

Trust, Institutions and Economic Outcomes

Nektaria Glynia
(Univ. of Cyprus)

2nd Students' Dynamic Macroeconomics Workshop,
Athens University of Economics and Business

December 18, 2025

*"Virtually every commercial transaction has within itself an element of **trust** ... much of the economic backwardness in the world can be explained by the lack of mutual confidence."*

Kenneth Arrow (1972)
Nobel Laureate in Economics

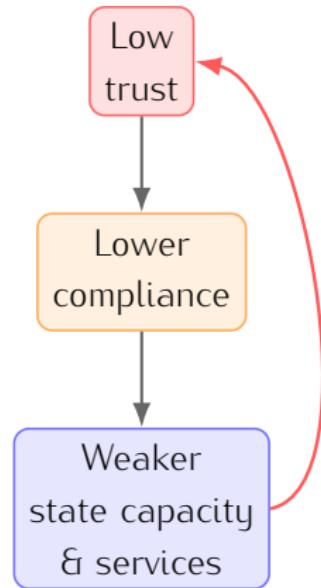
Roadmap

- ① What we mean by **trust** and why it matters
- ② A **micro approach** of studying trust
- ③ *Trust Dynamics in Electoral Competition*, with Georgios Manalis (AUEB) and Dimitrios Xefteris (UCY), *European Economic Review* (2025)

What is trust?

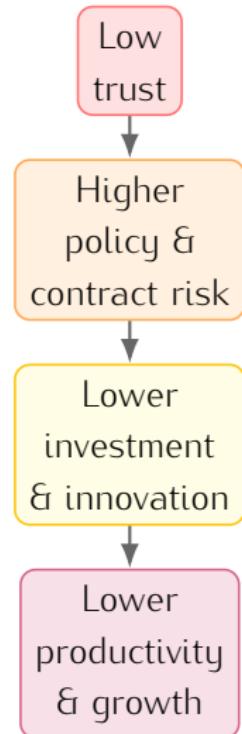
Trust is the belief that an institution will **behave predictably** and in a way that meets **citizens' expectations**. Rules are applied predictably and fairly.

Two pillars of trust:


1. **Competence** ("Can do"): capacity to deliver and enforce effectively.
 - *Examples:* Can the Central Bank stabilize inflation? Do the police solve crimes? Can the tax authority collect taxes?
2. **Integrity/values** ("Will do"): willingness to act fairly, impartially, and in the public interest.
 - *Examples:* Are courts impartial? Are public decisions transparent? Is enforcement selective or equal?

Why does trust matter?

It shapes **compliance, investment, and political incentives**.

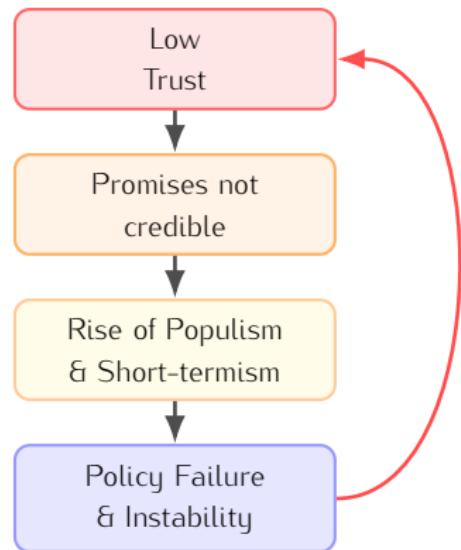

Compliance & enforcement

- Low trust \Rightarrow lower voluntary compliance (taxes, regulation)
- Lower compliance \Rightarrow weaker state capacity & worse services
- Worse services \Rightarrow even lower trust

Investment & growth

- Trust affects **credibility** of policy and **enforcement** of contracts/property rights
- Low trust \Rightarrow higher perceived risk \Rightarrow shorter horizons and lower investment
- Long-run outcomes: productivity, growth, and (often) inequality
- *Often*, prolonged low growth can also erode trust (via unemployment, austerity, and dissatisfaction), creating a feedback loop.

Mechanism: lower credibility \Rightarrow worse incentives to invest.


Political trust → political outcomes

- **Trust = credibility.**

When trust is low, promises of future benefits are heavily discounted.

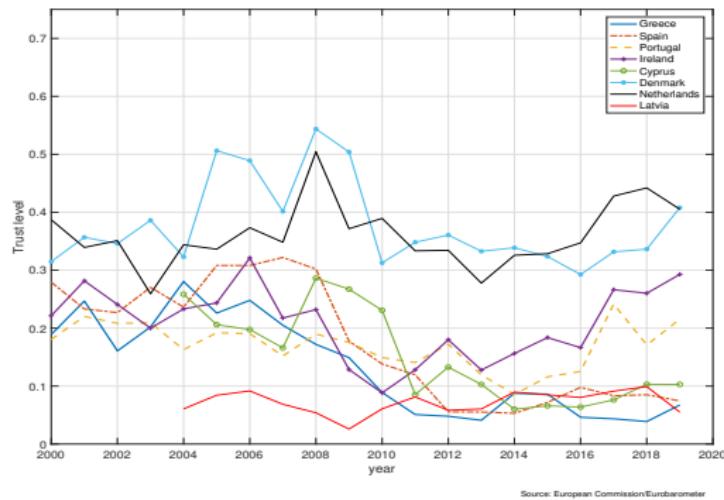
- **Incentives shift:**

- **Voters:** Move from "policy voting" to "identity voting" or support anti-establishment outsiders.
- **Politicians:** Substitute complex reforms with symbolic rhetoric and short-term handouts, polarisation.
- **Result:** Weaker state capacity, policy volatility, and the "vicious cycle" of unmet expectations.

Feedback: Failure confirms cynicism.

Studying trust: The game theoretic approach

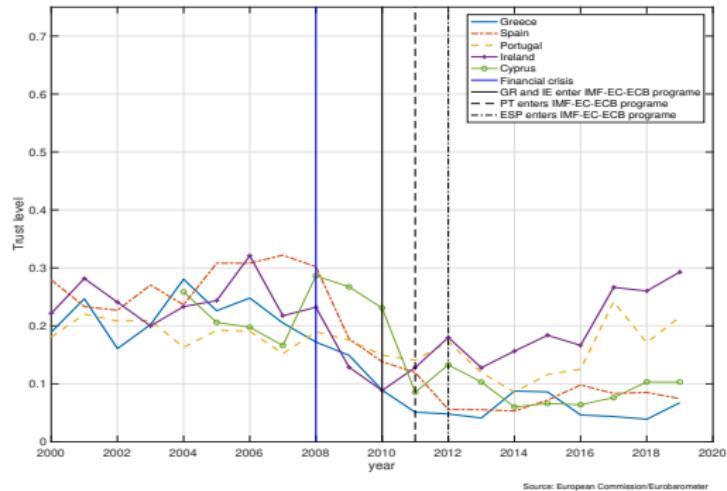
1. Specify **players, information, actions, and payoffs**
2. Solve for (Nash) **equilibrium** :
 - actions are optimal given beliefs
 - beliefs are consistent with what happens in equilibrium


- Think: "who knows what, who chooses what, and what do they want?"
- Then: "what is credible, and what is not?"

In the next slides: we model trust considering a electoral competition model.

Trust Dynamics in Electoral Competition

with G. Manalis (AUEB) and D. Xeferis (UCY), *published in EER (2025)*.


Trust level in EU (2000-2020)

Notice:

- Existence of low, medium, high trust groups. ► Trust in EU
- They seem to belong always to same group: Steady-state trust levels

Trust Breaks in EU

- Countries reaching long-standing low equilibrium (Cyprus, Greece, Spain)
- Countries recovering trust (Ireland, Portugal)

This paper

- We study how **political trust** evolves over time, considering an election competition model.
- Key idea: voters **discount** what politicians say.
- Politicians anticipate this and choose how much to **stretch the truth** (lying is costly).
- **Main results:** There are two self-consistent "worlds"
 - **High-trust world:** voters believe promises more \Rightarrow politicians lie less.
 - **Low-trust world:** voters are more skeptical \Rightarrow politicians try to exaggerate more.

This paper

- Only the **high-trust world is stable**: small shocks tend to fade out.
- Low trust unstable. There is a **critical trust level**:
 - Above it: trust converges to a steady level with **moderate** lying and realistic expectations.
 - Below it: trust falls into a **crisis region** where politicians want to lie *more than voters expect*.
- A positive feature: **complete distrust is not an equilibrium** in the model.

Model: the basic setup

- One candidate runs for office.
- The candidate has a true policy position (her "type") $x \in [-K, K]$.
- If elected, she implements **exactly** x .
- There are many voters (n is odd).
- Voter i has an ideal policy $d_i \in [-K, K]$.
- Voters prefer policies closer to their ideal point:

$$u_i(x) = -(x - d_i)^2.$$

Communication stage: promises vs reality

- Before the election, the candidate announces a promise $y \in [-K, K]$.
- The candidate knows her true type x , but voters do **not**.
- Voters observe only the promise y and form a belief about what will really happen:

$$\hat{x} = f(y).$$

- Think of $f(\cdot)$ as the voter's "discounting rule":
 - If trust is high, $f(y)$ is close to y .
 - If trust is low, voters interpret the same promise as less informative / exaggerated.

Candidate's problem: why not always promise the median?

- Elections are decided by the **median voter** (normalize $d_m = 0$).
- The median voter evaluates the candidate using the belief $\hat{x} = f(y)$:

$$u_m(\hat{x}) = -(\hat{x} - 0)^2 = -(f(y))^2.$$

- The candidate would like voters to believe she is close to the median.
- But promises are not free: changing the announcement away from the truth is costly.

Trade-off

Promise what voters want to hear **vs** paying a cost for lying.

$$\max_y V(x) = -(f(y))^2 - c(x - y)^2.$$

Timing (one shot game)

- ① Nature draws the candidate's true type x .
- ② Candidate announces a promise y .
- ③ Voters observe y and form a belief $\hat{x} = f(y)$.
- ④ Election happens (median voter logic), and the winner implements x .

Two equilibria

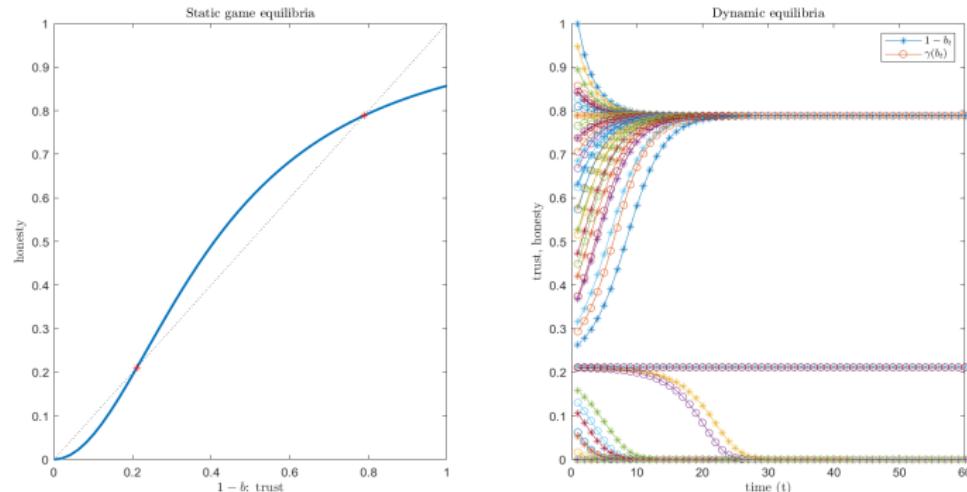
There exist two strictly monotone PBE equilibria, each reflecting a different level of trust—high and low—between the voter and the candidate. In both equilibria, the strategy of voter is a linear function of the candidate's announcement, and the strategy of candidate is a linear function of her true type.

High-trust vs low-trust: what changes?

- A **trust level** is the voter's interpretation rule $f(\cdot)$:
 - **High trust:** voters take promises more literally (less discounting).
 - **Low trust:** voters are skeptical (stronger discounting).
- Given how voters interpret promises, the candidate chooses how much to exaggerate.
 - **High-trust equilibrium:** promises are relatively informative; lying is limited.
 - **Low-trust equilibrium:** promises are discounted; incentives to exaggerate are stronger.

Dynamic setting: trust updates over time

- Think of elections as repeated: each period a new candidate appears.
- In each period t , the voter observes the candidate's announcement, $y_{j,t}$, and discounts it by $(1 - b_t) \in [0, 1]$,


$$\hat{x}_{j,t} = \frac{y_{j,t}}{1 - b_t}.$$

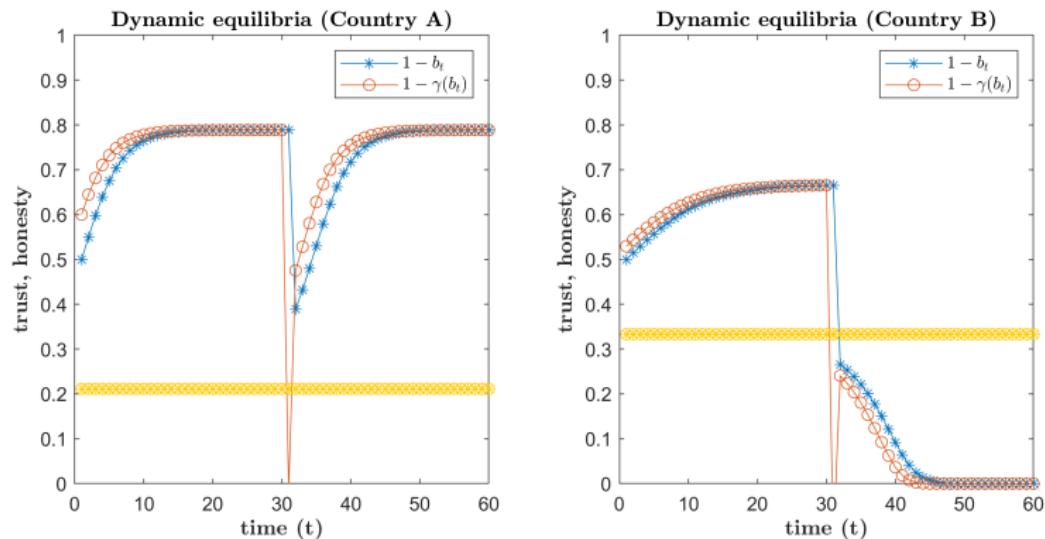
- Voters update trust based on past experience:
 - If politicians were **more misleading than expected**, trust falls.
 - If politicians were **more honest than expected**, trust rises.
- Simple updating rule (adaptive expectations): Trust moves gradually toward what would have been "correct" given observed behavior.

$$b_t = b_{t-1} + \alpha [\gamma(b_{t-1}) - b_{t-1}],$$

where $\alpha \in [0, 1]$ measures how quickly voters update. The term $\gamma(b_{t-1})$ captures the extent to which the candidate misrepresented her type in response to the voter's belief b_{t-1} in the previous period.

Steady-state

There are two steady states. The **high-trust** steady state is stable (small shocks fade out), while the **low-trust** steady state is unstable (small shocks can trigger a trust crisis).


How institutions affect trust recovery

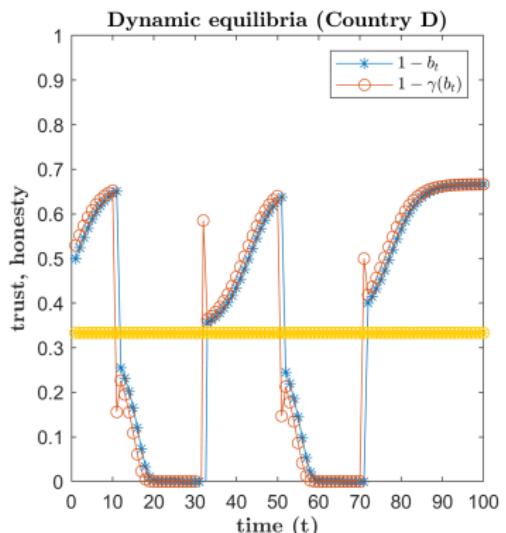
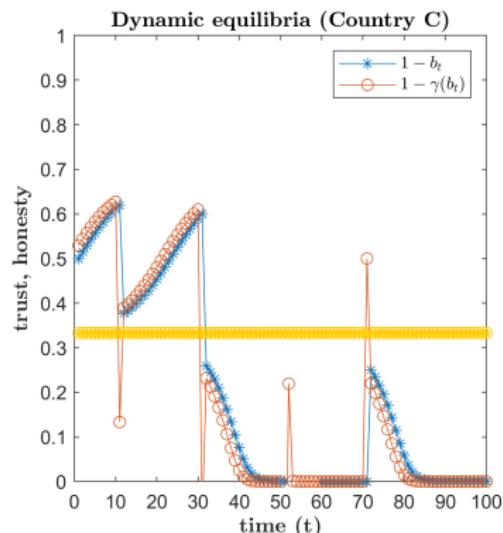
Lying cost c (discipline/accountability).

- Captures how costly it is for politicians to deviate from the truth.
- Higher c can reflect:
 - stronger transparency and monitoring (media freedom, fact-checking, audit capacity),
 - effective legal constraints and enforcement (courts, anti-corruption agencies),
 - stronger reputational penalties (credible scandal consequences, party discipline),
- *Economic intuition:* higher c makes exaggeration less attractive, helping trust recover after shocks.

An illustrative example of two countries I

The role of cost

Left panel: Country A with high lying cost, $c = 6$. Right panel: Country B, with low lying cost, $c = 4.5$. Parameter values: $b_0 = 0.5$, $\alpha = 0.5$

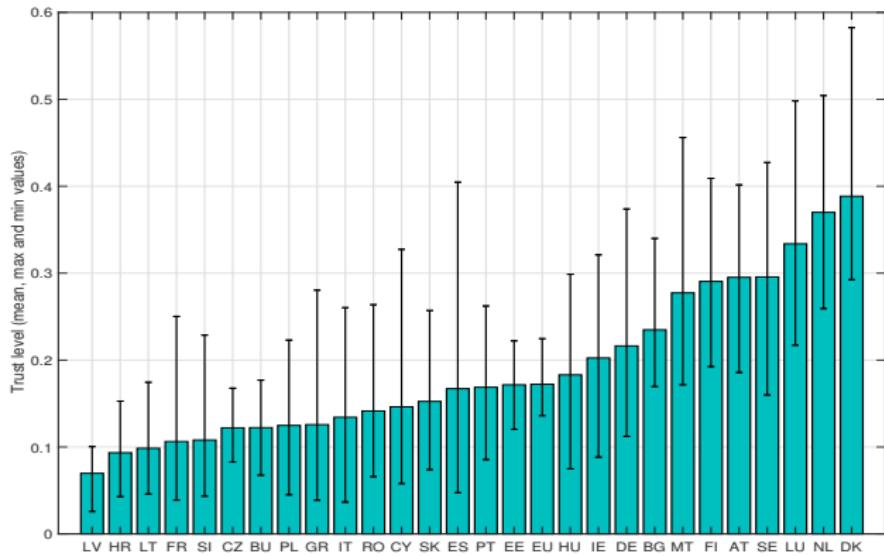


How institutions affect trust recovery

Responsiveness parameter α (speed of learning/sensitivity to experience).

- Captures how quickly voters update trust based on recent experience and perceived “surprises”.
- Higher α can reflect:
 - more attention to politics and more informative news (high information flow),
 - stronger emotional or retrospective voting / recency bias,
 - less stable partisan identities (more swing voters),
 - faster diffusion of information through social media.
- *Economic intuition:* higher α means trust reacts more sharply—recoveries can be faster, but downturns can also accelerate.

An illustrative example of two countries II

The role of responsiveness parameter, α


Left panel: Country C with $\alpha = 0.5$. Right panel: Country D with $\alpha = 0.8$. Parameter values: $c = 4.5$ and $b_0 = 0.5$.

Thank you!

Christmas activities: [Paper](#), [Replication Code](#)

Trust in Political Parties

Candidate's problem

The candidate's type is re-drawn in every period, and given voter's beliefs, the candidate solves the following problem,

$$\begin{aligned} \max_{y_{j,t}} \quad & V_{j,t} = u_m(\hat{x}_{j,t}) - c(x_{j,t} - y_{j,t})^2 \\ \text{s.t.} \quad & u_m(\hat{x}_{j,t}) = -(\hat{x}_{j,t})^2 \\ & \hat{x}_{j,t} = f(y_{j,t}) = \frac{y_{j,t}}{1 - b_t}. \end{aligned} \tag{II}$$

which gives candidate's optimal announcement,

$$y_{j,t} = \underbrace{\frac{c(1 - b_t)^2}{c(1 - b_t)^2 + 1}}_{1 - \gamma(b_t)} x_{j,t}. \tag{4}$$