;. We may then ask whether this matrix of residual elements
can in turn be described by another matrix of unit rank, p,a,, so that we
obtain p,a; + p,a, as a more accurate approximation to X. This question

will be answered under the conditions

9.7 pp, =1 pip: =0

the first of which is analogous to (9.1), while the second requires that the two
principal components be orthogonal.l* The procedure is precisely the same as
before except that we should replace X by X — p,a;. So we minimize

tr (X — piaj — poag) (X — pia; — paay)

= tr(X — p,a)) (X — pa) — 2tr (X — p,21)'pa2; + 1 2:0:003;

= tr (X — p,a;)' (X — pya;) — 2a:;X'p, + 438,
where use has been made of (9.7) in the last step. Minimization with respect
to a, gives
(9.8) a, = X'p,
The function to be minimized for variations in p, is then

tr (X — pyaf) (X — piaj) — pXX'p,

so that p,XX'p, is to be maximized subject to (9.7). We construct the La-
grangian expression p,XX'p, — A(p,p, — 1) — up,p,, differentiate it with
respect to p,, and equate the result to zero:
9.9 2XX'p; — 24,p, — up; = 0
We then premultiply by p,, which gives 2p;XX'p, = up,p, = p. This implies
@ = 0 because XX'p, = 4p; [see (9.4)] and hence p;XX'p, = 4 p,p, = 0.
Therefore we can simplify (9.9) to

(9.10) (XX’ — A,D)p, = 0

which shows that p, is a characteristic vector of XX’ corresponding to root
4. This vector should be orthogonal to the characteristic vector p, which

151t can be shown that precisely the same second principal component is obtained when
this orthogonality condition is not imposed. We shall not give a detailed proof but shall
confine ourselves to stating that the basic reason is that (1) the first principal component
is orthogonal to the columns of the discrepancy matrix X — plal, because (X — I’1a1) p =
X'p, — a; = 0 follows from (9.3), and (2) if the second principal component is to give the
best linear approxxmatxon of these columns in the LS sense, it must be orthogonal to any
vector that is orthogonal to all of these columns.
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Table 1.2
Sums of Squares and Products of Deviations from Means
Number
of
! Lo T3 Xy L5 g 7 Tg Ty Zio ZTyy  Tp Xy By X Tie Tay |Variable

644.6 444.8 245.4 3579 277.2 229.3 —109.8 1056 65.7 94.2 1294 101.8 —88.7 6.9 —25.5 —28.5
328.5 195.8 239.4 174.2 1393 —63.5 83.0 30.7 54.2 81.4 70.2 —57.2 0.4 —20.1 —19.9
265.6 1853 76.1 121.3 —56.4 72.2 —39.5 60.2 43.6 240 -—23.5 -—21.0 —11.2 —18.8

232.4 159.2 163.9 ~79.2 66.1 23.5 74.7 78.0 523 -—481 —1.8 —10.7 —18.3

6.0 1

1.2 2

2.6 3

4.9 4

138.6 116.8 —59.2 30.2 43.6 50.0 64.8 44.4 —42.5 82 —8.6 —I111 5.8 5
133.7 —69.8 31.9 21.0 64.5 59.1 29.4 —336 —14 —59 -—12.8 7.4 6
46.5 —15.6 —10.5 -—358 -—-3L.7 —12.0 17.7 1.2 6.7 7.1 —5.3 7

455 — 2.8 14.2 15.6 172 —10.5 —43 —49 —64 -3.6 8

41.3 7.3 18.0 140 —13.6 80 —04 —0.8 1.5 9

33.7 26.8 10.5 —140 —23 —25 —64 4.5 10

31.4 19.6 —19.7 2.5 —46 59 3.4 11

19.5 —14.3 38 ~28 ~32 —03 12

13.7 =27 3.5 3.5 —1.7 13

4.4 0.6 1.3 0.1 14

4.4 1.7 —0.6 15

21 —0.6 16

1.9 17




Table 1.3

Correlation Coefficients Corresponding to Table 1.2

Number of
Xy Xy L3 Ly Ty X Xy g Ly L0 L1y 4T Zyg L4 Ty5 Y16 X1y Variable
1 97 59 .92 .93 .78 —.63 .62 .40 .64 .91 91 —.94 13 —.48 —.718 17 1
1 66 .87 .82 .66 —.51 .68 .26 .52 .80 .88 —.85 01 ~.53 —.77 .05 2
1 5 .40 .64 —.51 .66 —.38 .64 .48 33 —39 —.61 —.33 —.80 12 3
.89 .93 .76 .64 .24 .84 .91 78 —.85 —.06 —.34 —.83 24 4
86 —.74 .38 .58 .73 .98 .85 —.97 33 —35 —.66 .36 5
—.88 .41 .28 .96 .91 58 —79 —06 —.24 —.77 47 6
1 —34 —24 —90 —.83 —.40 .70 .09 .47 13 —.57 7
1 —.07 .36 .41 .58 —42 —30 -—.35 —66 —.39 8
1 .19 .50 50 —.57 60 —.03 —.09 17 9
1 .82 41 —65 —19 —21 —.77 .56 10
1 9 —.95 21 —40 —.73 44 11
1 —.87 41 =30 —.50 —.04 12
1 —.35 .46 66 —.34 13
1 .14 .43 .03 14
1 55 —.22 15
1 —.31 16
17

1s
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corresponds to the largest root; at the same time, 4, should be as large as
possible because the objective is to maximize p,XX'p, = 4,. Hence the second
principal component p, is a characteristic vector corresponding to the second
largest root A,. We assume that 4; and A, are different; the case of multiple
positive roots of XX’ is characterized by a lack of uniqueness of the principal
components and will not be discussed here.

We can go on in this way by deriving 7 principal components, r being the
rank of XX’ (and of X). The ith such component minimizes the sum of
squares of the discrepancies that are left after the earlier components py, . . .,
p;—: have done their work, and the minimization takes place subject to the
unit-length constraint pp, = 1 and the orthogonality constraints p;p, =
-+ =7p;,;p, = 0. The result is that p, is a characteristic vector of XX’
corresponding to the ith largest root A,

A Numerical Example

The principal components py, p,, . . . can thus be determined by computing
the matrix XX’ and then finding its characteristic roots and vectors. One may
also take X'X instead of XX’ and compute the characteristic vectors a;, a,,
..., after which the p’s are computed from (9.6). Following the latter pro-
cedure, we obtain for the data of Table 1.1 the matrix of sums of squares and
products given in Table 1.2. (Note that all 17 variables have been measured
as deviations from the means. The corresponding correlation coefficients
are given in Table 1.3 for comparison purposes.) The left-hand part of Table
1.4 contains the elements of the first three principal components together
with the roots A;, A, 4;. These roots may be used to measure the relative
importance of the corresponding components. The argument is based on the
criterion used: the sum of squares of all Kn discrepancies. These discrepancies
are of the form X — p,a; — - - - — p,a;] after the use of the ith component.
Consequently, before any component is used the discrepancies are the ele-
ments of X, and their sum of squares is tr X"X. The first principal component
reduces this sum of squares to {see (9.2) to (9.4)}:

(9.11) tr (X — pyay)'(X — pya3) = tr X'X — 2p;Xa, + aja;
= 1{r X/X — p]iXX,pl
=trX'X — 4

It can be shown in the same way that the second principal component
accounts for an additional reduction of the sum of squares of the discrep-
ancies equal to 4,, and so on. Thus, by dividing 4, 4,, 43 by tr X’X we obtain
three ratios which can be regarded as measuring the degree to which the
variation of the K variables is accounted for by the corresponding principal
component. In this case the first component accounts for more than 80
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Table 1.4

Three Principal Components and the Proportion of the Variance of Each
Variable Accounted for by Each Component

Proportion
Number of Accounted for by
Year ”n P> P3 Variable P: P Pz Rest
1922 —.13 .33 27 1 97 .02 .01 .00
1923 .08 28 17 2 91 .00 09 01
1924 .08 .14 29 3 S50 49 .00 .01
1925 17 21 .20 4 95 01 .03 02
1926 .26 .07 13 5 83 12 .04 01
1927 24 —.04 16 6 73 .01 26 01
1928 27 —-.03 .10 7 50 .00 34 16
1929 37 .09 —.08 8 42 .10 11 37
1930 14 =52 —.00 9 09 72 .03 .16
1931 —.15 —.50 13 10 55 .03 40 .02
1932 —.45 -.34 21 11 .84 .06 .08 .02
1933 —.46 .16 11 12 72 14 06 .08
1934 -.31 16 —18 13 83 .13 .01 .03
1935 -.18 d4 0 =30 14 00 75 .00 .25
1936 —-.01 A2 —47 15 21 00 .05 .74
1937 A2 .01 —.47 16 g1 .09 .01 20
1938 -02 -09 27 17 .04 01 39 56
A 1605 211 121
Aftr X'X .808 .106 .061

percent of the total variation, the second for more than 10 percent, and the
third for 6 percent. What remains for all other principal components is
only 24 percent.

Analysis of Individual Variables

It is also interesting to consider the contributions of the three principal
components to the “explanation” of the behavior of each of the 17 variables
separately. The argument is as follows. Let x;, be one of the K columns of X
(the observations on the Ath variable) and consider the linear relation

(5.12) X;, = by + boyPs + byPs + discrepancy vector

where the b’s are coefficients that are still to be specified. Let us specify them
according to the LS principle. Applying (7.8) we find

! ’ 7 - -1 ! ’
by, P:P1 PiP: PiPs X5 P:iX»
bow| = |PsP1 PP2 PiPs| |PaXp| = |PiXa
by, Psp:  P:P: PiPs PsX;, PaXn
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where the second equality sign is based on the unit-length condition p/p, = 1
and the orthogonality condition p;p, = 0, i 5 j. Now p;x, (and hence by;)
is the Ath element of the vector p;X = a,; see (9.3). Therefore we can write
(9.12) in the following specific form:

(9.13) Xy, = ApP1 T QP2 + AsPs + ¥y

where a,;, is the Ath element of the vector a, and v, is a discrepancy vector
(whose length is minimized by the LS method).
If we premultiply each side of (9.13) by its own transpose we obtain

XpX;, = a%hPiPl + aghpépZ + aghl’épa + ViV
+ 2(apauPpips + 0+ appiv, + )

The cross-product terms on the second line are all zero because of the
orthogonality of the p’s mutually and that of the p’s and v;, v, being an LS
discrepancy vector which is orthogonal to the vectors of the regressors (the
p’s). Taking account of pp, = 1 we thus find

(9.14) XX, = a%h + agh + agh + Vv,

The sum of squares of the values taken by the Ath variable can thus be
decomposed into parts attributable to the first principal component (a2,),
the second (a3,), the third (42,), and the rest (v,v,). The results for our numeri-
cal example (in the “relative” form a2,/x;x,, V,v,/X;X,) are given in the last
four columns of Table 1.4. They indicate that some of the variables are much
more closely related to the second principal component than to the first
(take x, and x;4). By adding the contributions of any given component to all
K variables we obtain the A’s which refer to all these variables jointly:

K
(9.15) 2 a?h = aja, = pXX'p;, = 4pip; = 4
£=1

An Interpretation of the Three Principal Components

It is interesting to observe that the principal components of the present
data allow a rather simple interpretation. We recall that the variables are all
components of total income and total outlay of the United States. Consider
then (1) total income, (2) the yearly change in total income, and (3) time.
(The last variable is an ordinary linear trend which takes the value 1 in 1922,
2 in 1923, and so on.) The nine correlations of these three variables and the
first three principal components are given in Table 1.5. It appears that the
first component is very highly correlated with total income, that the second is
highly correlated with the change in income, and that the third is rather
highly correlated with time. The conclusion of the analysis is that the behavior
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Table 1.5

Correlation Coefficients of Principal Components and Certain Economic
Variables

Economic Variables P Do Ps

Total income .995 —-.041 .057
Same, annual change —.056 .948 —.124
Time —.369 -.282 —.836

of the 17 variables during the period 1922-1938 can be described rather
accurately by linear combinations of total income, of its change, and of a
linear time trend.

However, the economic interpretation of principal components in general is
no easy matter. In principle it is conceivable that there is a limited number of
principal factors which dominate the behavior of economic variables, but
there is no reason to assume that these factors satisfy the orthogonality
condition p;p, = 0. It just happened that in this example income, its change,
and time have low correlations.

Principal Components Depend on the Origin and Scale of the Variables

The numerical results presented here are based on variables which are
measured as deviations from the means. If the “natural” zeros are used
instead of the means, one obtains different principal components. If the
variables are standardized (measured as deviations from the means and
subsequently divided by the standard deviations), the matrix X’'X becomes a
matrix of correlation coefficients and the principal components are changed
again. The latter procedure is often applied in psychology, where the variables
frequently have no common unit of measurement; it was not applied here,
since the variables are all in dollars per year. This dependence on the unit of
measurement is obviously a weakness of the principal component technique.
To show that there is such a dependence, it is sufficient to consider the case
K = 2,sothat X'Xis a 2 X 2 matrix, and to inspect the roots (5.3) of such a
2 X 2 matrix. It is also intuitively plausible. If a variable is measured in such
small units that its numerical values dominate those of the other K — 1
variables, the first principal component will reflect the behavior of this
particular variable rather closely; see Problem 9.3.

Problems

9.1 Let X be the matrix of observations on certain variables. Write p,; =
(1/2)Xa, for the ith principal component, where 4, is a positive root of
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9.2

9.3
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X'X (or of XX'). Prove that the length of the weight vector a, is N A
if p,; has unit length.

To verify the second-order condition for the first principal component
along the lines of the last two paragraphs of Section 1.8, recall that
it is stated below eq. (9.3) that the problem is to maximize p;XX'p,
subject to p;p, = 1. (It is advantageous to use a subscript 1 here.) The
Lagrangian function and the matrix of its second-order derivatives
with respect to p, and p, are then

F(py, ) =i XX'p, — A4(pipr — 1)
0°F
op: Op;

(9.16)

= 2(XX' — AT)

Prove that the second-order constrained maximum condition is
9.17) ¢XX'— AiDg <0 forall g0 satisfying pig=0

where q = [g,] = [dpa], dp,, being an infinitesimal change in the ath
element of p;. Prove that we may specify q'q = 1 without real loss of
generality. Also prove that

9XX'q =¢ ( ;lipz-pé)q = 2 Z(pia)
where 2, and p, are the ith root and a corresponding characteristic
vector, respectively, of XX’ and r is the rank of this matrix. Conclude,

using ¢'q = 1,
(9.18) (XX = 4Dg = 2 4@i0)° — &

Finally, prove that (p,q)* + - - + (p,q)* < 1, and use this to prove
that the second-order condition is satisfied when the largest root 4,
of XX’ is a simple root. [Hint for > (p/q)2 < 1: run an LS regression
of g on py, . .., p, along the lines of egs. (9.12) to (9.14).]

Consider the matrix X'X of (9.5) and suppose that the first variable is
measured in a different unit such that z,; becomes cz,;. Prove that, if ¢
is sufficiently large, the new matrix X'X satisfies approximately
(1/e)*X'X ~ (3 «2)i i/, where i, is the first column of the K x K
unit matrix., Next prove the following statements on the basis of this
approximation: the new X'X has unit rank, its (only) positive root is
2> a2, and i, is a corresponding characteristic vector. Finally,
conclude a, ~ i; and p; ~ [cxy; - - - ¢x,y], in both cases apart from a
normalization factor.





