ΕΡΩΤΗΜΑ 1ο: Εξαγωγή των Βασικών Περιγραφικών Στατιστικών

Βήμα 1ο: Περιηγηθείτε στο περιβάλλον της βάσης δεδομένων της Παγκόσμιας Τράπεζας \rightarrow <u>https://data.worldbank.org/indicator</u>

Βήμα 2ο: Επιλέξτε 4 μεταβλητές του ενδιαφέροντός σας . . .

Βήμα 3ο: Επιλέξτε τη χώρα (ή το γκρουπ χωρών σας) i και ορίστε την χρονική περίοδο της μελέτης t ... (μπορεί να έχετε δεδομένα διαστρωματικά, χρονολογικά ή πάνελ)

Δείτε πίσω 3 ενδεικτικά παραδείγματα ...

ΕΡΩΤΗΜΑ 1ο: Εξαγωγή των Βασικών Περιγραφικών Στατιστικών

Έστω πως επιλέγω τις παρακάτω μεταβλητές:

- 1. <u>Gdp growth</u> (annual %)
- 2. <u>Urban population</u> (% of total population)
- 3. Access to electricity (% of population)
- 4. Government expenditure on education, total (% of GDP)

Η βάση δεδομένων μας θα είναι κάπως έτσι

(δείτε στις επόμενες διαφάνειες):

Country	year	GDP growth (annual %)	Urban population (% of total population)	Access to electricity (% of population)	Government expenditure on education (% of gdp)
Australia	2010	2,22	85,18	100,00	6,15
Austria	2010	1,81	57,39	100,00	5,70
Belgium	2010	2,71	97,65	100,00	6,44
Bulgaria	2010	1,56	72,30	93,50	3,85
Canada	2010	3,09	80,93	100,00	5,35
Cyprus	2010	2,28	67,55	100,00	6,52
Czechia	2010	2,71	73,25	100,00	4,03
Germany	2010	4,15	76,96	100,00	5,09
Denmark	2010	1,58	86,79	100,00	8,55
Spain	2010	0,09	78,44	100,00	4,85
Finland	2010	3,17	83,77	100,00	6,50
France	2010	2,00	78,36	100,00	5,64
United Kingdom	2010	2,23	81,30	100,00	5,69
Greece	2010	-5,69	76,29	100,00	4,14
Hungary	2010	1,08	68,91	100,00	4,72

διαστρωματικά δεδομένα

Country	year	GDP growth (annual %)	Urban population (% of total population)	Access to electricity (% of population)	Government expenditure on education (% of gdp)
Greece	2010	-5,69	76,29	100,00	4,14
Greece	2011	-9,87	76,64	100,00	4,51
Greece	2012	-8,33	77,00	100,00	4,58
Greece	2013	-2,27	77,35	100,50	4,49
Greece	2014	0,79	77,70	100,00	4,32
Greece	2015	-0,22	78,04	100,00	3,66
Greece	2016	-0,03	78,38	100,00	4,01
Greece	2017	1,47	78,72	100,00	3,47
Greece	2018	2,06	79,05	100,00	3,59
Greece	2019	2,27	79,38	100,00	3,58
Greece	2020	-9,19	79,71	100,00	4,49
Greece	2021	8,65	80,03	100,00	4,08
Greece	2022	5,74	80,35	100,00	
Greece	2023	2,33	80,67	100,00	

χρονολογικά δεδομένα

Country	year	GDP growth (annual %)	Urban population (% of total population)	Access to electricity (% of population)	Government expenditure on education (% of gdp)
Greece	2010	-5,69	76,29	100,00	4,14
Italy	2010	1,52	68,32	100,00	4,33
Spain	2010	0,09	78,44	100,00	4,85
Greece	2011	-9,87	76,64	100,50	4,51
Italy	2011	0,69	68,44	100,00	4,11
Spain	2011	-0,63	78,67	100,00	4,74
Greece	2012	-8,33	77,00	100,00	4,58
Italy	2012	-3,12	68,68	100,00	4,05
Spain	2012	-2,86	78,90	100,00	4,48
Greece	2013	-2,27	77,35	100,00	4,49
Italy	2013	-1,81	68,97	100,00	4,14
Spain	2013	-1,42	79,13	100,00	4,34
Greece	2014	0,79	77,70	100,00	4,32
Italy	2014	-0,00	69,27	100,00	4,06
Spain	2014	1,52	79,36	100,00	4,30

panel δεδομένα

ΕΡΩΤΗΜΑ 1ο: Εξαγωγή των Βασικών Περιγραφικών Στατιστικών

Βήμα 4ο: Αφού φτιάξετε τη βάση δεδομένων μας υπολογίστε στο φύλλο εργασίας, με τη βοήθεια των σχετικών συναρτήσεων, τα βασικά περιγραφικά στατιστικά ...

=AVERAGE(...) → μέση τιμή ή μέσος όρος

- **=MEDIAN(…)** → διάμεσος
- <mark>=STDEV(…)</mark> → τυπική απόκλιση
- <mark>=ΜΑΧ(…)</mark> → μέγιστη τιμή
- <mark>=ΜΙΝ(…)</mark> → ελάχιστη τιμή

ΕΡΩΤΗΜΑ 1ο: Εξαγωγή των Βασικών Περιγραφικών Στατιστικών

Βήμα 4ο: Αφού φτιάξετε τη βάση δεδομένων μας υπολογίστε στο φύλλο εργασίας, με τη βοήθεια των σχετικών συναρτήσεων, τα βασικά περιγραφικά στατιστικά ...

=QUARTILE(... ;1) \rightarrow πρώτο τεταρτημόριο

=QUARTILE(... ;3) → τρίτο τεταρτημόριο

=SKEW(...) → συντελεστής ασυμμετρίας

<mark>=KURT(...)</mark> → συντελεστής κύρτωσης

ΕΡΩΤΗΜΑ 1ο: Εξαγωγή των Βασικών Περιγραφικών Στατιστικών

Βήμα 5ο: Κατασκευάστε τον πίνακα με τα βασικά περιγραφικά στατιστικά των μεταβλητών σας ...

	GDP growth (annual %)	Urban population (% of total population)	Access to electricity (% of population)	Government expenditure on education (% of gdp)
μέση τιμή	1,67	77,67	99,57	5,55
διάμεσος	2,22	78,36	100	5,64
τυπ. απόκλιση	2,25	9,42	1,68	1,21
μέγιστο	4,15	97,65	100	8,55
ελάχιστο	-5,69	57,39	93,5	3,85
πρώτο τεταρτ.	1,57	72,775	100	4,785
τρίτο τεταρτ.	2,71	82,535	100	6,295
ασυμμετρία	-2,74	-0,08	-3,87	0,81
κύρτωση	9,08	1,23	15,00	1,38
εύρος	9,84	40,26	6,5	4,7
ενδοτ. εύρος	1,14	9,76	0	1,51
συντ. μεταβλ.	134,92	12,13	1,69	21,90

ΕΡΩΤΗΜΑ 1ο: Εξαγωγή των Βασικών Περιγραφικών Στατιστικών

Βήμα 6ο: Χρησιμοποιήστε το περιβάλλον της εφαρμογής και εξάγετε τα περιγραφικά στατιστικά σας → δείτε εδώ:

https://www.statskingdom.com/descriptive-statistics-calculator.html

growth	urban_pop	access_elect	exp_educ
2.22	85.18	100	6.15
1.81	57.39	100	5.7
2.71	97.65	100	6.44
1.56	72.3	93.5	3.85
3.09	80.93	100	5.35
2.28	67.55	100	6.52
2.71	73.25	100	4.03
4.15	76.96	100	5.09
1.58	86.79	100	8.55
0.09	78.44	100	4.85
3.17	83.77	100	6.5
2	78.36	100	5.64
2.23	81.3	100	5.69
-5.69	76.29	100	4.14
1.08	68.91	100	4.72

Groups		growth	urban_p	ор	access_elec	t	exp_educ			
Num of observatio	ns	15	15		15		15			
Minimum		-5.69	-5.69 57.39		93.5		3.85			
Maximum		4.15	4.15 97.65		100		8.55			
Mean (x̄)		1.666	1.666 77.6713		99.5667		5.548			
Standard Deviation	n (S)	2.2477	2.2477 9.4191		1.6783		1.2149			
Q1		1.57	72.775		100		4.785			
Q3		2.71	82.535		100		6.295			
Skewness		-2.7408	-0.08188	1	-3.873		0.8077			
Excess kurtosis	ixcess kurtosis		1.2272		15		1.3755			
	GDP growth (annual %)	Urban population (% o	f total population)	Access to electricit	ty (% of population)	Government expenditure	e on education (% of gdp)			
μέση τιμή	1,67		77,67		99,57		5,55			
διάμεσος	2,22		78,36		100		5,64			
τυπ. απόκλιση	2,25		9,42		1,68		1,21			
μέγιστο	4,15		97,65		100		8,55			
ελάχιστο	-5,69		57,39		93,5		3,85			
πρώτο τεταρτ.	1,57		72,775		100		4,785			
τρίτο τεταρτ.	2,71		82,535		100		6,295			
ασυμμετρία	-2,74		-0,08		-3,87		0,81			
κύρτωση	9,08		1,23		15,00		1,38			
εύρος	9,84		40,26		6,5		4,7			
ενδοτ. εύρος	1,14		9,76		0		1,51			
συντ. μεταβλ.	134,92		12,13		1,69		21,90			

ΕΡΩΤΗΜΑ 2ο: Κατασκευή Διαγράμματος Συχνοτήτων (βλ. ιστόγραμμα)

Βήμα 1ο: Χρησιμοποιήστε το περιβάλλον της εφαρμογής → https://www.statskingdom.com

Βήμα 2ο: Πηγαίντε στο "visualization"

Βήμα 3ο: Επιλέξτε "histogram"

Βήμα 4ο: Εισάγετε τις τιμές των μεταβλητών σας ... (αν υπάρχουν, αντικαταστήστε με.)

Βήμα 5ο: Πατήστε "calculate"

ΕΡΩΤΗΜΑ 20: Κατασκευή Διαγράμματος Συχνοτήτων (βλ. ιστόγραμμα)

Frequency

ΕΡΩΤΗΜΑ 20: Κατασκευή Διαγράμματος Συχνοτήτων (βλ. ιστόγραμμα)

Histogram

Frequency

ΕΡΩΤΗΜΑ 2ο: Κατασκευή Διαγράμματος Συχνοτήτων (βλ. ιστόγραμμα)

Frequency

ΕΡΩΤΗΜΑ 3ο: <u>Τυποποιημένη Κανονική Κατανομή</u>

Βήμα 1ο: Επιλέξτε μια μεταβλητή από το περιβάλλον της βάσης δεδομένων της Παγκόσμιας Τράπεζας → <u>https://data.worldbank.org/indicator</u>

Βήμα 2ο: Επιλέξτε ένα συγκεκριμένο έτος t ...

Βήμα 3ο: Θεωρείστε πως γνωρίζετε το πλήθος των παρατηρήσεων του πληθυσμού (*υπολογίστε με τη βοήθεια του Η/Υ την μέση τιμή και την τυπική απόκλιση* …)

Βήμα 4ο: Υπολογίστε 3 πιθανότητες της μορφής P(Z<a), P(Z>a), P(a<Z<b)

Δείτε στην επόμενη διαφάνεια μερικά παραδείγματα

ΕΡΩΤΗΜΑ 3ο: <u>Τυποποιημένη Κανονική Κατανομή</u>

Έστω πως επιλέγω τον παράγοντα "<u>Rural Population</u>" και πιο συγκεκριμένα τις τιμές του έτους <mark>1980</mark>. Με τη βοήθεια των συναρτήσεων στο φύλλο εργασίας υπολογίζω την **μέση τιμή (μ)** και την **τυπική απόκλιση (σ)** του πληθυσμού

→ χρησιμοποιήστε τις συναρτήσεις =AVERAGE(...) και =STDEV(...)

Βρίσκω <mark>μ</mark> = **53,26** και <mark>σ</mark> = **24,53**

Υπολογίζω τα <mark>Ρ(X>60)</mark>=; , <mark>Ρ(X<40)</mark>=; , <mark>Ρ(30<X<50)</mark>=;

P(X>60) = P[Z>(60-53,26)/24,53] = P[Z>0,2747]= 1 - P[Z<0,2747] = 1 - 0,6064 = 0,3936 (39,36%)

ΕΡΩΤΗΜΑ 3ο: <u>Τυποποιημένη Κανονική Κατανομή</u>

Έστω πως επιλέγω τον παράγοντα "<u>Rural Population</u>" και πιο συγκεκριμένα τις τιμές του έτους <mark>1980</mark>. Με τη βοήθεια των συναρτήσεων στο φύλλο εργασίας υπολογίζω την **μέση τιμή (μ)** και την **τυπική απόκλιση (σ)** του πληθυσμού

→ χρησιμοποιήστε τις συναρτήσεις =AVERAGE(...) και =STDEV(...)

Βρίσκω <mark>μ</mark> = **53,26** και <mark>σ</mark> = **24,53**

Υπολογίζω τα <mark>P(X>60)</mark>=; , <mark>P(X<40)</mark>=; , <mark>P(30<X<50)</mark>=;

P(X<40) = P[Z<(40-53,26)/24,53] = P[Z<-0,54] = 0,2946 (29,46%)

ΕΡΩΤΗΜΑ 3ο: <u>Τυποποιημένη Κανονική Κατανομή</u>

Έστω πως επιλέγω τον παράγοντα "<u>Rural Population</u>" και πιο συγκεκριμένα τις τιμές του έτους <mark>1980</mark>. Με τη βοήθεια των συναρτήσεων στο φύλλο εργασίας υπολογίζω την **μέση τιμή (μ)** και την **τυπική απόκλιση (σ)** του πληθυσμού

→ χρησιμοποιήστε τις συναρτήσεις =AVERAGE(...) και =STDEV(...)

Βρίσκω <mark>μ</mark> = **53,26** και <mark>σ</mark> = **24,53**

Υπολογίζω τα <mark>Ρ(X>60)</mark>=; , <mark>Ρ(X<40)</mark>=; , <mark>Ρ(30<X<50)</mark>=;

P(30<X<50) = P[(30-53,26)/24,53<Z<(50-53,26)/24,53]

= *P*[-0,94<*Z*<-0,13] = *P*[*Z*<-0,13] - *P*[*Z*<-0,94] = 0,4483-0,1736=**0,2747 (27,47%)**

ΕΡΩΤΗΜΑ 3ο: Τυποποιημένη Κανονική Κατανομή

Βήμα 5ο: Ελέγξτε τα αποτελέσματά σας στο περιβάλλον της εφαρμογής → https://www.statskingdom.com/distribution-calculator.html

Distribution		Mean (µ):					
Normal distribution	\$	0					
Standard deviation (o):		Probability (p) or Score	(x)				
1	٢	x ₁			\$		
x ₁ - score		Rounding:		Chart Rounding:			
1,644854	0	6	\$	2	\$		

After the first run, calculate on every field change

Calculate

Clear

Normal	Binomial	t-distribution	Poisson	Chi-Square	F distribut	ion Exponentia	Weibull	Unifo	rm		
Distrib	ution Il distribution				\$	Mean (μ): 53.26				٢	
Standar 24,53	rd deviation (σ):			Probability (p) or Score (x)						
<i>x</i> ₁ - sco	ore					Rounding:			Chart Rounding:		
60					٢	6		\$	2	\$	
Calculate	er the first run	n, calculate on eve	ery field char	nge							
$Z_1 = 0.27$ $P(X \le 60)$ $P(X > 60)$ $Probabilit$	4766) = 0.608252) <mark>= 0.391748</mark> ty density: f(6	2. 60) = 0.015661 .									

Normal	Binomial	t-distribution	Poisson	Chi-Square	F distribut	ion Exponenti	al Weibull l	Jniform		
Distrib	ution					Mean (µ):				
Norma	al distribution				¢	53.26				٢
Standa	rd deviation ((σ):				Probability (p) or	Score (x)			
24,53	3				٢	x ₁				\$
x ₁ - sco	ore					Rounding:		Chart Roun	ding:	
40					٢	6		\$ 2		\$
C Aft	er the first ru	n, calculate on ev	ery field cha	nge						
Calculate	e Clear									
$Z_1 = -0.5$ $P(X \le 40)$ $P(X > 40)$ $Probabili$	40563 = 0.29440) = 0.70559 ty density: f(4	5. 5. 40) = 0.0140527								

Normal Binomial t-distribution	Poisson Chi-Square F distribu	ion Exponential Weibull Uniform
Distribution		Mean (µ):
Normal distribution	\$	53.26
Standard deviation (o):		Probability (p) or Score (x)
24,53	٢	x ₁ , x ₂ \$
x ₁ - score		x ₂ - score
30	٢	50 🕄
Rounding:	Chart Rounding:	
6	2 \$	
After the first run, calculate on ev	very field change	
Calculate		
$Z_1 = -0.948227, Z_2 = -0.132898.$ P(30 $\leq X \leq 50$) = 0.27563.		
P(X ≤ 30) = 0.171507 . P(X > 50) = 0.552863 .		

ΕΡΩΤΗΜΑ 4ο: <u>Δεσμευμένη Πιθανότητα</u>

Βήμα 1ο: Κατασκεύασε έναν δειγματικό χώρο Ω με όλα τα πιθανά αποτελέσματα ενός πειράματος τύχης ...

Βήμα 2ο: Κατασκεύασε δύο εξαρτημένα ενδεχόμενα Α και Β ...

Βήμα 3ο: Υπολόγισε τις δεσμευμένες πιθανότητες P(A/B), P(B/A)

Δείτε στην επόμενη διαφάνεια μερικά παραδείγματα

ΕΡΩΤΗΜΑ 4ο: Δεσμευμένη Πιθανότητα

Έστω ένα πείραμα τύχης → "*ρίχνω το ζάρι δύο φορές*" …

Το ενδεχόμενο Α (π.χ <u>να φέρω τουλάχιστον μια φορά 6</u>)

 \rightarrow A ={1,6 2,6 3,6 4,6 5,6 6,1 6,2 6,3 6,4 6,5 6,6}

Το ενδεχόμενο Β (π.χ να φέρω άθροισμα πάνω από το 10)

 \rightarrow B ={5,6 6,5 6,6}

ΕΡΩΤΗΜΑ 4ο: Δεσμευμένη Πιθανότητα

Έστω ένα πείραμα τύχης → "*ρίχνω το ζάρι δύο φορές*" …

Το ενδεχόμενο Α (π.χ *να φέρω τουλάχιστον μια φορά 6*)

→ A ={1,6 2,6 3,6 4,6 5,6 6,1 6,2 6,3 6,4 6,5 6,6} → P(A)=11/36=0,3055

Το ενδεχόμενο Β (π.χ να φέρω άθροισμα πάνω από το 10)

 \rightarrow B ={5,6 6,5 6,6} \rightarrow P(B)=3/36=0,0833

ΕΡΩΤΗΜΑ 4ο: <u>Δεσμευμένη Πιθανότητα</u>

Έστω ένα πείραμα τύχης → "*<u>ρίχνω το ζάρι δύο φορές</u>" …*

P(A)=11/36=0,3055

P(B)=3/36=0,0833

```
ТОМН: Р(А тоμή В) =0,0833
```

P(A/B) = 0,0833/0,0833 = 1

P(B/A) = 0,0833/0,3055=0,2727 (27,27%)

ΕΡΩΤΗΜΑ 5ο: Διωνυμική Κατανομή

Βήμα 1ο: Κατασκεύασε ένα υποθετικό παράδειγμα πειράματος n επαναλήψεων με δύο πιθανά ενδεχόμενα και γνωστή την πιθανότητα να συμβεί ένα από αυτά

Βήμα 2ο: Υπολόγισε τις πιθανότητες

να συμβεί Α φορές η επιτυχία <mark>Ρ(Ε=Α)=;</mark>

να συμβεί τουλάχιστον Β φορές η επιτυχία P(E>=B)=;

να συμβεί το πολύ Γ φορές η επιτυχία <mark>Ρ(Ε<=Γ)=;</mark>

Δείτε στην επόμενη διαφάνεια μερικά παραδείγματα

ΕΡΩΤΗΜΑ 5ο: Διωνυμική Κατανομή

Έστω ένα εργοστάσιο που παράγει προϊόντα με πιθανότητα να βγει ελαττωματικό προϊόν ίση με P(E)=0,05 (5%).

<u>Ποια η πιθανότητα να συναντήσω 3 ελαττωματικά προϊόντα σε ένα δείγμα</u> <u>n=20 παρατηρήσεων</u>;;;

P(E=3) = 0,0596 (5,96%)

Binomial Probability Distribution table, continued.

				1							р										
1	x	0.01	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5	0.55	0.6	0.65	0.7	0.75	0.8	0.85	0.9	0.95
19	10				0.0001	0.0013	0.0066	0.0220	0.0528	0.0976	0.1449	0.1762	0.1771	0.1464	0.0980	0.0514	0.0198	0.0051	0.0007		
	11					0.0003	0.0018	0.0077	0.0233	0.0532	0.0970	0.1442	0.1771	0.1797	0.1489	0.0981	0.0487	0.0166	0.0032	0.0002	
	12						0.0004	0.0022	0.0083	0.0237	0.0529	0.0961	0.1443	0.1797	0.1844	0.1525	0.0974	0.0443	0.0122	0.0014	
	13						0.0001	0.0005	0.0024	0.0085	0.0233	0.0518	0.0949	0.1451	0.1844	0.1916	0.1574	0.0955	0.0374	0.0069	0.0002
	14							0.0001	0.0006	0.0024	0.0082	0.0222	0.0497	0.0933	0.1468	0.1916	0.2023	0.1636	0.0907	0.0266	0.0018
	15								0.0001	0.0005	0.0022	0.0074	0.0203	0.0467	0.0909	0.1491	0.2023	0.2182	0.1714	0.0798	0.0112
	16									0.0001	0.0005	0.0018	0.0062	0.0175	0.0422	0.0869	0.1517	0.2182	0.2428	0.1796	0.0533
	17										0.0001	0.0003	0.0013	0.0046	0.0138	0.0358	0.0803	0.1540	0.2428	0.2852	0.1787
	18												0.0002	0.0008	0.0029	0.0093	0.0268	0.0685	0.1529	0.2852	0.3774
	19													0.0001	0.0003	0.0011	0.0042	0.0144	0.0456	0.1351	0.3774
20		0.8179	0.3585	0.1216	0.0388	0.0115	0.0032	0.0008	0.0002												
	1	0.1652	0.3774	0.2702	0.1368	0.0576	0.0211	0.0068	0.0020	0.0005	0.0001										
	2	0.0159	0.1007	0.2852	0.2293	0.1369	0.0669	0.0278	0.0100	0.0031	0.0008	0.0002									
	3	0.0010	0.0596	0.1901	0.2428	0.2054	0.1339	0.0716	0.0323	0.0123	0.0040	0.0011	0.0002								
	4		0.0133	0.0898	0.1821	0.2182	0.1897	0.1304	0.0738	0.0350	0.0139	0.0046	0.0013	0.0003							
	5		0.0022	0.0319	0.1028	0.1746	0.2023	0.1789	0.1272	0.0746	0.0365	0.0148	0.0049	0.0013	0.0003						
	6		0.0003	0.0089	0.0454	0.1091	0.1686	0.1916	0.1712	0.1244	0.0746	0.0370	0.0150	0.0049	0.0012	0.0002					
	7			0.0020	0.0160	0.0545	0.1124	0.1643	0.1844	0.1659	0.1221	0.0739	0.0366	0.0146	0.0045	0.0010	0.0002				
	8			0.0004	0.0046	0.0222	0.0609	0.1144	0.1614	0.1797	0.1623	0.1201	0.0727	0.0355	0.0136	0.0039	0.0008	0.0001			
	9			0.0001	0.0011	0.0074	0.0271	0.0654	0.1158	0.1597	0.1771	0.1602	0.1185	0.0710	0.0336	0.0120	0.0030	0.0005			
	10				0.0002	0.0020	0.0099	0.0308	0.0686	0.1171	0.1593	0.1762	0.1593	0.1171	0.0686	0.0308	0.0099	0.0020	0.0002		
	11					0.0005	0.0030	0.0120	0.0336	0.0710	0.1185	0.1602	0.1771	0.1597	0.1158	0.0654	0.0271	0.0074	0.0011	0.0001	
	12					0.0001	0.0008	0.0039	0.0136	0.0355	0.0727	0.1201	0.1623	0.1797	0.1614	0.1144	0.0609	0.0222	0.0046	0.0004	
	13						0.0002	0.0010	0.0045	0.0146	0.0366	0.0739	0.1221	0.1659	0.1844	0.1643	0.1124	0.0545	0.0160	0.0020	
	14							0.0002	0.0012	0.0049	0.0150	0.0370	0.0746	0.1244	0.1712	0.1916	0.1686	0.1091	0.0454	0.0089	0.0003
	15								0.0003	0.0013	0.0049	0.0148	0.0365	0.0746	0.1272	0.1789	0.2023	0.1746	0.1028	0.0319	0.0022
	16									0.0003	0.0013	0.0046	0.0139	0.0350	0.0738	0.1304	0.1897	0.2182	0.1821	0.0898	0.0133
	17										0.0002	0.0011	0.0040	0.0123	0.0323	0.0716	0.1339	0.2054	0.2428	0.1901	0.0596
	18											0.0002	0.0008	0.0031	0.0100	0.0278	0.0669	0.1369	0.2293	0.2852	0.1887
	19												0.0001	0.0005	0.0020	0.0068	0.0211	0.0576	0.1368	0.2702	0.3774
	20														0.0002	0.0008	0.0032	0.0115	0.0388	0.1216	0.3585

ΕΡΩΤΗΜΑ 5ο: Διωνυμική Κατανομή

Έστω ένα εργοστάσιο που παράγει προϊόντα με πιθανότητα να βγει ελαττωματικό προϊόν ίση με P(E)=0,05 (5%).

<u>Ποια η πιθανότητα να συναντήσω τουλάχιστον 4 ελαττωματικά προϊόντα σε</u> ένα δείγμα n=20 παρατηρήσεων;;;

P(E>=4) = 1-P(E=3)-P(E=2)-P(E=1)-P(E=0)= 1-0,9842=0,0158 (1,58%)

Binomial Probability Distribution table, continued.

											р										
n	x	0.01	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5	0.55	0.6	0.65	0.7	0.75	0.8	0.85	0.9	0.95
19	10				0.0001	0.0013	0.0066	0.0220	0.0528	0.0976	0.1449	0.1762	0.1771	0.1464	0.0980	0.0514	0.0198	0.0051	0.0007		
	11					0.0003	0.0018	0.0077	0.0233	0.0532	0.0970	0.1442	0.1771	0.1797	0.1489	0.0981	0.0487	0.0166	0.0032	0.0002	
	12						0.0004	0.0022	0.0083	0.0237	0.0529	0.0961	0.1443	0.1797	0.1844	0.1525	0.0974	0.0443	0.0122	0.0014	
	13						0.0001	0.0005	0.0024	0.0085	0.0233	0.0518	0.0949	0.1451	0.1844	0.1916	0.1574	0.0955	0.0374	0.0069	0.0002
	14							0.0001	0.0006	0.0024	0.0082	0.0222	0.0497	0.0933	0.1468	0.1916	0.2023	0.1636	0.0907	0.0266	0.0018
	15								0.0001	0.0005	0.0022	0.0074	0.0203	0.0467	0.0909	0.1491	0.2023	0.2182	0.1714	0.0798	0.0112
	16									0.0001	0.0005	0.0018	0.0062	0.0175	0.0422	0.0869	0.1517	0.2182	0.2428	0.1796	0.0533
	17										0.0001	0.0003	0.0013	0.0046	0.0138	0.0358	0.0803	0.1540	0.2428	0.2852	0.1787
	18												0.0002	0.0008	0.0029	0.0093	0.0268	0.0685	0.1529	0.2852	0.3774
	19			1										0.0001	0.0003	0.0011	0.0042	0.0144	0.0456	0.1351	0.3774
20		0.8179	0.3585	0.1216	0.0388	0.0115	0.0032	0.0008	0.0002												
	1	0.1652	0.3774	0.2702	0.1368	0.0576	0.0211	0.0068	0.0020	0.0005	0.0001										
	2	0.0159	0.1887	0.2852	0.2293	0.1369	0.0669	0.0278	0.0100	0.0031	0.0008	0.0002									
	3	0.0010	0.0596	0.1901	0.2428	0.2054	0.1339	0.0716	0.0323	0.0123	0.0040	0.0011	0.0002								
	4		0.0133	0.0898	0.1821	0.2182	0.1897	0.1304	0.0738	0.0350	0.0139	0.0046	0.0013	0.0003							
	5		0.0022	0.0319	0.1028	0.1746	0.2023	0.1789	0.1272	0.0746	0.0365	0.0148	0.0049	0.0013	0.0003						
	6		0.0003	0.0089	0.0454	0.1091	0.1686	0.1916	0.1712	0.1244	0.0746	0.0370	0.0150	0.0049	0.0012	0.0002					
	7			0.0020	0.0160	0.0545	0.1124	0.1643	0.1844	0.1659	0.1221	0.0739	0.0366	0.0146	0.0045	0.0010	0.0002				
	8			0.0004	0.0046	0.0222	0.0609	0.1144	0.1614	0.1797	0.1623	0.1201	0.0727	0.0355	0.0136	0.0039	0.0008	0.0001			
	9			0.0001	0.0011	0.0074	0.0271	0.0654	0.1158	0.1597	0.1771	0.1602	0.1185	0.0710	0.0336	0.0120	0.0030	0.0005			
	10				0.0002	0.0020	0.0099	0.0308	0.0686	0.1171	0.1593	0.1762	0.1593	0.1171	0.0686	0.0308	0.0099	0.0020	0.0002		
	11					0.0005	0.0030	0.0120	0.0336	0.0710	0.1185	0.1602	0.1771	0.1597	0.1158	0.0654	0.0271	0.0074	0.0011	0.0001	
	12					0.0001	0.0008	0.0039	0.0136	0.0355	0.0727	0.1201	0.1623	0.1797	0.1614	0.1144	0.0609	0.0222	0.0046	0.0004	
	13						0.0002	0.0010	0.0045	0.0146	0.0366	0.0739	0.1221	0.1659	0.1844	0.1643	0.1124	0.0545	0.0160	0.0020	
	14							0.0002	0.0012	0.0049	0.0150	0.0370	0.0746	0.1244	0.1712	0.1916	0.1686	0.1091	0.0454	0.0089	0.0003
	15								0.0003	0.0013	0.0049	0.0148	0.0365	0.0746	0.1272	0.1789	0.2023	0.1746	0.1028	0.0319	0.0022
	16									0.0003	0.0013	0.0046	0.0139	0.0350	0.0738	0.1304	0.1897	0.2182	0.1821	0.0898	0.0133
	17										0.0002	0.0011	0.0040	0.0123	0.0323	0.0716	0.1339	0.2054	0.2428	0.1901	0.0596
	18											0.0002	0.0008	0.0031	0.0100	0.0278	0.0669	0.1369	0.2293	0.2852	0.1887
	19												0.0001	0.0005	0.0020	0.0068	0.0211	0.0576	0.1368	0.2702	0.3774
	20														0.0002	0.0008	0.0032	0.0115	0.0388	0.1216	0.3585

ΕΡΩΤΗΜΑ 5ο: Διωνυμική Κατανομή

Έστω ένα εργοστάσιο που παράγει προϊόντα με πιθανότητα να βγει ελαττωματικό προϊόν ίση με P(E)=0,05 (5%).

<u>Ποια η πιθανότητα να συναντήσω το πολύ 2 ελαττωματικά προϊόντα σε ένα</u> <u>δείγμα n=20 παρατηρήσεων</u>;;;

P(E<=2) = P(E=2)+P(E=1)+P(E=0)= 0,9246 (92,46%)

Binomial Probability Distribution table, continued.

											р										
n	x	0.01	0.05	0.1	0.15	0.2	0.25	0.3	0.35	0.4	0.45	0.5	0.55	0.6	0.65	0.7	0.75	0.8	0.85	0.9	0.95
19	10				0.0001	0.0013	0.0066	0.0220	0.0528	0.0976	0.1449	0.1762	0.1771	0.1464	0.0980	0.0514	0.0198	0.0051	0.0007		
	11					0.0003	0.0018	0.0077	0.0233	0.0532	0.0970	0.1442	0.1771	0.1797	0.1489	0.0981	0.0487	0.0166	0.0032	0.0002	
	12						0.0004	0.0022	0.0083	0.0237	0.0529	0.0961	0.1443	0.1797	0.1844	0.1525	0.0974	0.0443	0.0122	0.0014	
	13						0.0001	0.0005	0.0024	0.0085	0.0233	0.0518	0.0949	0.1451	0.1844	0.1916	0.1574	0.0955	0.0374	0.0069	0.0002
	14							0.0001	0.0006	0.0024	0.0082	0.0222	0.0497	0.0933	0.1468	0.1916	0.2023	0.1636	0.0907	0.0266	0.0018
	15								0.0001	0.0005	0.0022	0.0074	0.0203	0.0467	0.0909	0.1491	0.2023	0.2182	0.1714	0.0798	0.0112
	16									0.0001	0.0005	0.0018	0.0062	0.0175	0.0422	0.0869	0.1517	0.2182	0.2428	0.1796	0.0533
	17										0.0001	0.0003	0.0013	0.0046	0.0138	0.0358	0.0803	0.1540	0.2428	0.2852	0.1787
	18												0.0002	0.0008	0.0029	0.0093	0.0268	0.0685	0.1529	0.2852	0.3774
-	19													0.0001	0.0003	0.0011	0.0042	0.0144	0.0456	0.1351	0.3774
20		0.8179	0.3585	0.1216	0.0388	0.0115	0.0032	0.0008	0.0002												
	1	0.1652	0.3774	0.2702	0.1368	0.0576	0.0211	0.0068	0.0020	0.0005	0.0001										
	2	0.0159	0.1887	0.2852	0.2293	0.1369	0.0669	0.0278	0.0100	0.0031	0.0008	0.0002									
	3	0.0010	0.0596	0.1901	0.2428	0.2054	0.1339	0.0716	0.0323	0.0123	0.0040	0.0011	0.0002								
	4		0.0133	0.0898	0.1821	0.2182	0.1897	0.1304	0.0738	0.0350	0.0139	0.0046	0.0013	0.0003							
	5		0.0022	0.0319	0.1028	0.1746	0.2023	0.1789	0.1272	0.0746	0.0365	0.0148	0.0049	0.0013	0.0003						
	6		0.0003	0.0089	0.0454	0.1091	0.1686	0.1916	0.1712	0.1244	0.0746	0.0370	0.0150	0.0049	0.0012	0.0002					
	7			0.0020	0.0160	0.0545	0.1124	0.1643	0.1844	0.1659	0.1221	0.0739	0.0366	0.0146	0.0045	0.0010	0.0002				
	8			0.0004	0.0046	0.0222	0.0609	0.1144	0.1614	0.1797	0.1623	0.1201	0.0727	0.0355	0.0136	0.0039	0.0008	0.0001			
	9			0.0001	0.0011	0.0074	0.0271	0.0654	0.1158	0.1597	0.1771	0.1602	0.1185	0.0710	0.0336	0.0120	0.0030	0.0005			
	10				0.0002	0.0020	0.0099	0.0308	0.0686	0.1171	0.1593	0.1762	0.1593	0.1171	0.0686	0.0308	0.0099	0.0020	0.0002		
	11					0.0005	0.0030	0.0120	0.0336	0.0710	0.1185	0.1602	0.1771	0.1597	0.1158	0.0654	0.0271	0.0074	0.0011	0.0001	
	12					0.0001	0.0008	0.0039	0.0136	0.0355	0.0727	0.1201	0.1623	0.1797	0.1614	0.1144	0.0609	0.0222	0.0046	0.0004	
	13						0.0002	0.0010	0.0045	0.0146	0.0366	0.0739	0.1221	0.1659	0.1844	0.1643	0.1124	0.0545	0.0160	0.0020	
	14							0.0002	0.0012	0.0049	0.0150	0.0370	0.0746	0.1244	0.1712	0.1916	0.1686	0.1091	0.0454	0.0089	0.0003
	15								0.0003	0.0013	0.0049	0.0148	0.0365	0.0746	0.1272	0.1789	0.2023	0.1746	0.1028	0.0319	0.0022
	16									0.0003	0.0013	0.0046	0.0139	0.0350	0.0738	0.1304	0.1897	0.2182	0.1821	0.0898	0.0133
	17										0.0002	0.0011	0.0040	0.0123	0.0323	0.0716	0.1339	0.2054	0.2428	0.1901	0.0596
	18											0.0002	0.0008	0.0031	0.0100	0.0278	0.0669	0.1369	0.2293	0.2852	0.1887
	19												0.0001	0.0005	0.0020	0.0068	0.0211	0.0576	0.1368	0.2702	0.3774
	20														0.0002	0.0008	0.0032	0.0115	0.0388	0.1216	0.3585

ΕΡΩΤΗΜΑ 5ο: Διωνυμική Κατανομή

Βήμα 3ο: Ελέγξτε τα αποτελέσματά σας στο περιβάλλον της εφαρμογής → https://www.statskingdom.com/distribution-calculator.html

Normal	Binomial	t-distribution	Poisson	Chi-Square	F distribution	n Exponential	Weibull	Uniform	
Distribu	ution				P	obability of succes	ss (P)		
Binomi	al distributio	n			\$	0,25			٢
Sample	size (n)				P	robability (p) or Sc	ore (x)		
20					د ا	(1			\$
x ₁ - sco	re				R	ounding:		Chart Rounding:	
1,6448	854				0	3		\$ 2	\$

Normal	Binomial	t-distribution	Poisson	Chi-Square	F distribut	ion Exponential	Weibull U	niform	
Distrib	ution					Probability of succe	ss (P)		
Binom	ial distributio	n			\$	0,05			٢
Sample	size (n)					Probability (p) or Sc	ore (x)		
20					٢	x1			\$
x ₁ - sco	ore					Rounding:		Chart Rounding:	
3					٢	6		\$ 2	\$
🗌 Afte	er the first ru	n, calculate on eve	ery field char	nge					
Calculate Jses the b	Clear	ribution							
P(X ≤ 3) P(X < 3) P(X > 3) P(X ≥ 3) P(X = 3)	= 0.984098 = 0.924516. = 0.0159019 = 0.075483 = 0.059582	5. 7 1.							

Normal	Binomial	t-distribution	Poisson	Chi-Square	F distribut	ion Exponential	Weibull	Uniform		
Distrib	ution					Probability of succe	ss (P)			
Binom	ial distributio	n			\$	0.05				٢
Sample	size (n)					Probability (p) or Sc	core (x)			
20					٢	<i>x</i> ₁				\$
<i>x</i> ₁ - sco	ore					Rounding:		Chart	Rounding:	
4					٢	6		\$ 2		\$
🗌 Afte	er the first ru	n, calculate on ev	ery field cha	nge						
Calculate Uses the b	Clear	ribution								
$P(X \le 4)$ P(X < 4) $P(X \ge 4)$ $P(X \ge 4)$ P(X = 4)	= 0.997426 = 0.984098 = 0.002573 = 0.0159015 = 0.0133276	94. 5.								

Normal	Binomial	t-distribution	Poisson	Chi-Square	F distribut	ion Exponential	Weibull	Uniform		
Distrib	ution					Probability of succ	cess (P)			
Binom	ial distributio	n			\$	0.05				٢
Sample	e size (n)					Probability (p) or S	Score (x)			
20					٢	<i>x</i> ₁				\$
<i>x</i> ₁ - sco	ore					Rounding:		Chart Rou	nding:	
2					٢	6		\$ 2		\$
🗌 Afte	er the first ru	n, calculate on ev	ery field cha	nge						
Jses the b	inomial dist	ribution								
$P(X \le 2)$ P(X < 2) P(X > 2) $P(X \ge 2)$ P(X = 2)	= 0.924516. = 0.73584. = 0.075483 = 0.26416. = 0.188677.	7.								

EPΩTHMA 6o: <u>*Κατανομή Poisson*</u>

Βήμα 1ο: Κατασκεύασε ένα υποθετικό παράδειγμα πειράματος Poisson με γνωστό τον ρυθμό επιτυχίας λ

Βήμα 2ο: Υπολόγισε τις πιθανότητες

να συμβεί Α φορές η επιτυχία <mark>Ρ(Ε=Α)=;</mark>

να συμβεί τουλάχιστον Β φορές η επιτυχία P(E>=B)=;

να συμβεί το πολύ Γ φορές η επιτυχία <mark>Ρ(Ε<=Γ)=;</mark>

Δείτε στην επόμενη διαφάνεια μερικά παραδείγματα

EPΩTHMA 60: <u>*Κατανομή Poisson*</u>

Έστω πως έχει παρατηρηθεί πως μέσα σε 20 λεπτά περνούν την κεντρική είσοδο της ΑΣΟΕΕ 10 φοιτητές (λ=10).

Ποια η πιθανότητα να περάσουν μέσα σε 20 λεπτά 8 φοιτητές;;;

P(A=8) = 0,1126 (11,26%)

					λ					
x	9.1	9.2	9.3	9.4	9.5	9.6	9.7	9.8	9.9	10
0	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0000
1	0.0010	0.0009	0.0009	0.0008	0.0007	0.0007	0.0006	0.0005	0.0005	0.0005
2	0.0046	0.0043	0.0040	0.0037	0.0034	0.0031	0.0029	0.0027	0.0025	0.0023
3	0.0140	0.0131	0.0123	0.0115	0.0107	0.0100	0.0093	0.0087	0.0081	0.0076
4	0.0319	0.0302	0.0285	0.0269	0.0254	0.0240	0.0226	0.0213	0.0201	0.0189
5	0.0581	0.0555	0.0530	0.0506	0.0483	0.0460	0.0439	0.0418	0.0398	0.0378
6	0.0881	0.0851	0.0822	0.0793	0.0764	0.0736	0.0709	0.0682	0.0656	0.0631
7	0.1145	0.1118	0.1091	0.1064	0.1037	0.1010	0.0982	0.0955	0.0928	0.0901
8	0.1302	0.1286	0.1269	0.1251	0.1232	0.1212	0.1191	0.1170	0.1148	0.1126
9	0.1317	0.1315	0.1311	0.1306	0.1300	0.1293	0.1284	0.1274	0.1263	0.1251
10	0.1198	0.1210	0.1219	0.1228	0.1235	0.1241	0.1245	0.1249	0.1250	0.1251
11	0.0991	0.1012	0.1031	0.1049	0.1067	0.1083	0.1098	0.1112	0.1125	0.1137
12	0.0752	0.0776	0.0799	0.0822	0.0844	0.0866	0.0888	0.0908	0.0928	0.0948
1.3	0.0526	0.0549	0.0572	0.0594	0.0617	0.0640	0.0662	0.0685	0.0707	0.0729
14	0.0342	0.0361	0.0380	0.0399	0.0419	0.0439	0.0459	0.0479	0.0500	0.0521
15	0.0208	0.0221	0.0235	0.0250	0.0265	0.0281	0.0297	0.0313	0.0330	0.0347
16	0.0118	0.0127	0.0137	0.0147	0.0157	0.0168	0.0180	0.0192	0.0204	0.0217
17	0.0063	0.0069	0.0075	0.0081	0.0088	0.0095	0.0103	0.0111	0.0119	0.0128
18	0.0032	0.0035	0.0039	0.0042	0.0046	0.0051	0.0055	0.0060	0.0065	0.0071
19	0.0015	0.0017	0.0019	0.0021	0.0023	0.0026	0.0028	0.0031	0.0034	0.0037
20	0.0007	0.0008	0.0009	0.0010	0.0011	0.0012	0.0014	0.0015	0.0017	0.0019
21	0.0003	0.0003	0.0004	0.0004	0.0005	0.0006	0.0006	0.0007	0.0008	0.0009
22	0.0001	0.0001	0.0002	0.0002	0.0002	0.0002	0.0003	0.0003	0.0004	0.0004
23	0.0000	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0002	0.0002
24	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0001
X	$\lambda = 20$	x	$\lambda = 20$	X	$\lambda = 20$	X	$\lambda = 20$			
0	0.0000	10	0.0058	20	0.0888	30	0.0083			
1	0.0000	11	0.0106	21	0.0846	31	0.0054			
2	0.0000	12	0.0176	22	0.0769	32	0.0034			
3	0.0000	13	0.0271	23	0.0669	33	0.0020			
-4	0.0000	14	0.0387	24	0.0557	34	0.0012			
5	0.0001	15	0.0516	25	0.0446	35	0.0007			
6	0.0002	16	0.0646	26	0.0343	36	0.0004			
7	0.0005	17	0.0760	27	0.0254	37	0.0002			
8	0.0013	18	0.0844	28	0.0181	38	0.0001			
9	0.0029	19	0.0888	29	0.0125	39	0.0001			

EPΩTHMA 60: <u>*Κατανομή Poisson*</u>

Έστω πως έχει παρατηρηθεί πως μέσα σε 20 λεπτά περνούν την κεντρική είσοδο της ΑΣΟΕΕ 10 φοιτητές (λ=10).

Ποια η πιθανότητα να περάσουν μέσα σε 20 λεπτά τουλάχιστον 6 φοιτητές;;;

 $P(A \ge 6) = 1 - P(A = 5) - P(A = 4) - P(A = 3) - P(A = 2) - P(A = 1) - P(A = 0) = 1 - 0.0671 = 93.29\%$

					λ					
x	9.1	9.2	9.3	9.4	9.5	9.6	9.7	9.8	9.9	10
0	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0000
1	0.0010	0.0009	0.0009	0.0008	0.0007	0.0007	0.0006	0.0005	0.0005	0.0005
2	0.0046	0.0043	0.0040	0.0037	0.0034	0.0031	0.0029	0.0027	0.0025	0.0023
3	0.0140	0.0131	0.0123	0.0115	0.0107	0.0100	0.0093	0.0087	0.0081	0.0076
4	0.0319	0.0302	0.0285	0.0269	0.0254	0.0240	0.0226	0.0213	0.0201	0.0189
5	0.0581	0.0555	0.0530	0.0506	0.0483	0.0460	0.0439	0.0418	0.0398	0.0378
6	0.0881	0.0851	0.0822	0.0793	0.0764	0.0736	0.0709	0.0682	0.0656	0.0631
7	0.1145	0.1118	0.1091	0.1064	0.1037	0.1010	0.0982	0.0955	0.0928	0.0901
8	0.1302	0.1286	0.1269	0.1251	0.1232	0.1212	0.1191	0.1170	0.1148	0.1126
9	0.1317	0.1315	0.1311	0.1306	0.1300	0.1293	0.1284	0.1274	0.1263	0.1251
10	0.1198	0.1210	0.1219	0.1228	0.1235	0.1241	0.1245	0.1249	0.1250	0.1251
11	0.0991	0.1012	0.1031	0.1049	0.1067	0.1083	0.1098	0.1112	0.1125	0.1137
12	0.0752	0.0776	0.0799	0.0822	0.0844	0.0866	0.0888	0.0908	0.0928	0.0948
13	0.0526	0.0549	0.0572	0.0594	0.0617	0.0640	0.0662	0.0685	0.0707	0.0729
14	0.0342	0.0361	0.0380	0.0399	0.0419	0.0439	0.0459	0.0479	0.0500	0.0521
1.5	0.0208	0.0221	0.0235	0.0250	0.0265	0.0281	0.0297	0.0313	0.0330	0.0347
16	0.0118	0.0127	0.0137	0.0147	0.0157	0.0168	0.0180	0.0192	0.0204	0.0217
17	0.0063	0.0069	0.0075	0.0081	0.0088	0.0095	0.0103	0.0111	0.0119	0.0128
18	0.0032	0.0035	0.0039	0.0042	0.0046	0.0051	0.0055	0.0060	0.0065	0.0071
19	0.0015	0.0017	0.0019	0.0021	0.0023	0.0026	0.0028	0.0031	0.0034	0.0037
20	0.0007	0.0008	0.0009	0.0010	0.0011	0.0012	0.0014	0.0015	0.0017	0.0019
21	0.0003	0.0003	0.0004	0.0004	0.0005	0.0006	0.0006	0.0007	0.0008	0.0009
22	0.0001	0.0001	0.0002	0.0002	0.0002	0.0002	0.0003	0.0003	0.0004	0.0004
23	0.0000	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0002	0.0002
24	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0001
x	$\lambda = 20$	x	$\lambda = 20$	x	$\lambda = 20$	X	$\lambda = 20$			
0	0.0000	10	0.0058	20	0.0888	30	0.0083			
1	0.0000	11	0.0106	21	0.0846	31	0.0054			
2	0.0000	12	0.0176	22	0.0769	32	0.0034			
3	0.0000	13	0.0271	23	0.0669	33	0.0020			
4	0.0000	14	0.0387	24	0.0557	34	0.0012			
5	0.0001	15	0.0516	25	0.0446	35	0.0007			
6	0.0002	16	0.0646	26	0.0343	36	0.0004			
7	0.0005	17	0.0760	27	0.0254	37	0.0002			
8	0.0013	18	0.0844	28	0.0181	38	0.0001			
9	0.0029	19	0.0888	29	0.0125	39	0.0001			

EPΩTHMA 60: <u>Κατανομή Poisson</u>

Έστω πως έχει παρατηρηθεί πως μέσα σε 20 λεπτά περνούν την κεντρική είσοδο της ΑΣΟΕΕ 10 φοιτητές (λ=10).

<u>Ποια η πιθανότητα να περάσουν μέσα σε 20 λεπτά του πολύ 8 φοιτητές;;;</u>

P(A<=8)

= P(A=8)+P(A=7)+P(A=6)+P(A=5)+P(A=4)+P(A=3)+P(A=2)+P(A=1)+P(A=0)=

= 0,3329 (33,29%)

					А					
x	9.1	9.2	9.3	9.4	9.5	9.6	9.7	9.8	9.9	10
0	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0000
1	0.0010	0.0009	0.0009	0.0008	0.0007	0.0007	0.0006	0.0005	0.0005	0.0005
2	0.0046	0.0043	0.0040	0.0037	0.0034	0.0031	0.0029	0.0027	0.0025	0.0023
3	0.0140	0.0131	0.0123	0.0115	0.0107	0.0100	0.0093	0.0087	0.0081	0.0076
4	0.0319	0.0302	0.0285	0.0269	0.0254	0.0240	0.0226	0.0213	0.0201	0.0189
5	0.0581	0.0555	0.0530	0.0506	0.0483	0.0460	0.0439	0.0418	0.0398	0.0378
6	0.0881	0.0851	0.0822	0.0793	0.0764	0.0736	0.0709	0.0682	0.0656	0.0631
7	0.1145	0.1118	0.1091	0.1064	0.1037	0.1010	0.0982	0.0955	0.0928	0.0901
8	0.1302	0.1286	0.1269	0.1251	0.1232	0.1212	0.1191	0.1170	0.1148	0.1126
9	0.1317	0.1315	0.1311	0.1306	0.1300	0.1293	0.1284	0.1274	0.1263	0.1251
10	0.1198	0.1210	0.1219	0.1228	0.1235	0.1241	0.1245	0.1249	0.1250	0.1251
11	0.0991	0.1012	0.1031	0.1049	0.1067	0.1083	0.1098	0.1112	0.1125	0.1137
12	0.0752	0.0776	0.0799	0.0822	0.0844	0.0866	0.0888	0.0908	0.0928	0.0948
1.3	0.0526	0.0549	0.0572	0.0594	0.0617	0.0640	0.0662	0.0685	0.0707	0.0729
14	0.0342	0.0361	0.0380	0.0399	0.0419	0.0439	0.0459	0.0479	0.0500	0.0521
15	0.0208	0.0221	0.0235	0.0250	0.0265	0.0281	0.0297	0.0313	0.0330	0.0347
16	0.0118	0.0127	0.0137	0.0147	0.0157	0.0168	0.0180	0.0192	0.0204	0.0217
17	0.0063	0.0069	0.0075	0.0081	0.0088	0.0095	0.0103	0.0111	0.0119	0.0128
18	0.0032	0.0035	0.0039	0.0042	0.0046	0.0051	0.0055	0.0060	0.0065	0.0071
19	0.0015	0.0017	0.0019	0.0021	0.0023	0.0026	0.0028	0.0031	0.0034	0.0037
20	0.0007	0.0008	0.0009	0.0010	0.0011	0.0012	0.0014	0.0015	0.0017	0.0019
21	0.0003	0.0003	0.0004	0.0004	0.0005	0.0006	0.0006	0.0007	0.0008	0.0009
22	0.0001	0.0001	0.0002	0.0002	0.0002	0.0002	0.0003	0.0003	0.0004	0.0004
23	0.0000	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001	0.0002	0.0002
24	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0000	0.0001	0.0001	0.0001
X	$\lambda = 20$	x	$\lambda = 20$	x	$\lambda = 20$	X	$\lambda = 20$			
0	0.0000	10	0.0058	20	0.0888	30	0.0083			
1	0.0000	11	0.0106	21	0.0846	31	0.0054			
2	0.0000	12	0.0176	22	0.0769	32	0.0034			
3	0.0000	13	0.0271	23	0.0669	33	0.0020			
4	0.0000	14	0.0387	24	0.0557	34	0.0012			
5	0.0001	15	0.0516	25	0.0446	35	0.0007			
6	0.0002	16	0.0646	26	0.0343	36	0.0004			
7	0.0005	17	0.0760	27	0.0254	37	0.0002			
8	0.0013	18	0.0844	28	0.0181	38	0.0001			
9	0.0029	19	0.0888	29	0.0125	39	0.0001			

EPΩTHMA 60: <u>*Κατανομή Poisson*</u>

Βήμα 3ο: Ελέγξτε τα αποτελέσματά σας στο περιβάλλον της εφαρμογής → https://www.statskingdom.com/distribution-calculator.html

Normal	Binomial	t-distribution	Poisson	Chi-Square	F distribution	Exponential	Weibull	Uniform
Distribu	ution				Ra	te (λ)		
Poisso	n distributio	n			\$	ļ.		٢
Probabi	lity (p) or Sc	ore (x)			<i>x</i> ₁	- score		
<i>x</i> ₁					\$,644854		٢

Normal Binomial t-distribut	ution	Poisson	Chi-Square	F distribut	ion Exponenti	al Weibull	Uniform
Distribution					Rate (λ)		
Poisson distribution				\$	10		٢
Probability (p) or Score (x)					x ₁ - score		
x ₁				\$	8		٢
Rounding:		Chart Roun	iding:				
6	\$	2		\$			
After the first run, calculate	on eve	ry field char	nge				
Clear							
P(X ≤ 8) = 0.33282 . P(X < 8) = 0.220221 . P(X > 8) = 0.66718 . P(X ≥ 8) = 0.779779 . P(X = 8) = 0.112599 .							

Normal Binom	ial t-distribution	Poisson	Chi-Square	F distribution	Exponential	Weibull	Uniform	
Distribution				Rate	e (λ)			
Poisson distribut	ution			\$ 10				٢
Probability (p) o	r Score (x)			<i>x</i> ₁ -	score			
<i>x</i> ₁				\$ 6				٢
Rounding:		Chart Rou	nding:					
6	\$	2		\$				
After the firs	t run, calculate on ev	ery field cha	nge					
Calculate	ar							
$P(X \le 6) = 0.1301$ $P(X < 6) = 0.0670$ $P(X > 6) = 0.8698$ $P(X \ge 6) = 0.9328$ $P(X = 6) = 0.0630$	41. 986. 359. 914. 9555.							

Normal I	Binomial	t-distribution	Poisson	Chi-Square	F distribut	ion Expor	nential	Weibull	Uniform	
Distributi	on					Rate (λ)				
Poisson o	distribution				¢	10			٢	
Probability	y (p) or Sco	ore (x)				x ₁ - score				
x1					\$	8			٢	
Rounding:			Chart Rour	nding:						
6		\$	2		\$					
After t	he first run	, calculate on eve	ery field cha	nge						
Calculate	Clear									
		7								
$P(X \le 8) = 0$ P(X < 8) = 0).33282.).220221.	J								
P(X > 8) = 0 P(X > 8) = 0).66718.).779779									
P(X = 8) = 0	0.112599.									

ΕΡΩΤΗΜΑ 7ο: Διάστημα Εμπιστοσύνης Μέσου Πληθυσμού (μ)

Βήμα 1ο: Επέλεξε μια μεταβλητή από τη βάση δεδομένων της Παγκόσμιας Τράπεζας \rightarrow <u>https://data.worldbank.org/indicator</u>

Βήμα 20: Επέλεξε ένα συγκεκριμένο έτος t

Βήμα 3ο: Υπέθεσε πως δε μπορούν να υπολογιστούν τα μ και σ (μ: μέση τιμή πληθυσμού, σ: τυπική απόκλιση πληθυσμού)

Βήμα 4ο: Πάρε ένα μικρό (n<25) και ένα μεγάλο δείγμα (n>25) και κατασκεύασε ένα 95% και ένα 99% διάστημα εμπιστοσύνης για τον άγνωστο πραγματικό μέσο του πληθυσμού (μ)

Δείτε στην επόμενη διαφάνεια μερικά παραδείγματα

ΕΡΩΤΗΜΑ 7ο: Διάστημα Εμπιστοσύνης Μέσου Πληθυσμού (μ)

Έστω πως επιλέγω τον παράγοντα "GDP Growth" και πιο συγκεκριμένα τις τιμές του έτους 1980.

Παίρνω τυχαία ένα **μεγάλο δείγμα 50** παρατηρήσεων (<mark>n=50</mark>).

Με τη βοήθεια του Η/Υ βρίσκω έναν δειγματικό μέσο ίσο με 4,23

καθώς και μια **δειγματική τυπική απόκλιση** ίση με <mark>3,75</mark>.

$$P(\overline{\mathbf{X}} - \mathbf{Z}_{\alpha/2} * \frac{s}{\sqrt{n}} < \mu < \overline{\mathbf{X}} + \mathbf{Z}_{\alpha/2} * \frac{s}{\sqrt{n}})$$

ΕΡΩΤΗΜΑ 7ο: Διάστημα Εμπιστοσύνης Μέσου Πληθυσμού (μ)

$$P(\overline{X} - Z_{\alpha/2} * \frac{s}{\sqrt{n}} < \mu < \overline{X} + Z_{\alpha/2} * \frac{s}{\sqrt{n}})$$

$$P(4, 23 - 1, 96 * \frac{3,75}{\sqrt{50}} < \mu < 4, 23 + 1, 96 * \frac{3,75}{\sqrt{50}})$$

$$P(4, 23 - 2, 57 * \frac{3,75}{\sqrt{50}} < \mu < 4, 23 + 2, 57 * \frac{3,75}{\sqrt{50}})$$

α=5%

α=1%

ΕΡΩΤΗΜΑ 7ο: Διάστημα Εμπιστοσύνης Μέσου Πληθυσμού (μ)

Έστω πως επιλέγω τον παράγοντα "GDP Growth" και πιο συγκεκριμένα τις τιμές του έτους 1980.

Παίρνω τυχαία ένα **μικρό δείγμα 15** παρατηρήσεων (<mark>n=15</mark>).

Με τη βοήθεια του Η/Υ βρίσκω έναν δειγματικό μέσο ίσο με 4,47

καθώς και μια **δειγματική τυπική απόκλιση** ίση με <mark>5,83</mark>.

$$P(\overline{\mathbf{X}} - t_{\alpha/2, n-1} * \frac{s}{\sqrt{n}} < P < \overline{\mathbf{X}} + t_{\alpha/2, n-1} * \frac{s}{\sqrt{n}})$$

ΕΡΩΤΗΜΑ 7ο: Διάστημα Εμπιστοσύνης Μέσου Πληθυσμού (μ)

$$P(\overline{X} - t_{\alpha/2, n-1} * \frac{s}{\sqrt{n}} < P < \overline{X} + t_{\alpha/2, n-1} * \frac{s}{\sqrt{n}})$$

$$P(4, 47 - 2, 14 * \frac{5,83}{\sqrt{15}} < \mu < 4, 47 + 2, 14 * \frac{5,83}{\sqrt{15}}) \quad \alpha = 5\%$$

$$P(4,47 - 2,97 * \frac{5,83}{\sqrt{15}} < \mu < 4,47 + 2,97 * \frac{5,83}{\sqrt{15}})$$

 $\alpha = 1\%$

ΕΡΩΤΗΜΑ 7ο: Διάστημα Εμπιστοσύνης Μέσου Πληθυσμού (μ)

Βήμα 5ο: Έλεγξε τα αποτελέσματά σου στο περιβάλλον της εφαρμογής → https://www.statskingdom.com/confidence-interval-calculator.html

Confidence interval type:		Data is:	
Mean confidence interval	\$	Average, SD, n	\$
Average (x):		Sample size (n):	
	٢		٢
Do you know the population SD (σ)?		Sample standard deviation (S):	
No (use t-distribution)	\$		٢
Confidence Level (CL):		Rounding:	
0.95	٢	4	\$

ΕΡΩΤΗΜΑ 8ο: Διάστημα Εμπιστοσύνης Αναλογίας Πληθυσμού (P)

Βήμα 1ο: Επέλεξε μια μεταβλητή από τη βάση δεδομένων της Παγκόσμιας Τράπεζας \rightarrow <u>https://data.worldbank.org/indicator</u>

Βήμα 20: Επέλεξε ένα συγκεκριμένο έτος t

Βήμα 3ο: Υπέθεσε πως δε μπορεί να υπολογιστεί η πραγματική αναλογία του πληθυσμού (R/N)

Βήμα 4ο: Πάρε ένα μεγάλο δείγμα (n>25) και κατασκεύασε ένα 95% και ένα 99% διάστημα εμπιστοσύνης για την άγνωστη πραγματική αναλογία του πληθυσμού (P)

Δείτε στην επόμενη διαφάνεια μερικά παραδείγματα

ΕΡΩΤΗΜΑ 8ο: Διάστημα Εμπιστοσύνης Αναλογίας Πληθυσμού (P)

Έστω πως επιλέγω τον παράγοντα "Government Expenditure on Education" και πιο συγκεκριμένα τις τιμές του έτους 2000.

Παίρνω τυχαία ένα μεγάλο δείγμα 100 παρατηρήσεων (<mark>n=100</mark>).

Ανιχνεύω στο δείγμα μου 19 χώρες με επίπεδα άνω του 5%.

Άρα, <mark>r/n = 19/100 = 19 (%)</mark> → δειγματική αναλογία

$$P(\frac{r}{n} - \operatorname{Z}_{\alpha/2}^{*} \sqrt{\frac{p^{*}(1-p)}{n}} < P < \frac{r}{n} + \operatorname{Z}_{\alpha/2}^{*} \sqrt{\frac{p^{*}(1-p)}{n}})$$

$$P(\frac{r}{n} - \operatorname{Z}_{\alpha/2}^{*} \sqrt{\frac{p^{*}(1-p)}{n}} < P < \frac{r}{n} + \operatorname{Z}_{\alpha/2}^{*} \sqrt{\frac{p^{*}(1-p)}{n}})$$

P(0, 19 - 1, 96 * 0, 04 < P < 0, 19 + 1, 96 * 0, 04)

$$P(0, 1116 < P < 0, 2684)$$

α=5%

$$P(0, 19 - 2, 57 * 0, 04 < P < 0, 19 + 2, 57 * 0, 04)$$

α=1%

P(0, 0872 < P < 0, 2928)

ΕΡΩΤΗΜΑ 8ο: <u>Διάστημα Εμπιστοσύνης Αναλογίας Πληθυσμού (P)</u>

Bήμα 5o: Έλεγξε τα αποτελέσματά σου στο περιβάλλον της εφαρμογής \rightarrow <u>https://www.statskingdom.com/proportion-confidence-interval-calculator.html</u>

Proportion Confidence Interval Calculator

Proportion confidence interval calculator with calculation steps, using the normal distribution approximation (Wald interval), binomial distribution, and the Wilson score interval.

Confidence Level:	Sample size (n):	
0.95	100	
Sample proportion (p̂) or #successes:	Rounding:	
19	4	\$