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Sampling

A population is a collection of all the elements of interest, while a
sample is a subset of the population.

The reason we select a sample is to collect data to answer a research
question about a population.

The sample results provide only estimates of the values of the
population characteristics. With proper sampling methods, the sample
results can provide “good” estimates of the population characteristics.

A random sample from an infinite population is a sample selected such
that the following conditions are satisfied:

» Each element selected comes from the population of interest.
» Each element is selected independently.
% If the population is finite, then we sample with replacement...
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Lecture Outline

Simple random sampling

Distribution of the sample average

Large sample approximation to the distribution of the sample mean

» Law of Large Numbers
» Central Limit Theorem

Estimation of the population mean

» Unbiasedness
» Consistency
» Efficiency

Hypothesis test concerning the population mean

Confidence intervals for the population mean
» Using the #-statistic when n is small

Comparing means from different populations
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Simple Random Sampling — I

o Simple random sampling means that n objects are drawn randomly from
a population and each object is equally likely to be drawn

e LetYy,Y,,....Y, denote the 1st to the n th randomly drawn object. Under
simple random sampling
» The marginal probability distribution of Y; is the same for alli = 1,2, ...,n
and equals the population distribution of Y.
* because Y1, Y, ..., Y, are drawn randomly from the same population.
» Y, is distributed independently from Y5, ..., ¥;,. knowing the value of Y;
does not provide information on Y; for i # j

@ When Yy, Y, ..., Y, are drawn from the same population and are
independently distributed, they are said to be 1.1.D. random variables
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Simple Random Sampling
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Simple Random Sampling — II

Example
@ Let G be the gender of an individual (G = 1 if female, G = 0 if male)
e GisaBeroullirv. withE(G) = ug =Pr(G=1) =0.5
@ Suppose we take the population register and randomly draw a sample of
size n
» The probability distribution of G; is a Bernoulli with mean 0.5
» G, is distributed independently from G, ..., G,
@ Suppose we draw a random sample of individuals entering the building
of the accounting department

» This is not a sample obtained by simple random sampling and
Gi,G,,..., G, are not i.i.d
P> Men are more likely to enter the building of the accounting department!
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Sampling Distribution of the Sample Average
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The Sampling Distribution of the Sample Average — II

1 n
:;;Yi

@ Suppose that Y1, Y5, ..., Y, are L.1.D. and the mean & variance of the
population distribution of Y are respectively py and 0)2,
» The mean of (the sampling distribution of) Y is

E(Y) = ( ZY) ZE

» The variance of (the sampling distribution of) Y is

( ZY) 2ZVar +2—Z Z Cov(Y;, Y))

i=1 j=1,j#i
! Var(Y) + 0 1Var(Y) b
= —n = — S
n? n n

(Y) = py

Var(Y) =
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The Sampling Distribution of the Sample Average — I

Sampling Distribution of the Sample Average

@ The sample average Y of a randomly drawn sample is a random variable
with a probability distribution called the sampling distribution

1 n
:;;Yi

The individuals in the sample are drawn at random.

Thus the values of (Y;, Y5, -+ ,Y,) are random

Thus functions of (Y;,Y», - -, Y,), such as Y, are random: had a different

sample been drawn, they would have taken on a different value

» The distribution of over different possible samples of size 7 is called the
sampling distribution of Y.

» The mean and variance of are the mean and variance of its sampling
distribution, E(Y) and Var(Y).

» The concept of the sampling distribution underpins all of

statistics/econometrics.

vvyy
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Sampling Distribution of the Sample Average
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The Sampling Distribution of the Sample Average — 111

Example
@ Let G be the gender of an individual (G = 1 if female, G = 0 if male)

@ The mean of the population distribution of G is

E(G)

@ The variance of the population distribution of G is

=uc=Pr(G=1)=p=05

Var(G) = 0% = p(1 —p) = 0.5(1 — 0.5) = 0.25

@ The mean and variance of the average gender (proportion of women) G
in a random sample with n = 10 are

E(G) = pg=05
_ 1 1
Var(G) = ~og = 750.25 =0.025
n

L yacu@
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Sampling Distribution of the Sample Average
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The Finite-Sample Distribution of the Sample Average

@ The finite sample distribution is the sampling distribution that exactly
describes the distribution of Y for any sample size .

@ In general the exact sampling distribution of Y is complicated and
depends on the population distribution of Y.

@ A special case is when Yi, Y,, ..., Y, are IID draws from the N(py, 0%),

because in this case
2
_ O'Y
Y ~N (:U’Yv _)
n
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The Finite-Sample Distribution of the Average Gender G

@ Suppose we draw 999 samples of n = 2:

Sampling Distribution of the Sample Average

Sample 1 Sample 2 Sample 3 Sample 999
G G G G G, G G G G G G, G
1 0 05 1 1 1 0 I 05 0O 0 O

Sample distribution of average gender
999 samples of n=2

probability

4 5 b 8 1
sample average
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_ Sampling Distribution of the Sample Average
The Sampling Distribution of the Average Gender G

@ Suppose G takes on 0 or 1 (a Bernoulli random variable) with the
probability distribution

Pr(G=0)=p=05, Pr(G=1)=1-p=0.5
@ As we discussed above:

E(G)
Var(G)

ug =Pr(G=1)=p=0.5
oz =p(l —p)=0.5(1-0.5)=0.25

@ The sampling distribution of G depends on 7.

e Consider n = 2. The sampling distribution of G is
> Pr(G=0)=0.5*=0.25
> Pr(G=1/2)=2x05x%(1-0.5)=05
> Pr(G=1)=(1-0.5)2=025
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The Asymptotic Distribution of the Sample Average Y

@ Given that the exact sampling distribution of Y is complicated and given
that we generally use large samples in statistics/econometrics we will
often use an approximation of the sample distribution that relies on the
sample being large

o The asymptotic distribution or large-sample distribution is the
approximate sampling distribution of Y if the sample size becomes very
large: n — oc.

@ We will use two concepts to approximate the large-sample distribution of
the sample average

» The law of large numbers.
» The central limit theorem.
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The Law of Large Numbers (LLN)

Definition (Law of Large Numbers)

Suppose that
Q Y;,i=1,...,nare independently and identically distributed with
E(Y;) = py; and

@ large outliers are unlikely i.e. Var(Y;) = 0% < +oo0.

Then Y will be near py with very high probability when n is very large
(n — o0)

Yi,uly.

We also say that the sequence of random variables {Y,,} converges in
probability to the py, if for every € > 0

nli)IgOPr(H_/n — py| >¢e)=0.

We also denote this by plim(Y,) = uy

>yt

=

September 14, 2025

P. Konstantinou (AUEB)

13/56

The Law of Large Numbers (LLN)

Example: Gender G ~ Bernoulli(0.5,0.25)

Sample distribution of average gender
999 samples of n=2

Sample distribution of average gender
999 samples of n=10

5 254
44 24
= =
3 .34 3 157
8 38
o .24 o .14
[s8 Q.
b 054
ol ol o | L
0 2 4 5 6 8 1 0 2 4 5 6 8 i
sample average sample average
Sample distribution of average gender Sample distribution of average gender
999 samples of n=100 999 samples of n=250
1 .06
.08
2 2 044
3 .06+ 3
8 8
S .04 <]
[} a .02
“‘ “‘I
o4 ....:I"| "I.I . o4 .
0 2 4 5 B 8 1 0 2 4 5 6 8 1

sample average sample average

The Central Limit Theorem (CLT)

Definition (Central Limit Theorem)

Suppose that
Q Y;,i=1,...,nare independently and identically distributed with
E(Y;) = py; and

@ large outliers are unlikely i.e. Var(¥;) = o7 with 0 < 03 < +o0.

Then the distribution of the sample average Y will be approximately normal
as n becomes very large (n — 00)

The distribution of the the standardized sample average is approximately
standard normal for n — oo

2
YNN(:“’Y7&
n

Y—/,LY

oy/v/n

v
Ty

™ =
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The Central Limit Theorem (CLT)
Example: Gender G ~ Bernoulli(0.5,0.25)
Sample distribution of average gender Sample distribution of average gender
999 samples of n=2 999 samples of n=10

5 .25

>4 > 2

35 3 3 .15
8 8

© 2 S Kl

S S 05

0 T T T T T 0 T = wI T T T
-4 -2 0 2 4 -4 -2 0 2 4
sample average sample average
[ Finite sample distr. standardized sample average [ Finite sample distr. standardized sample average
Standard normal probability densitiy —— Standard normal probability densitiy
Sample distribution of average gender Sample distribution of average gender
999 samples of n=100 999 samples of n=250

.06
2 2

= = .04
Qo - Qo
© ©
el e}

o 2 .02
[s% o

0 T T T T
-4 -2 0 2
sample average sample average
[ Finite sample distr. standardized sample average [ Finite sample distr. standardized sample average
Standard normal probability densitiy Standard normal probability densitiy
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Asymptotic Approximations
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The Central Limit Theorem (CLT)

@ How good is the large-sample approximation?
* If Y; ~ N(py, 0%) the approximation is perfect.

* If ¥; is not normally distributed the quality of the approximation depends
on how close 7 is to infinity (how large n is)

% For n > 100 the normal approximation to the distribution of Y is
typically very good for a wide variety of population distributions.
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Estimator Properties

Estimation of the Population Mean — 1

@ Suppose we want to know the mean value of Y (uy) in a population, for
example
» The mean wage of college graduates.
» The mean level of education in Greece.
» The mean probability of passing the statistics exam.
@ Suppose we draw a random sample of size n with Yy, Y5, ..., ¥}, being IID
@ Possible estimators of py are:
> The sample average: ¥ = 1 3" Y,
> The first observation: ¥;
» The weighted average: ¥ = % (%Yl + %Yz + ...+ %Yn_l + %Yn) .
@ To determine which of the estimators, Y, Y| or Y is the best estimator of
wy we consider 3 properties.
@ Let /iy be an estimator of the population mean 1y
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Estimators and Estimates

Definition

An estimator is a function of a sample of data to be drawn randomly from a
population.

@ An estimator is a random variable because of randomness in drawing the
sample. Typically used estimators

B [
Sample Average:Y = — Z Y;, Sample variance: 52 =
"o

1 < _
— > (-7
i=1
Using a particular sample yy, y7, ..., ¥, we obtain
1 n
y= ;Zy,- ands§ =
i=1

which are point estimates. These are the numerical value of an estimator
when it is actually computed using a specific sample.

1 n

n—1+4
i=1
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Estimation of the Population Mean — II

@ Unbiasedness: The mean of the sampling distribution of fiy equals py

E(jiy) = py-

@ Consistency: The probability that /iy is within a very small interval of uy
approaches 1 if n — oo

fiy % py or Pr(|iy — py| <) =1

@ Efficiency: If the variance of the sampling distribution of fiy is smaller
than that of some other estimator fiy , fiy is more efficient

Var(fiy) < Var(fiy)
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e
Estimating Mean Wages — 1

Estimator Properties

@ Suppose we are interested in the mean wages (pre tax) pw of individuals
with a Ph.D. in economics/finance in Europe (true mean x,, = 60K). We
draw the following sample (n = 10) by simple random sampling

i 1 2 3 4 5
W, 47281.92 70781.94 55174.46 49096.05 67424.82

i 6 7 8 9
Wi

10
39252.85 78815.33 46750.78 46587.89 25015.71

@ The 3 estimators give the following estimates:
= 10
> W= W =52618.18
> W, = 47281.92
> W= GW 43w+ L+ IWo + 3Wo) = 49398.82
@ Unbiasedness: All 3 proposed estimators are unbiased
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> w=101w + 3w LW, W, Iso be sh b
= GWi+sWo+ ...+ 5W,_1 + 5W,) can also be shown to be
consistent
Weighted average as estimator of population mean Weighted average as estimator of population mean
999 samples of n=10 999 samples of n=100
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» However W is not a consistent estimator of gy .
First observation W1 as estimator of population mean  First observation W1 as estimator of population mean
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Estimating Mean Wages — 11

o Consistency:

> By the law of large numbers W 2y puw which implies that the probability
that W is within a very small interval of pyw approaches 1 if n — oo
Sample average as estimator of population mean

999 samples of n=10
.04 .03

Sample average as estimator of population mean
999 samples of n=100

probability
)
S
probability
S

2

[ 0 [

SEFSFSSFSSSFSS S S S S S SFSFSSSSFS S S S S S S
PFEFSFTIFIIIESSSSSISISESS S PFFFFFIFSISSS SIS S
CFESFTSELSEISESSSSISSISSS PSS IESSESSSISESSSS
P RSO PSP PR RSO PO

sample average sample average
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Estimating Mean Wages — 1V

o Efficiency: We have that
> Var(W) = 103,
> Var(W;) = o3,
> Var(W) = 1.25 03,
> Soforanyn > 2, W is more efficient than W; and w.

@ In fact Y is the Best Linear Unbiased Estimator (BLUE): it is the most
efficient estimator of py among all unbiased estimators that are weighted
averages of Y1, Y2, ..., ¥y,

* Let iy = % Z?Zl «;Y; be an unbiased estimator of py with «;
nonrandom constants. Then Y is more efficient than jiy

Var(Y) < Var(jiy)
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Basics
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Hypothesis Tests

Consider the following questions:

@ Is the mean monthly wage of Ph.D. graduates equal to 60000 euros?

@ Is the mean level of education in Greece equal to 12 years?

o Is the mean probability of passing the stats exam equal to 1?
These questions involve the population mean taking on a specific value py .
Answering these questions implies using data to compare a null hypothesis (a
tentative assumption about the population mean parameter)

Hy:E(Y) =pyp
to an alternative hypothesis (the opposite of what is stated in the Hy)
Hy :E(Y) # pyp

@ Alternative Hypothesis as a Research Hypothesis
» Example: A new sales force bonus plan is developed in an attempt to
increase sales.
> Alternative Hypothesis: The new bonus plan increase sales.
> Null Hypothesis: The new bonus plan does not increase sales.

P. Konstantinou (AUEB)
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Basics
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Hypothesis Tests

The Testing Process and Rejections

Level of significance = a

Hy: E(Y):ﬂY,o a2
Hy: E(Y)# uyy
Two-tail test
Hy: E(Y) < uyy
Hy: E(Y) > uyy

Right-tail test

Hy: E(Y)= py a
Hy: E(Y) < pyy

Left-tail test 0

P. Konstantinou (AUEB)
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Basics
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Hypothesis Tests: Terminology

@ The hypothesis testing problem (for the mean): make a provisional
decision, based on the evidence at hand, whether a null hypothesis is
true, or instead that some alternative hypothesis is true. That is, test

> Hy: E(Y) < Hy,0 VS. H : E(Y) > [y 0 (1-sided, >)
> Hy: E(Y) > Ky, 0 VS. H : E(Y) < Hy,0 (1-sided, <)
> H() : E(Y) = Hy,0 VS. H] : E(Y) 75 Hy .0 (2—31ded)

@ p-value = probability of drawing a statistic (e.g. Y) at least as adverse to
the null as the value actually computed with your data, assuming that the
null hypothesis is true.

e The significance level of a test (o) is a pre-specified probability of
incorrectly rejecting the null, when the null is true. Typical values are
0.01 (1%), 0.05 (5%), or 0.10 (10%).

> It is selected by the researcher at the beginning, and determines the critical
value(s) of the test.
> If the test-statistic falls outside the non-rejection region, we reject Hy.

P. Konstantinou (AUEB)
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p-Value Approach to Hypothesis Testing
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Hypothesis Testing using p-values

@ The p-value is the probability, computed using the test statistic, that
measures the support (or lack of support) provided by the sample for the
null hypothesis

> If the p-value is less than or equal to the level of significance «, the value
of the test statistic is in the rejection region.

» Reject Hy if the p-value < a.

> See also Annex

@ Rules of thumb

» If p-value is less than .01, there is overwhelming evidence to conclude H
is false.

» If p-value is between .01 and .05, there is strong evidence to conclude H
is false.

» If p-value is between .05 and .10, there is weak evidence to conclude Hj is
false.

» If p-value is greater than .10, there is insufficient evidence to conclude H,
is false.
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_ Hypothesis Tests for the Population Mean
Hypothesis Test for the Mean with o3 known — I

Decision Rules

@ The test statistic employed is obtained by converting the sample result
(y) to a z-value
Y= Hyp

N Uy/\/ﬁ
Ho : E(Y) < pyp
Hy :E(Y) > pyp
Upper-tail
Reject Hy if 7 > z,

<

Ho : E(Y) > py o
Hy :E(Y) < pyp
Lower-tail
Reject Hy if 7 < z,

H() . E(Y) = ,uy,()
Hi : E(Y) # o
Two-tailed
Reject Hy if z < —z4)2

orifz >z,

P. Konstantinou (AUEB)
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_ Hypothesis Tests for the Population Mean
Hypothesis Test for the Mean (0> known) — 1

Examples

o Example 1. A phone industry manager thinks that customer monthly
cell phone bill have increased, and now average over $52 per month. The
company wishes to test this claim. Assume o = 10$ is known and let
a = 0.10. Suppose a sample of 64 persons is taken, and it is found that
the average bill $53.1.

» Form the hypothesis to be tested

Hy : E(Y) < 52
Hy :E(Y) > 52

the mean is not over $52 per month
the mean is over $52 per month

» For a = 0.10, z9.10 = 1.28, so we would reject Hy if z > 1.28.
> We have n = 64 and y = 53.1, so the test statistic is

y—pyo 53.1-352
Z = =
oy/v/n  10//64

Hence Hj cannot be rejected.

P. Konstantinou (AUEB)
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_ Hypothesis Tests for the Population Mean
Hypothesis Test for the Mean with o3 known — 11

Decision Rules

X — Hy

Gx/x/ﬁ

7=

Hypothesis Tests for u

Lower-tail test: Upper-tail test: Two-tail test:
Ho: 102 p1g Ho 1< up Ho: 1= 10
Hitp <o Hitw>u Hitw# o

“Z, Zy Ly Zosp
Reject Hy if Z <-Z,, Reject H, if 2>, Reject Hy if 2 <- 27 /»
orz>Z,,
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_ Hypothesis Tests for the Population Mean
Hypothesis Test for the Mean (o> known) — 11

Examples

o Example 2. We would like to test the claim that the true mean # of TV
sets in EU homes is equal to 3 (assuming oy = 0.8 known). For this
purpose a sample of 100 homes is selected, and the average number of
TV sets is 2.84. Test the above hypothesis using a = 0.05.

» Form the hypothesis to be tested

Hy:E(Y) =3  the mean #is 3 TV sets per home
H, :E(Y) #3 the mean is not 3 TV sets per home
» For a = 0.05, 242 = 20.025 = 1.96 and —z9.025 = —1.96, so we would

reject Hy if |z] > 1.96.
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Examples

Example

Hypothesis Test for the Mean (o> known) — III

> We have n = 100 and y = 2.84, so the test statistic is

)7 — ,U,Y7() 2.84 -3 —0.16
= -

= -2 < —z0.005 = —1.96

oy/v/n  0.8/v/100  0.08

or |z] =2 > 1.96, Hence H is rejected. We conclude that there is
sufficient evidence that the mean number of TVs in EU homes is not equal
to 3.

P. Konstantinou (AUEB) September 14, 2025
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Test for the Mean with o7 unknown but n — oo

@ Suppose we would like to test

Ho : E(W) = 60000,  H; : E(W) # 60000,

using a sample of 250 individuals with a Ph.D. degree at the 5%
significance level.

@ We perform the following steps:
o
Q SE(W) = 3% = 3 — 1334.19.

W=15" W= 52w =61977.12.

T n

ToVn T V250 T

e Compute tact — W—pw .o —_ 61977.12—60000 — 1.4819.

SE(W) 1334.19

© Since we use a 5% significance level, we do not reject Hj because

|4t = 1.4819 < 29005 = 1.96.

@ Suppose we are interested in the alternative H; : E(W) > 60000. The
t-stat is exactly the same: t““/ = 1.4819. but now needs to be compared
with zg.05 = 1.645.
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Test for the Mean with o7 unknown but n — oo
Decision Rules

o Since $3 % o2, compute the standard error of ¥, SE(Y) = sy/,/n and
construct a z-ratio.

. X —
Hypothesis Tests for g t= o ~t.,

s, /~/n

Lower-tail test: Upper-tail test: Two-tail test:
Ho: 112 p1g Ho: < g Ho: = s
Hy: e <ug Hy: n> g Hy: e # po

'tn-l,a tn-l,(x - tn-l, al2 tn-l, al2
Reject Hy if t <t ; RejectHyif t >t Reject Hyif t<—1, ;0
ort>tap

Hypothesis Test for the Mean with o> unknown (n small)

Decision Rules
@ Consider a random sample of n observations from a population that is
normally distributed, AND variance o is unknown: Y; ~ N(puy, o%)

@ Converting the sample average (y) to a t-value...

. Y—uyo Y —uyo
Hypothesis Tests for £ = 240 0
ypothesis Tests for £(Y) t SED) ST th-1

Lower-tail test: Upper-tail test: Two-tail test:
Hy: E(Y) 2 po Hy: E(Y) <o Hy: E(Y) = o
Hy: E(Y) <po Hy: E(Y)> po Hy: E(Y) # 1o

“tn-1,a tn-l,a “~fn-1, 02 tn-l, o2
Reject Hy if t <1, 4 Reject Hy if £ > 1,1 4 Reject Hy if t<—1,.1
ort > 1,1 4n
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Hypothesis Test for the Mean with o> unknown (n small)
Example
@ The average cost of a hotel room in New York is said to be $168 per
night. A random sample of 25 hotels resulted in y = $172.50 and
sy = $15.40. Perform a test at the ov = 0.05 level (assuming the
population distribution is normal).
» Form the hypothesis to be tested
Hy : B(Y) = 168
Hy :E(Y) # 168
» For o = 0.05, with n = 25, Ii—1,a/2 = 124,0.025 = 2.0639 and
—t40.005 = 2.0639, so we would reject Hy if |7| > 2.0639.
> We have y = 172.50 and s, = 15.40, so the test statistic is

y— 172.50 — 168
_ YT HMvo _ = 1.46 < 174,0.025 = 2.0639

Cosy/vn 15.40/V/25
or |t| = 1.46 < 2.0639. Hence H, cannot be rejected. We conclude that

there is not sufficient evidence that the true mean cost is different than
$168.

the mean cost is $168
the mean cost is not $168

t
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Confidence Intervals for the Population Mean — 1I
@ The general formula for all confidence intervals is

Point Estimate 4 (Reliability Factor)(Standard Error)

Marginr)f Error
fu+c-SE(f1)

and using the sample average estimator
Y +c¢-SE(Y)

@ Instead of doing infinitely many hypothesis tests we can compute the
95% ((1 — «)%) confidence interval as

Y — Za/st(Y) < < Y + Za/ZSE(Y) or Y+ Za/ZSE(?)

N——

Margin of Error

39/56
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Confidence Intervals for the Population Mean — 1

@ Suppose we would do a two-sided hypothesis test for many different
values of 11 y. On the basis of this we can construct a set of values
which are not rejected at 5% (a%) significance level.

o If we were able to test all possible values of 19 y we could construct a
95% ((1 — a)%) confidence interval

Definition

A 95% ((1 — a))%) confidence interval is an interval that contains the true
value of py in 95% ((1 — a))%) of all possible random samples.

> A relative frequency interpretation: From repeated samples, 95% of all the
confidence intervals that can be constructed will contain the unknown true
population mean
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Confidence Intervals for the Population Mean — 111

@ When the sample size n is large (or when the population is normal and
o7 is known):
> A 90% confidence interval for py: [Y 4 1.645 - SE(Y)]
> A 95% confidence interval for py: [Y £ 1.96 - SE(Y)]
> A 99% confidence interval for py: [¥ £ 2.58 - SE(Y)]

» with SE(Y) = oy/+/n when variance is known or SE(Y) = sy/+/n when
unknown and is estimated.
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Confidence Intervals for the Population Mean — IV
Example

A sample of 11 circuits from a large normal population has a mean resistance
of 2.20 ohms. We know from past testing that the population standard

deviation is 0.35 ohms. Determine a 95% C.I. for the true mean resistance of
the population.

y+ za/zg—\/y_ = 220+ 1.96(0.35/v/11) = 2.20 + 0.2068
n
1.9932 < py < 2.4068

» We are 95% confident that the true mean resistance is between 1.9932 and
2.4068 ohms

> Although the true mean may or may not be in this interval, 95% of intervals

formed in this manner will contain the true mean
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Confidence Intervals for the Population Mean — VI

@ When the sample size n is small AND the population from which we
draw data is normal:

5 Sy 5 Sy 5 Sy
Y — tn—l,a/Z% <py <Y+ tn—l,a/Z% or Y=+ tn—l,a/Z%
Margin of Error

> A 90% confidence interval for py: [Y & #,—1,0.05 - SE(Y)]
> A 95% confidence interval for py: [Y =& #,—10.005 - SE(Y)]
> A 99% confidence interval for py: [¥ =& #,_1.0.005 - SE(Y)]

> with SE(Y) = sy/\/n
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Confidence Intervals for the Population Mean — V
Example

Using the sample of n = 250 individuals with a Ph.D. degree discussed above
(W = 61977.12, sy = 21095.37,SE(Y) = sw/+/n = 21095.37/1/250):

> A 90% C.I for py is: [61977.12 £ 1.64 - 1334.19] = [59349.39, 64604.85].
» A 95% C.I for py is: [61977.12 £ 1.96 - 1334.19] = [59774.38, 64179.86].

> A 99% C.I for py is: [61977.12 +2.58 - 1334.19] = [58513.94, 65440.30).
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Confidence Intervals for the Population Mean — VII

Example

A random sample of n = 25 has ¥ = 50 and s = 8. Form a 95% confidence
interval for p.

> df =n—1=24,5s0 t24’a/2 = 14,0.005 = 2.0639
it t,,_m/z% = 50+ 2.0639(8/v/25) = 50 + 3.302
n

46.698 < < 53.302
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Comparing Means from Different Populations — 1

Large Samples or Known Variances from Normal Populations

@ Suppose we would like to test whether the mean wages of men and
women with a Ph.D. degree differ by an amount dj:

Hy:pwym —pwr=do Ho:pwwm — pwr 7 do

@ To test the null hypothesis against the two-sided alternative we follow the
4 steps as above with some adjustments

@ Estimate (MW,M — MW,F) by (WM — V_VF)

P> Because a weighted average of 2 independent normal random variables is
itself normally distributed we have (using the CLT and the fact that

COV(WM, WF) = 0)
U%V,M i U%V,F)
ny nr

September 14, 2025

Wy — We ~N (MW,M — Kw,F,
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Comparing Means from Different Populations — III
Large Samples or Known Variances from Normal Populations
Example

Suppose we have random samples of 500 men and 500 women with a Ph.D.
degree and we would like to test that the mean wages are equal:

Ho:pwy —pwr=0 Hy:pwy —pwr #0

We obtained Wy, = 64159.45, Wr = 53163.41, swm = 18957.26, and
sw,r = 20255.89. We have:

Q Wy — W = 64159.45 — 53163.41 = 10996.04.
@ SE(Wy — Wr) = 1240.709.
e tact —

© Since we use a 5% significance level, we reject Hy because
|1%!| = 8.86 > 1.96

(Wyu—Wr)—0 __ 10996.04 __ 3.86
SE(Wy—Wyp) _ 1240709 — ©-°9-
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Comparing Means from Different Populations — 1I

Large Samples or Known Variances from Normal Populations

@ Estimate o,y and ow f to obtain SE(Wy — Wr):

= = Sy | Swr
SE(WM — WF) = — 4+ —
ny nr
© Compute the #-statistic
fact _ (WM — V_VF)__ do
SE(Wy — Wp)

@ Reject Hy at a 5% significance level if [#*“/| > 1.96 or if the
p-value< 0.05.
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Confidence Interval for the Difference in Population Means

@ The method for constructing a confidence interval for 1 population mean
can be easily extended to the difference between 2 population means.

@ A hypothesized value of the difference in means dy will be rejected if
|f| > 1.96 and will be in the confidence set if |¢| < 1.96.

@ Thus the 95% confidence interval for uw y — pw, r are the values of dy
within 4-1.96 standard errors of (Wy; — Wr).

@ So a95% confidence interval for puw p — pw F 1s

(Wy — WEg) £ 1.96 - SE(Wy, — Wp)
10996.04 + 1.96 - 1240.709
8561.34, 13430.73]

September 14, 2025 48/56

P. Konstantinou (AUEB)




Testing Population Mean Differences

Normal Populations, Unknown Variances o and o but Assumed Equal

Testing for Equal Means from Different Populations

(X—Y) —dy (X—Y)—do
T OSER - . oy e
V(3/mx) + (s3/ny)
—1)s% —1)s3
where s; = (nx Jsx + (ny )5y

ny +ny —2

@ The C.I is constructed as (X — V) =17, 1, 5 /- SE(X — V).

e Recall ux = E(X), uy = E(Y)
Hy:px —py >do | | Ho: px — py < do
Hy:px —py <do| | Hy:px — py > do
Lower-tail Upper-tail
Reject Hy if t < 1, Reject Hy if t > ¢,

Hy:px —py =do
Hy @ px — py # do
Two-tailed
Reject Hy if |#| > t, /5
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Testing Population Mean Differences — 11
Example: Normal Populations, Unknown Variances o3 and o3 but Assumed Equal
» Note that df = ny + ny —

the test is 144.0.025 = 2.0154
» The pooled variance is:

Testing for Equal Means from Different Populations

o (ax—Dsg+ (ny —1)sy (21 —1)1.30 + (25 — 1)1.167

=21 4+ 25 — 2 = 44, so the critical value for

nx+l’ly—2 (21—1)4—(25—1)
1.5021

» The test statistic is
F—y)—do _ (327-253)-0
V) + (3/mr) /15021 (4 + %)

Since [°"| > 144 0.005 = 2.0154, we reject Hy at o = 0.05. We conclude
that there is evidence of a difference...

@ The C.1. is constructed as (X — Y) + baxny—2,0/2 ° SE(X —Y)

act
t —

= 2.040.
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Testing Population Mean Differences — I

Example: Normal Populations, Unknown Variances o and o but Assumed Equal

@ You are a financial analyst for a brokerage firm. Is there a difference in
dividend yield between stocks listed on the NYSE & NASDAQ? You
collect the following data:

NYSE NASDAQ

Number: 21 25
Sample mean: 3.27 2.53
Sample std. dev.: 1.30 1.16

Assuming both populations are approximately normal with equal
variances, is there a difference in average yield (v = 0.05)?
» The hypothesis of interest is

Hy : pnyse — pinaspag = 0
H\ : pnyse — tnaspap 7 0

Hy : pnyse = Hnaspag
H\ : linyse 7 INASDAQ

or
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T e Bptiag o |
Annex: Hypothesis Tests — 1

Employing the p-value

@ Suppose we have a sample of n observations (they are assumed //D) and
compute the sample average Y. The sample average can differ from py o
for two reasons

@ The population mean sy is not equal to puy o (Hp is not true)
@ Due to random sampling Y # py = puy o (Ho is true)

e To quantify the second reason we define the p-value. The p-value is the
probability of drawing a sample with Y at least as far from py g as the
value actually observed, given that the null hypothesis is true.

p-value = I:I(f [1Y — pyol > [Y" = pyol],

where Y% is the value of Y actually observed
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Annex: Hypothesis Tests — 11

Employing the p-value
@ To compute the p-value, you need the to know the sampling distribution
of Y, which is complicated if n is small. With large n the CLT states that

2
?NN(M}’a&)a
n

which implies that if the null hypothesis is true:

Y —
TTHYO N, 1)
oy
n
@ Hence
Y _ Yact _ Yact _
p-value = Pr Hr,0 > PYoll — 2o | — Br0
Hy o ol ol
n n n
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Annex: Hypothesis Tests — 1

Computing the p-value when o7 is unknown

e In practice o2 is usually unknown and must be estimated

e The sample variance S is the estimator of 63 = E [(Y — py)?], defined
as

n—14%
i=1
» division by n — 1 because we ‘replace’ piy by ¥ which uses up 1 degree of
freedom
» if Yy, Y,,..., Y, are IID and E(Y*) < oo, then S% 2 o7 (Law of Large
Numbers)

@ The sample standard deviation Sy = 4 /§2. is the estimator of oy.
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Annex: Hypothesis Tests — III

Employing the p-value

The p-value is the shaded
area in the graph

{7 act
Y&y
Oy

o4

e For large n, p-value = the probability that a N(0, 1) random variable falls

Yact_
—— 8 where oy = oy/\/n

outside ’
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Annex: Hypothesis Tests — 11

Computing the p-value when o3 is unknown

@ The standard error SE(Y) is an estimator of oy

Sy

N

@ Because S is a consistent estimator of o> we can (for large n) replace

2
Oy = SY
\/—b SE(Y) = —

@ This implies that when a% is unknown and Y1, Y», ..., Y, are IID the
p-value is computed as

SE(Y) =

Y — py o

—value =2o | — —
b ( SE(Y)
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